summaryrefslogtreecommitdiff
path: root/doc/lispref/numbers.texi
diff options
context:
space:
mode:
authorPaul Eggert <eggert@cs.ucla.edu>2011-06-06 12:43:39 -0700
committerPaul Eggert <eggert@cs.ucla.edu>2011-06-06 12:43:39 -0700
commit001903b5498d4898455e1a69bff166a9cc699ec0 (patch)
tree5269347eaadca67c12e854c7fbd666286cedfc90 /doc/lispref/numbers.texi
parentb862a52ad38e14c7f7c9000662af834c75668012 (diff)
parentcad02d3b8074b286b5c2796294c477cd2056bcc1 (diff)
downloademacs-001903b5498d4898455e1a69bff166a9cc699ec0.tar.gz
Merge: Document wide integers better.
Diffstat (limited to 'doc/lispref/numbers.texi')
-rw-r--r--doc/lispref/numbers.texi117
1 files changed, 60 insertions, 57 deletions
diff --git a/doc/lispref/numbers.texi b/doc/lispref/numbers.texi
index 2c73a03a26c..65921f444e0 100644
--- a/doc/lispref/numbers.texi
+++ b/doc/lispref/numbers.texi
@@ -50,8 +50,9 @@ to
@tex
@math{2^{29}-1}),
@end tex
-but some machines may provide a wider range. Many examples in this
-chapter assume an integer has 30 bits.
+but some machines provide a wider range. Many examples in this
+chapter assume that an integer has 30 bits and that floating point
+numbers are IEEE double precision.
@cindex overflow
The Lisp reader reads an integer as a sequence of digits with optional
@@ -97,17 +98,18 @@ view the numbers in their binary form.
In 30-bit binary, the decimal integer 5 looks like this:
@example
-00 0000 0000 0000 0000 0000 0000 0101
+0000...000101 (30 bits total)
@end example
@noindent
-(We have inserted spaces between groups of 4 bits, and two spaces
-between groups of 8 bits, to make the binary integer easier to read.)
+(The @samp{...} stands for enough bits to fill out a 30-bit word; in
+this case, @samp{...} stands for twenty 0 bits. Later examples also
+use the @samp{...} notation to make binary integers easier to read.)
The integer @minus{}1 looks like this:
@example
-11 1111 1111 1111 1111 1111 1111 1111
+1111...111111 (30 bits total)
@end example
@noindent
@@ -120,14 +122,14 @@ complement} notation.)
@minus{}5 looks like this:
@example
-11 1111 1111 1111 1111 1111 1111 1011
+1111...111011 (30 bits total)
@end example
In this implementation, the largest 30-bit binary integer value is
536,870,911 in decimal. In binary, it looks like this:
@example
-01 1111 1111 1111 1111 1111 1111 1111
+0111...111111 (30 bits total)
@end example
Since the arithmetic functions do not check whether integers go
@@ -137,7 +139,7 @@ negative integer @minus{}536,870,912:
@example
(+ 1 536870911)
@result{} -536870912
- @result{} 10 0000 0000 0000 0000 0000 0000 0000
+ @result{} 1000...000000 (30 bits total)
@end example
Many of the functions described in this chapter accept markers for
@@ -508,8 +510,8 @@ commonly used.
if any argument is floating.
It is important to note that in Emacs Lisp, arithmetic functions
-do not check for overflow. Thus @code{(1+ 268435455)} may evaluate to
-@minus{}268435456, depending on your hardware.
+do not check for overflow. Thus @code{(1+ 536870911)} may evaluate to
+@minus{}536870912, depending on your hardware.
@defun 1+ number-or-marker
This function returns @var{number-or-marker} plus 1.
@@ -829,19 +831,19 @@ value of a positive integer by two, rounding downward.
The function @code{lsh}, like all Emacs Lisp arithmetic functions, does
not check for overflow, so shifting left can discard significant bits
and change the sign of the number. For example, left shifting
-536,870,911 produces @minus{}2 on a 30-bit machine:
+536,870,911 produces @minus{}2 in the 30-bit implementation:
@example
(lsh 536870911 1) ; @r{left shift}
@result{} -2
@end example
-In binary, in the 30-bit implementation, the argument looks like this:
+In binary, the argument looks like this:
@example
@group
;; @r{Decimal 536,870,911}
-01 1111 1111 1111 1111 1111 1111 1111
+0111...111111 (30 bits total)
@end group
@end example
@@ -851,7 +853,7 @@ which becomes the following when left shifted:
@example
@group
;; @r{Decimal @minus{}2}
-11 1111 1111 1111 1111 1111 1111 1110
+1111...111110 (30 bits total)
@end group
@end example
@end defun
@@ -874,9 +876,9 @@ looks like this:
@group
(ash -6 -1) @result{} -3
;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
-11 1111 1111 1111 1111 1111 1111 1010
+1111...111010 (30 bits total)
@result{}
-11 1111 1111 1111 1111 1111 1111 1101
+1111...111101 (30 bits total)
@end group
@end example
@@ -887,9 +889,9 @@ In contrast, shifting the pattern of bits one place to the right with
@group
(lsh -6 -1) @result{} 536870909
;; @r{Decimal @minus{}6 becomes decimal 536,870,909.}
-11 1111 1111 1111 1111 1111 1111 1010
+1111...111010 (30 bits total)
@result{}
-01 1111 1111 1111 1111 1111 1111 1101
+0111...111101 (30 bits total)
@end group
@end example
@@ -899,34 +901,35 @@ Here are other examples:
@c with smallbook but not with regular book! --rjc 16mar92
@smallexample
@group
- ; @r{ 30-bit binary values}
+ ; @r{ 30-bit binary values}
-(lsh 5 2) ; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101}
- @result{} 20 ; = @r{00 0000 0000 0000 0000 0000 0001 0100}
+(lsh 5 2) ; 5 = @r{0000...000101}
+ @result{} 20 ; = @r{0000...010100}
@end group
@group
(ash 5 2)
@result{} 20
-(lsh -5 2) ; -5 = @r{11 1111 1111 1111 1111 1111 1111 1011}
- @result{} -20 ; = @r{11 1111 1111 1111 1111 1111 1110 1100}
+(lsh -5 2) ; -5 = @r{1111...111011}
+ @result{} -20 ; = @r{1111...101100}
(ash -5 2)
@result{} -20
@end group
@group
-(lsh 5 -2) ; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101}
- @result{} 1 ; = @r{00 0000 0000 0000 0000 0000 0000 0001}
+(lsh 5 -2) ; 5 = @r{0000...000101}
+ @result{} 1 ; = @r{0000...000001}
@end group
@group
(ash 5 -2)
@result{} 1
@end group
@group
-(lsh -5 -2) ; -5 = @r{11 1111 1111 1111 1111 1111 1111 1011}
- @result{} 268435454 ; = @r{00 0111 1111 1111 1111 1111 1111 1110}
+(lsh -5 -2) ; -5 = @r{1111...111011}
+ @result{} 268435454
+ ; = @r{0011...111110}
@end group
@group
-(ash -5 -2) ; -5 = @r{11 1111 1111 1111 1111 1111 1111 1011}
- @result{} -2 ; = @r{11 1111 1111 1111 1111 1111 1111 1110}
+(ash -5 -2) ; -5 = @r{1111...111011}
+ @result{} -2 ; = @r{1111...111110}
@end group
@end smallexample
@end defun
@@ -961,23 +964,23 @@ because its binary representation consists entirely of ones. If
@smallexample
@group
- ; @r{ 30-bit binary values}
+ ; @r{ 30-bit binary values}
-(logand 14 13) ; 14 = @r{00 0000 0000 0000 0000 0000 0000 1110}
- ; 13 = @r{00 0000 0000 0000 0000 0000 0000 1101}
- @result{} 12 ; 12 = @r{00 0000 0000 0000 0000 0000 0000 1100}
+(logand 14 13) ; 14 = @r{0000...001110}
+ ; 13 = @r{0000...001101}
+ @result{} 12 ; 12 = @r{0000...001100}
@end group
@group
-(logand 14 13 4) ; 14 = @r{00 0000 0000 0000 0000 0000 0000 1110}
- ; 13 = @r{00 0000 0000 0000 0000 0000 0000 1101}
- ; 4 = @r{00 0000 0000 0000 0000 0000 0000 0100}
- @result{} 4 ; 4 = @r{00 0000 0000 0000 0000 0000 0000 0100}
+(logand 14 13 4) ; 14 = @r{0000...001110}
+ ; 13 = @r{0000...001101}
+ ; 4 = @r{0000...000100}
+ @result{} 4 ; 4 = @r{0000...000100}
@end group
@group
(logand)
- @result{} -1 ; -1 = @r{11 1111 1111 1111 1111 1111 1111 1111}
+ @result{} -1 ; -1 = @r{1111...111111}
@end group
@end smallexample
@end defun
@@ -991,18 +994,18 @@ passed just one argument, it returns that argument.
@smallexample
@group
- ; @r{ 30-bit binary values}
+ ; @r{ 30-bit binary values}
-(logior 12 5) ; 12 = @r{00 0000 0000 0000 0000 0000 0000 1100}
- ; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101}
- @result{} 13 ; 13 = @r{00 0000 0000 0000 0000 0000 0000 1101}
+(logior 12 5) ; 12 = @r{0000...001100}
+ ; 5 = @r{0000...000101}
+ @result{} 13 ; 13 = @r{0000...001101}
@end group
@group
-(logior 12 5 7) ; 12 = @r{00 0000 0000 0000 0000 0000 0000 1100}
- ; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101}
- ; 7 = @r{00 0000 0000 0000 0000 0000 0000 0111}
- @result{} 15 ; 15 = @r{00 0000 0000 0000 0000 0000 0000 1111}
+(logior 12 5 7) ; 12 = @r{0000...001100}
+ ; 5 = @r{0000...000101}
+ ; 7 = @r{0000...000111}
+ @result{} 15 ; 15 = @r{0000...001111}
@end group
@end smallexample
@end defun
@@ -1016,18 +1019,18 @@ result is 0, which is an identity element for this operation. If
@smallexample
@group
- ; @r{ 30-bit binary values}
+ ; @r{ 30-bit binary values}
-(logxor 12 5) ; 12 = @r{00 0000 0000 0000 0000 0000 0000 1100}
- ; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101}
- @result{} 9 ; 9 = @r{00 0000 0000 0000 0000 0000 0000 1001}
+(logxor 12 5) ; 12 = @r{0000...001100}
+ ; 5 = @r{0000...000101}
+ @result{} 9 ; 9 = @r{0000...001001}
@end group
@group
-(logxor 12 5 7) ; 12 = @r{00 0000 0000 0000 0000 0000 0000 1100}
- ; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101}
- ; 7 = @r{00 0000 0000 0000 0000 0000 0000 0111}
- @result{} 14 ; 14 = @r{00 0000 0000 0000 0000 0000 0000 1110}
+(logxor 12 5 7) ; 12 = @r{0000...001100}
+ ; 5 = @r{0000...000101}
+ ; 7 = @r{0000...000111}
+ @result{} 14 ; 14 = @r{0000...001110}
@end group
@end smallexample
@end defun
@@ -1040,9 +1043,9 @@ bit is one in the result if, and only if, the @var{n}th bit is zero in
@example
(lognot 5)
@result{} -6
-;; 5 = @r{00 0000 0000 0000 0000 0000 0000 0101}
+;; 5 = @r{0000...000101} (30 bits total)
;; @r{becomes}
-;; -6 = @r{11 1111 1111 1111 1111 1111 1111 1010}
+;; -6 = @r{1111...111010} (30 bits total)
@end example
@end defun