1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
|
/* Copyright (C) 2001, 2002, 2003, 2004, 2005 Red Hat, Inc.
Written by Ulrich Drepper <drepper@redhat.com>, 2001.
This program is Open Source software; you can redistribute it and/or
modify it under the terms of the Open Software License version 1.0 as
published by the Open Source Initiative.
You should have received a copy of the Open Software License along
with this program; if not, you may obtain a copy of the Open Software
License version 1.0 from http://www.opensource.org/licenses/osl.php or
by writing the Open Source Initiative c/o Lawrence Rosen, Esq.,
3001 King Ranch Road, Ukiah, CA 95482. */
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <assert.h>
#include <error.h>
#include <libintl.h>
#include <stdlib.h>
#include <string.h>
// XXX For debugging
#include <stdio.h>
#include <system.h>
#include "ld.h"
#include "list.h"
/* x86 is little endian. */
#define UNALIGNED_ACCESS_CLASS LITTLE_ENDIAN
#include "unaligned.h"
#include "xelf.h"
/* The old callbacks. */
static int (*old_open_outfile) (struct ld_state *, int, int, int);
static int
elf_i386_open_outfile (struct ld_state *statep,
int machine __attribute__ ((unused)),
int klass __attribute__ ((unused)),
int data __attribute__ ((unused)))
{
/* This backend only handles 32-bit object files. */
/* XXX For now just use the generic backend. */
return old_open_outfile (statep, EM_386, ELFCLASS32, ELFDATA2LSB);
}
/* Process relocations for the output in a relocatable file. This
only means adjusting offset and symbol indices. */
static void
elf_i386_relocate_section (struct ld_state *statep __attribute__ ((unused)),
Elf_Scn *outscn, struct scninfo *firstp,
const Elf32_Word *dblindirect)
{
struct scninfo *runp;
Elf_Data *data;
/* Iterate over all the input sections. Appropriate data buffers in the
output sections were already created. I get them iteratively, too. */
runp = firstp;
data = NULL;
do
{
Elf_Data *reltgtdata;
Elf_Data *insymdata;
Elf_Data *inxndxdata = NULL;
size_t maxcnt;
size_t cnt;
const Elf32_Word *symindirect;
struct symbol **symref;
struct usedfiles *file = runp->fileinfo;
XElf_Shdr *shdr = &SCNINFO_SHDR (runp->shdr);
/* Get the output section data buffer for this input section. */
data = elf_getdata (outscn, data);
assert (data != NULL);
/* Get the data for section in the input file this relocation
section is relocating. Since these buffers are reused in the
output modifying these buffers has the correct result. */
reltgtdata = elf_getdata (file->scninfo[shdr->sh_info].scn, NULL);
/* Get the data for the input section symbol table for this
relocation section. */
insymdata = elf_getdata (file->scninfo[shdr->sh_link].scn, NULL);
assert (insymdata != NULL);
/* And the extended section index table. */
inxndxdata = runp->fileinfo->xndxdata;
/* Number of relocations. */
maxcnt = shdr->sh_size / shdr->sh_entsize;
/* Array directing local symbol table offsets to output symbol
table offsets. */
symindirect = file->symindirect;
/* References to the symbol records. */
symref = file->symref;
/* Iterate over all the relocations in the section. */
for (cnt = 0; cnt < maxcnt; ++cnt)
{
XElf_Rel_vardef (rel);
Elf32_Word si;
XElf_Sym_vardef (sym);
Elf32_Word xndx;
/* Get the relocation data itself. x86 uses Rel
relocations. In case we have to handle Rela as well the
whole loop probably should be duplicated. */
xelf_getrel (data, cnt, rel);
assert (rel != NULL);
/* Compute the symbol index in the output file. */
si = symindirect[XELF_R_SYM (rel->r_info)];
if (si == 0)
{
/* This happens if the symbol is locally undefined or
superceded by some other definition. */
assert (symref[XELF_R_SYM (rel->r_info)] != NULL);
si = symref[XELF_R_SYM (rel->r_info)]->outsymidx;
}
/* Take reordering performed to sort the symbol table into
account. */
si = dblindirect[si];
/* Get the symbol table entry. */
xelf_getsymshndx (insymdata, inxndxdata, XELF_R_SYM (rel->r_info),
sym, xndx);
if (sym->st_shndx != SHN_XINDEX)
xndx = sym->st_shndx;
assert (xndx < SHN_LORESERVE || xndx > SHN_HIRESERVE);
/* We fortunately don't have to do much. The relocations
mostly get only updates of the offset. Only is a
relocation referred to a section do we have to do
something. In this case the reference to the sections
has no direct equivalent since the part the input section
contributes need not start at the same offset as in the
input file. Therefore we have to adjust the addend which
in the case of Rel relocations is in the target section
itself. */
if (XELF_ST_TYPE (sym->st_info) == STT_SECTION)
{
Elf32_Word toadd;
/* We expect here on R_386_32 relocations. */
assert (XELF_R_TYPE (rel->r_info) == R_386_32);
/* Avoid writing to the section memory if this is
effectively a no-op since it might save a
copy-on-write operation. */
toadd = file->scninfo[xndx].offset;
if (toadd != 0)
add_4ubyte_unaligned (reltgtdata->d_buf + rel->r_offset,
toadd);
}
/* Adjust the offset for the position of the input section
content in the output section. */
rel->r_offset += file->scninfo[shdr->sh_info].offset;
/* And finally adjust the index of the symbol in the output
symbol table. */
rel->r_info = XELF_R_INFO (si, XELF_R_TYPE (rel->r_info));
/* Store the result. */
(void) xelf_update_rel (data, cnt, rel);
}
runp = runp->next;
}
while (runp != firstp);
}
/* Each PLT entry has 16 bytes. We need one entry as overhead for
the code to set up the call into the runtime relocation. */
#define PLT_ENTRY_SIZE 16
static void
elf_i386_initialize_plt (struct ld_state *statep, Elf_Scn *scn)
{
Elf_Data *data;
XElf_Shdr_vardef (shdr);
/* Change the entry size in the section header. */
xelf_getshdr (scn, shdr);
assert (shdr != NULL);
shdr->sh_entsize = PLT_ENTRY_SIZE;
(void) xelf_update_shdr (scn, shdr);
data = elf_newdata (scn);
if (data == NULL)
error (EXIT_FAILURE, 0, gettext ("cannot allocate PLT section: %s"),
elf_errmsg (-1));
/* We need one special PLT entry (performing the jump to the runtime
relocation routines) and one for each function we call in a DSO. */
data->d_size = (1 + statep->nplt) * PLT_ENTRY_SIZE;
data->d_buf = xcalloc (1, data->d_size);
data->d_align = 8;
data->d_off = 0;
statep->nplt_used = 1;
}
static void
elf_i386_initialize_pltrel (struct ld_state *statep, Elf_Scn *scn)
{
Elf_Data *data;
data = elf_newdata (scn);
if (data == NULL)
error (EXIT_FAILURE, 0, gettext ("cannot allocate PLTREL section: %s"),
elf_errmsg (-1));
/* One relocation per PLT entry. */
data->d_size = statep->nplt * sizeof (Elf32_Rel);
data->d_buf = xcalloc (1, data->d_size);
data->d_type = ELF_T_REL;
data->d_align = 4;
data->d_off = 0;
}
static void
elf_i386_initialize_got (struct ld_state *statep, Elf_Scn *scn)
{
Elf_Data *data;
/* If we have no .plt we don't need the special entries we normally
create for it. The other contents is created later. */
if (statep->ngot + statep->nplt == 0)
return;
data = elf_newdata (scn);
if (data == NULL)
error (EXIT_FAILURE, 0, gettext ("cannot allocate GOT section: %s"),
elf_errmsg (-1));
/* We construct the .got section in pieces. Here we only add the data
structures which are used by the PLT. This includes three reserved
entries at the beginning (the first will contain a pointer to the
.dynamic section), and one word for each PLT entry. */
data->d_size = (3 + statep->ngot + statep->nplt) * sizeof (Elf32_Addr);
data->d_buf = xcalloc (1, data->d_size);
data->d_align = sizeof (Elf32_Addr);
data->d_off = 0;
}
/* The first entry in an absolute procedure linkage table looks like
this. See the SVR4 ABI i386 supplement to see how this works. */
static const unsigned char elf_i386_plt0_entry[PLT_ENTRY_SIZE] =
{
0xff, 0x35, /* pushl contents of address */
0, 0, 0, 0, /* replaced with address of .got + 4. */
0xff, 0x25, /* jmp indirect */
0, 0, 0, 0, /* replaced with address of .got + 8. */
0, 0, 0, 0 /* pad out to 16 bytes. */
};
/* Type describing the first PLT entry in non-PIC. */
struct plt0_entry
{
/* First a 'push' of the second GOT entry. */
unsigned char push_instr[2];
uint32_t gotp4_addr;
/* Second, a 'jmp indirect' to the third GOT entry. */
unsigned char jmp_instr[2];
uint32_t gotp8_addr;
/* Padding. */
unsigned char padding[4];
} __attribute__ ((packed));
/* The first entry in a PIC procedure linkage table look like this. */
static const unsigned char elf_i386_pic_plt0_entry[PLT_ENTRY_SIZE] =
{
0xff, 0xb3, 4, 0, 0, 0, /* pushl 4(%ebx) */
0xff, 0xa3, 8, 0, 0, 0, /* jmp *8(%ebx) */
0, 0, 0, 0 /* pad out to 16 bytes. */
};
/* Contents of all but the first PLT entry in executable. */
static const unsigned char elf_i386_plt_entry[PLT_ENTRY_SIZE] =
{
0xff, 0x25, /* jmp indirect */
0, 0, 0, 0, /* replaced with address of this symbol in .got. */
0x68, /* pushl immediate */
0, 0, 0, 0, /* replaced with offset into relocation table. */
0xe9, /* jmp relative */
0, 0, 0, 0 /* replaced with offset to start of .plt. */
};
/* Contents of all but the first PLT entry in DSOs. */
static const unsigned char elf_i386_pic_plt_entry[PLT_ENTRY_SIZE] =
{
0xff, 0xa3, /* jmp *offset(%ebx) */
0, 0, 0, 0, /* replaced with offset of this symbol in .got. */
0x68, /* pushl immediate */
0, 0, 0, 0, /* replaced with offset into relocation table. */
0xe9, /* jmp relative */
0, 0, 0, 0 /* replaced with offset to start of .plt. */
};
/* Type describing a PLT entry. */
struct plt_entry
{
/* The first instruction is 'jmp indirect' or 'jmp *offset(%ebs)'. */
unsigned char jmp_instr[2];
uint32_t offset_got;
/* The second instruction is 'push immediate'. */
unsigned char push_instr;
uint32_t push_imm;
/* Finally a 'jmp relative'. */
unsigned char jmp_instr2;
uint32_t plt0_offset;
} __attribute__ ((packed));
static void
elf_i386_finalize_plt (struct ld_state *statep, size_t nsym,
size_t nsym_dyn __attribute__ ((unused)))
{
Elf_Scn *scn;
XElf_Shdr_vardef (shdr);
Elf_Data *data;
Elf_Data *symdata = NULL;
Elf_Data *dynsymdata;
size_t cnt;
const bool build_dso = statep->file_type == dso_file_type;
if (unlikely (statep->nplt + statep->ngot == 0))
/* Nothing to be done. */
return;
/* Get the address of the got section. */
scn = elf_getscn (statep->outelf, statep->gotscnidx);
xelf_getshdr (scn, shdr);
data = elf_getdata (scn, NULL);
assert (shdr != NULL && data != NULL);
Elf32_Addr gotaddr = shdr->sh_addr;
/* Now create the initial values for the .got section. The first
word contains the address of the .dynamic section. */
xelf_getshdr (elf_getscn (statep->outelf, statep->dynamicscnidx), shdr);
assert (shdr != NULL);
((Elf32_Word *) data->d_buf)[0] = shdr->sh_addr;
/* The second and third entry are left empty for use by the dynamic
linker. The following entries are pointers to the instructions
following the initial jmp instruction in the corresponding PLT
entry. Since the first PLT entry is special the first used one
has the index 1. */
scn = elf_getscn (statep->outelf, statep->pltscnidx);
xelf_getshdr (scn, shdr);
assert (shdr != NULL);
dynsymdata = elf_getdata (elf_getscn (statep->outelf, statep->dynsymscnidx),
NULL);
assert (dynsymdata != NULL);
if (statep->symscnidx != 0)
{
symdata = elf_getdata (elf_getscn (statep->outelf, statep->symscnidx),
NULL);
assert (symdata != NULL);
}
for (cnt = 0; cnt < statep->nplt; ++cnt)
{
assert ((4 + cnt) * sizeof (Elf32_Word) <= data->d_size);
/* Address in the PLT. */
Elf32_Addr pltentryaddr = shdr->sh_addr + (1 + cnt) * PLT_ENTRY_SIZE;
/* Point the GOT entry at the PLT entry, after the initial jmp. */
((Elf32_Word *) data->d_buf)[3 + cnt] = pltentryaddr + 6;
/* The value of the symbol is the address of the corresponding PLT
entry. Store the address, also for the normal symbol table if
this is necessary. */
((Elf32_Sym *) dynsymdata->d_buf)[1 + cnt].st_value = pltentryaddr;
if (symdata != NULL)
((Elf32_Sym *) symdata->d_buf)[nsym - statep->nplt + cnt].st_value
= pltentryaddr;
}
/* Create the .plt section. */
scn = elf_getscn (statep->outelf, statep->pltscnidx);
data = elf_getdata (scn, NULL);
assert (data != NULL);
/* Create the first entry. */
assert (data->d_size >= PLT_ENTRY_SIZE);
if (build_dso)
/* Copy the entry. It's complete, no relocation needed. */
memcpy (data->d_buf, elf_i386_pic_plt0_entry, PLT_ENTRY_SIZE);
else
{
/* Copy the skeleton. */
memcpy (data->d_buf, elf_i386_plt0_entry, PLT_ENTRY_SIZE);
/* And fill in the addresses. */
struct plt0_entry *addr = (struct plt0_entry *) data->d_buf;
addr->gotp4_addr = target_bswap_32 (gotaddr + 4);
addr->gotp8_addr = target_bswap_32 (gotaddr + 8);
}
/* For DSOs we need GOT offsets, otherwise the GOT address. */
Elf32_Addr gotaddr_off = build_dso ? 0 : gotaddr;
/* Create the remaining entries. */
const unsigned char *plt_template
= build_dso ? elf_i386_pic_plt_entry : elf_i386_plt_entry;
for (cnt = 0; cnt < statep->nplt; ++cnt)
{
struct plt_entry *addr;
/* Copy the template. */
assert (data->d_size >= (2 + cnt) * PLT_ENTRY_SIZE);
addr = (struct plt_entry *) ((char *) data->d_buf
+ (1 + cnt) * PLT_ENTRY_SIZE);
memcpy (addr, plt_template, PLT_ENTRY_SIZE);
/* And once more, fill in the addresses. First the address of
this symbol in .got. */
addr->offset_got = target_bswap_32 (gotaddr_off
+ (3 + cnt) * sizeof (Elf32_Addr));
/* Offset into relocation table. */
addr->push_imm = target_bswap_32 (cnt * sizeof (Elf32_Rel));
/* Offset to start of .plt. */
addr->plt0_offset = target_bswap_32 (-(2 + cnt) * PLT_ENTRY_SIZE);
}
/* Create the .rel.plt section data. It simply means relocations
addressing the corresponding entry in the .got section. The
section name is misleading. */
scn = elf_getscn (statep->outelf, statep->pltrelscnidx);
xelf_getshdr (scn, shdr);
data = elf_getdata (scn, NULL);
assert (shdr != NULL && data != NULL);
/* Update the sh_link to point to the section being modified. We
point it here (correctly) to the .got section. Some linkers
(e.g., the GNU binutils linker) point to the .plt section. This
is wrong since the .plt section isn't modified even though the
name .rel.plt suggests that this is correct. */
shdr->sh_link = statep->dynsymscnidx;
shdr->sh_info = statep->gotscnidx;
(void) xelf_update_shdr (scn, shdr);
for (cnt = 0; cnt < statep->nplt; ++cnt)
{
XElf_Rel_vardef (rel);
assert ((1 + cnt) * sizeof (Elf32_Rel) <= data->d_size);
xelf_getrel_ptr (data, cnt, rel);
rel->r_offset = gotaddr + (3 + cnt) * sizeof (Elf32_Addr);
/* The symbol table entries for the functions from DSOs are at
the end of the symbol table. */
rel->r_info = XELF_R_INFO (1 + cnt, R_386_JMP_SLOT);
(void) xelf_update_rel (data, cnt, rel);
}
}
static int
elf_i386_rel_type (struct ld_state *statep __attribute__ ((__unused__)))
{
/* ELF/i386 uses REL. */
return DT_REL;
}
static void
elf_i386_count_relocations (struct ld_state *statep, struct scninfo *scninfo)
{
/* We go through the list of input sections and count those relocations
which are not handled by the linker. At the same time we have to
see how many GOT entries we need and how much .bss space is needed
for copy relocations. */
Elf_Data *data = elf_getdata (scninfo->scn, NULL);
XElf_Shdr *shdr = &SCNINFO_SHDR (scninfo->shdr);
size_t maxcnt = shdr->sh_size / shdr->sh_entsize;
size_t relsize = 0;
size_t cnt;
struct symbol *sym;
assert (shdr->sh_type == SHT_REL);
for (cnt = 0; cnt < maxcnt; ++cnt)
{
XElf_Rel_vardef (rel);
xelf_getrel (data, cnt, rel);
/* XXX Should we complain about failing accesses? */
if (rel != NULL)
{
Elf32_Word r_sym = XELF_R_SYM (rel->r_info);
switch (XELF_R_TYPE (rel->r_info))
{
case R_386_GOT32:
if (! scninfo->fileinfo->symref[r_sym]->defined)
relsize += sizeof (Elf32_Rel);
/* This relocation is not emitted in the output file but
requires a GOT entry. */
++statep->ngot;
++statep->nrel_got;
/* FALLTHROUGH */
case R_386_GOTOFF:
case R_386_GOTPC:
statep->need_got = true;
break;
case R_386_32:
case R_386_PC32:
/* These relocations cause text relocations in DSOs. */
if (linked_from_dso_p (scninfo, r_sym))
{
if (statep->file_type == dso_file_type)
{
relsize += sizeof (Elf32_Rel);
statep->dt_flags |= DF_TEXTREL;
}
else
{
/* Non-function objects from a DSO need to get a
copy relocation. */
sym = scninfo->fileinfo->symref[r_sym];
/* Only do this if we have not requested a copy
relocation already. */
if (unlikely (sym->type != STT_FUNC) && ! sym->need_copy)
{
sym->need_copy = 1;
++statep->ncopy;
relsize += sizeof (Elf32_Rel);
}
}
}
else if (statep->file_type == dso_file_type
&& r_sym >= SCNINFO_SHDR (scninfo->fileinfo->scninfo[shdr->sh_link].shdr).sh_info
&& scninfo->fileinfo->symref[r_sym]->outdynsymidx != 0
&& XELF_R_TYPE (rel->r_info) == R_386_32)
relsize += sizeof (Elf32_Rel);
break;
case R_386_PLT32:
/* We might need a PLT entry. But we cannot say for sure
here since one of the symbols might turn up being
defined in the executable (if we create such a thing).
If a DSO is created we still might use a local
definition.
If the symbol is not defined and we are not creating
a statically linked binary, then we need in any case
a PLT entry. */
if (! scninfo->fileinfo->symref[r_sym]->defined)
{
assert (!statep->statically);
sym = scninfo->fileinfo->symref[r_sym];
sym->type = STT_FUNC;
sym->in_dso = 1;
sym->defined = 1;
/* Remove from the list of unresolved symbols. */
--statep->nunresolved;
if (! sym->weak)
--statep->nunresolved_nonweak;
CDBL_LIST_DEL (statep->unresolved, sym);
/* Add to the list of symbols we expect from a DSO. */
++statep->nplt;
++statep->nfrom_dso;
CDBL_LIST_ADD_REAR (statep->from_dso, sym);
}
break;
case R_386_TLS_GD:
case R_386_TLS_LDM:
case R_386_TLS_GD_32:
case R_386_TLS_GD_PUSH:
case R_386_TLS_GD_CALL:
case R_386_TLS_GD_POP:
case R_386_TLS_LDM_32:
case R_386_TLS_LDM_PUSH:
case R_386_TLS_LDM_CALL:
case R_386_TLS_LDM_POP:
case R_386_TLS_LDO_32:
case R_386_TLS_IE_32:
case R_386_TLS_LE_32:
/* XXX */
abort ();
break;
case R_386_NONE:
/* Nothing to be done. */
break;
/* These relocation should never be generated by an
assembler. */
case R_386_COPY:
case R_386_GLOB_DAT:
case R_386_JMP_SLOT:
case R_386_RELATIVE:
case R_386_TLS_DTPMOD32:
case R_386_TLS_DTPOFF32:
case R_386_TLS_TPOFF32:
/* Unknown relocation. */
default:
abort ();
}
}
}
scninfo->relsize = relsize;
}
static void
elf_i386_create_relocations (struct ld_state *statep,
const Elf32_Word *dblindirect __attribute__ ((unused)))
{
/* Get the address of the got section. */
Elf_Scn *pltscn = elf_getscn (statep->outelf, statep->pltscnidx);
Elf32_Shdr *shdr = elf32_getshdr (pltscn);
assert (shdr != NULL);
Elf32_Addr pltaddr = shdr->sh_addr;
Elf_Scn *gotscn = elf_getscn (statep->outelf, statep->gotscnidx);
shdr = elf32_getshdr (gotscn);
assert (shdr != NULL);
Elf32_Addr gotaddr = shdr->sh_addr;
Elf_Scn *reldynscn = elf_getscn (statep->outelf, statep->reldynscnidx);
Elf_Data *reldyndata = elf_getdata (reldynscn, NULL);
size_t nreldyn = 0;
#define ngot_used (3 + statep->nplt + nreldyn)
struct scninfo *first = statep->rellist->next;
struct scninfo *runp = first;
do
{
XElf_Shdr *rshdr = &SCNINFO_SHDR (runp->shdr);
Elf_Data *reldata = elf_getdata (runp->scn, NULL);
int nrels = rshdr->sh_size / rshdr->sh_entsize;
/* We will need the following vlaues a couple of times. Help
the compiler and improve readability. */
struct symbol **symref = runp->fileinfo->symref;
struct scninfo *scninfo = runp->fileinfo->scninfo;
/* This is the offset of the input section we are looking at in
the output file. */
XElf_Addr inscnoffset = scninfo[rshdr->sh_info].offset;
/* The target section. We use the data from the input file. */
Elf_Data *data = elf_getdata (scninfo[rshdr->sh_info].scn, NULL);
/* We cannot handle relocations against merge-able sections. */
assert ((SCNINFO_SHDR (scninfo[rshdr->sh_link].shdr).sh_flags
& SHF_MERGE) == 0);
/* Cache the access to the symbol table data. */
Elf_Data *symdata = elf_getdata (scninfo[rshdr->sh_link].scn, NULL);
int cnt;
for (cnt = 0; cnt < nrels; ++cnt)
{
XElf_Rel_vardef (rel);
XElf_Rel *rel2;
xelf_getrel (reldata, cnt, rel);
assert (rel != NULL);
XElf_Addr reladdr = inscnoffset + rel->r_offset;
XElf_Addr value;
size_t idx = XELF_R_SYM (rel->r_info);
if (idx < runp->fileinfo->nlocalsymbols)
{
XElf_Sym_vardef (sym);
xelf_getsym (symdata, idx, sym);
/* The value just depends on the position of the referenced
section in the output file and the addend. */
value = scninfo[sym->st_shndx].offset + sym->st_value;
}
else if (symref[idx]->in_dso)
{
/* MERGE.VALUE contains the PLT index. We have to add 1 since
there is this one special PLT entry at the beginning. */
assert (symref[idx]->merge.value != 0
|| symref[idx]->type != STT_FUNC);
value = pltaddr + symref[idx]->merge.value * PLT_ENTRY_SIZE;
}
else
value = symref[idx]->merge.value;
/* Address of the relocated memory in the data buffer. */
void *relloc = (char *) data->d_buf + rel->r_offset;
switch (XELF_R_TYPE (rel->r_info))
{
/* These three cases can be handled together since the
symbol associated with the R_386_GOTPC relocation is
_GLOBAL_OFFSET_TABLE_ which has a value corresponding
to the address of the GOT and the address of the PLT
entry required for R_386_PLT32 is computed above. */
case R_386_PC32:
case R_386_GOTPC:
case R_386_PLT32:
value -= reladdr;
/* FALLTHROUGH */
case R_386_32:
if (linked_from_dso_p (scninfo, idx)
&& statep->file_type != dso_file_type
&& symref[idx]->type != STT_FUNC)
{
value = (ld_state.copy_section->offset
+ symref[idx]->merge.value);
if (unlikely (symref[idx]->need_copy))
{
/* Add a relocation to initialize the GOT entry. */
assert (symref[idx]->outdynsymidx != 0);
#if NATIVE_ELF != 0
xelf_getrel_ptr (reldyndata, nreldyn, rel2);
#else
rel2 = &rel_mem;
#endif
rel2->r_offset = value;
rel2->r_info
= XELF_R_INFO (symref[idx]->outdynsymidx, R_386_COPY);
(void) xelf_update_rel (reldyndata, nreldyn, rel2);
++nreldyn;
/* Update the symbol table record for the new
address. */
Elf32_Word symidx = symref[idx]->outdynsymidx;
Elf_Scn *symscn = elf_getscn (statep->outelf,
statep->dynsymscnidx);
Elf_Data *outsymdata = elf_getdata (symscn, NULL);
assert (outsymdata != NULL);
XElf_Sym_vardef (sym);
xelf_getsym (outsymdata, symidx, sym);
sym->st_value = value;
sym->st_shndx = statep->copy_section->outscnndx;
(void) xelf_update_sym (outsymdata, symidx, sym);
symidx = symref[idx]->outsymidx;
if (symidx != 0)
{
symidx = statep->dblindirect[symidx];
symscn = elf_getscn (statep->outelf,
statep->symscnidx);
outsymdata = elf_getdata (symscn, NULL);
assert (outsymdata != NULL);
xelf_getsym (outsymdata, symidx, sym);
sym->st_value = value;
sym->st_shndx = statep->copy_section->outscnndx;
(void) xelf_update_sym (outsymdata, symidx, sym);
}
/* Remember that we set up the copy relocation. */
symref[idx]->need_copy = 0;
}
}
else if (statep->file_type == dso_file_type
&& idx >= SCNINFO_SHDR (scninfo[rshdr->sh_link].shdr).sh_info
&& symref[idx]->outdynsymidx != 0)
{
#if NATIVE_ELF != 0
xelf_getrel_ptr (reldyndata, nreldyn, rel2);
#else
rel2 = &rel_mem;
#endif
rel2->r_offset = value;
rel2->r_info
= XELF_R_INFO (symref[idx]->outdynsymidx, R_386_32);
(void) xelf_update_rel (reldyndata, nreldyn, rel2);
++nreldyn;
value = 0;
}
add_4ubyte_unaligned (relloc, value);
break;
case R_386_GOT32:
store_4ubyte_unaligned (relloc, ngot_used * sizeof (Elf32_Addr));
/* Add a relocation to initialize the GOT entry. */
#if NATIVE_ELF != 0
xelf_getrel_ptr (reldyndata, nreldyn, rel2);
#else
rel2 = &rel_mem;
#endif
rel2->r_offset = gotaddr + ngot_used * sizeof (Elf32_Addr);
rel2->r_info
= XELF_R_INFO (symref[idx]->outdynsymidx, R_386_GLOB_DAT);
(void) xelf_update_rel (reldyndata, nreldyn, rel2);
++nreldyn;
break;
case R_386_GOTOFF:
add_4ubyte_unaligned (relloc, value - gotaddr);
break;
case R_386_32PLT:
case R_386_TLS_TPOFF:
case R_386_TLS_IE:
case R_386_TLS_GOTIE:
case R_386_TLS_LE:
case R_386_TLS_GD:
case R_386_TLS_LDM:
case R_386_16:
case R_386_PC16:
case R_386_8:
case R_386_PC8:
case R_386_TLS_GD_32:
case R_386_TLS_GD_PUSH:
case R_386_TLS_GD_CALL:
case R_386_TLS_GD_POP:
case R_386_TLS_LDM_32:
case R_386_TLS_LDM_PUSH:
case R_386_TLS_LDM_CALL:
case R_386_TLS_LDM_POP:
case R_386_TLS_LDO_32:
case R_386_TLS_IE_32:
case R_386_TLS_LE_32:
// XXX For now fall through
printf("ignored relocation %d\n", (int) XELF_R_TYPE (rel->r_info));
break;
case R_386_NONE:
/* Nothing to do. */
break;
case R_386_COPY:
case R_386_JMP_SLOT:
case R_386_RELATIVE:
case R_386_GLOB_DAT:
case R_386_TLS_DTPMOD32:
case R_386_TLS_DTPOFF32:
case R_386_TLS_TPOFF32:
default:
/* Should not happen. */
abort ();
}
}
}
while ((runp = runp->next) != first);
}
int
elf_i386_ld_init (struct ld_state *statep)
{
/* We have a few callbacks available. */
old_open_outfile = statep->callbacks.open_outfile;
statep->callbacks.open_outfile = elf_i386_open_outfile;
statep->callbacks.relocate_section = elf_i386_relocate_section;
statep->callbacks.initialize_plt = elf_i386_initialize_plt;
statep->callbacks.initialize_pltrel = elf_i386_initialize_pltrel;
statep->callbacks.initialize_got = elf_i386_initialize_got;
statep->callbacks.finalize_plt = elf_i386_finalize_plt;
statep->callbacks.rel_type = elf_i386_rel_type;
statep->callbacks.count_relocations = elf_i386_count_relocations;
statep->callbacks.create_relocations = elf_i386_create_relocations;
return 0;
}
|