summaryrefslogtreecommitdiff
path: root/Demos/benchmarks/bpnn3.py
blob: 58d6bcbd7a7ce89fd2fb8dae7bd302b4ae829d95 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#!/usr/bin/python
# Back-Propagation Neural Networks
#
# Written in Python.  See http://www.python.org/
#
# Neil Schemenauer <nascheme@enme.ucalgary.ca>

import math
import random as random

# Local imports
import util


random.seed(0)

# calculate a random number where:  a <= rand < b
def rand(a, b, random=random.random):
        return (b-a)*random() + a

# Make a matrix (we could use NumPy to speed this up)
def makeMatrix(I, J, fill=0.0):
        m = []
        for i in range(I):
                m.append([fill]*J)
        return m

class NN(object):
#    print 'class NN'
    def __init__(self, ni, nh, no):
        # number of input, hidden, and output nodes
        self.ni = ni + 1 # +1 for bias node
        self.nh = nh
        self.no = no

        # activations for nodes
        self.ai = [1.0]*self.ni
        self.ah = [1.0]*self.nh
        self.ao = [1.0]*self.no

        # create weights
        self.wi = makeMatrix(self.ni, self.nh)
        self.wo = makeMatrix(self.nh, self.no)
        # set them to random vaules
        for i in range(self.ni):
            for j in range(self.nh):
                self.wi[i][j] = rand(-2.0, 2.0)
        for j in range(self.nh):
            for k in range(self.no):
                self.wo[j][k] = rand(-2.0, 2.0)

        # last change in weights for momentum
        self.ci = makeMatrix(self.ni, self.nh)
        self.co = makeMatrix(self.nh, self.no)

    def update(self, inputs):
#        print 'update', inputs
        if len(inputs) != self.ni-1:
            raise ValueError('wrong number of inputs')

        # input activations
        for i in range(self.ni-1):
            #self.ai[i] = 1.0/(1.0+math.exp(-inputs[i]))
            self.ai[i] = inputs[i]

        # hidden activations
        for j in range(self.nh):
            sum = 0.0
            for i in range(self.ni):
                 sum = sum + self.ai[i] * self.wi[i][j]
            self.ah[j] = 1.0/(1.0+math.exp(-sum))

        # output activations
        for k in range(self.no):
            sum = 0.0
            for j in range(self.nh):
                sum = sum + self.ah[j] * self.wo[j][k]
            self.ao[k] = 1.0/(1.0+math.exp(-sum))

        return self.ao[:]


    def backPropagate(self, targets, N, M):
#        print N, M
        if len(targets) != self.no:
            raise ValueError('wrong number of target values')

        # calculate error terms for output
        output_deltas = [0.0] * self.no
#        print self.no
        for k in range(self.no):
            ao = self.ao[k]
            output_deltas[k] = ao*(1-ao)*(targets[k]-ao)

        # calculate error terms for hidden
        hidden_deltas = [0.0] * self.nh
        for j in range(self.nh):
            sum = 0.0
            for k in range(self.no):
                sum = sum + output_deltas[k]*self.wo[j][k]
            hidden_deltas[j] = self.ah[j]*(1-self.ah[j])*sum

        # update output weights
        for j in range(self.nh):
            for k in range(self.no):
                change = output_deltas[k]*self.ah[j]
                self.wo[j][k] = self.wo[j][k] + N*change + M*self.co[j][k]
                self.co[j][k] = change

        # update input weights
        for i in range(self.ni):
            for j in range(self.nh):
                change = hidden_deltas[j]*self.ai[i]
                self.wi[i][j] = self.wi[i][j] + N*change + M*self.ci[i][j]
                self.ci[i][j] = change

        # calculate error
        error = 0.0
        for k in range(len(targets)):
            error = error + 0.5*(targets[k]-self.ao[k])**2
        return error


    def test(self, patterns):
        for p in patterns:
            print('%s -> %s' % (p[0], self.update(p[0])))

    def weights(self):
        print('Input weights:')
        for i in range(self.ni):
            print(self.wi[i])
        print('')
        print('Output weights:')
        for j in range(self.nh):
            print(self.wo[j])

    def train(self, patterns, iterations=2000, N=0.5, M=0.1):
# N: learning rate
# M: momentum factor
        for i in range(iterations):
            error = 0.0
            for p in patterns:
                inputs = p[0]
                targets = p[1]
                self.update(inputs)
                error = error + self.backPropagate(targets, N, M)
            #if i % 100 == 0:
            #    print i, 'error %-14f' % error


def demo():
    # Teach network XOR function
    pat = [
        [[0,0], [0]],
        [[0,1], [1]],
        [[1,0], [1]],
        [[1,1], [0]]
    ]

    # create a network with two input, two hidden, and two output nodes
    n = NN(2, 3, 1)
    # train it with some patterns
    n.train(pat, 5000)
    # test it
    #n.test(pat)

def time(fn, *args):
    import time, traceback
    begin = time.time()
    result = fn(*args)
    end = time.time()
    return result, end-begin

def test_bpnn(iterations):
    times = []
    for _ in range(iterations):
        result, t = time(demo)
        times.append(t)
    return times

main = test_bpnn

if __name__ == "__main__":
    import optparse
    parser = optparse.OptionParser(
        usage="%prog [options]",
        description=("Test the performance of a neural network."))
    util.add_standard_options_to(parser)
    options, args = parser.parse_args()

    util.run_benchmark(options, options.num_runs, test_bpnn)