summaryrefslogtreecommitdiff
path: root/Lib/test/math_testcases.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Lib/test/math_testcases.txt')
-rw-r--r--Lib/test/math_testcases.txt447
1 files changed, 447 insertions, 0 deletions
diff --git a/Lib/test/math_testcases.txt b/Lib/test/math_testcases.txt
new file mode 100644
index 0000000000..be1a49f0d3
--- /dev/null
+++ b/Lib/test/math_testcases.txt
@@ -0,0 +1,447 @@
+-- Testcases for functions in math.
+--
+-- Each line takes the form:
+--
+-- <testid> <function> <input_value> -> <output_value> <flags>
+--
+-- where:
+--
+-- <testid> is a short name identifying the test,
+--
+-- <function> is the function to be tested (exp, cos, asinh, ...),
+--
+-- <input_value> is a string representing a floating-point value
+--
+-- <output_value> is the expected (ideal) output value, again
+-- represented as a string.
+--
+-- <flags> is a list of the floating-point flags required by C99
+--
+-- The possible flags are:
+--
+-- divide-by-zero : raised when a finite input gives a
+-- mathematically infinite result.
+--
+-- overflow : raised when a finite input gives a finite result that
+-- is too large to fit in the usual range of an IEEE 754 double.
+--
+-- invalid : raised for invalid inputs (e.g., sqrt(-1))
+--
+-- ignore-sign : indicates that the sign of the result is
+-- unspecified; e.g., if the result is given as inf,
+-- then both -inf and inf should be accepted as correct.
+--
+-- Flags may appear in any order.
+--
+-- Lines beginning with '--' (like this one) start a comment, and are
+-- ignored. Blank lines, or lines containing only whitespace, are also
+-- ignored.
+
+-- Many of the values below were computed with the help of
+-- version 2.4 of the MPFR library for multiple-precision
+-- floating-point computations with correct rounding. All output
+-- values in this file are (modulo yet-to-be-discovered bugs)
+-- correctly rounded, provided that each input and output decimal
+-- floating-point value below is interpreted as a representation of
+-- the corresponding nearest IEEE 754 double-precision value. See the
+-- MPFR homepage at http://www.mpfr.org for more information about the
+-- MPFR project.
+
+
+-------------------------
+-- erf: error function --
+-------------------------
+
+erf0000 erf 0.0 -> 0.0
+erf0001 erf -0.0 -> -0.0
+erf0002 erf inf -> 1.0
+erf0003 erf -inf -> -1.0
+erf0004 erf nan -> nan
+
+-- tiny values
+erf0010 erf 1e-308 -> 1.1283791670955125e-308
+erf0011 erf 5e-324 -> 4.9406564584124654e-324
+erf0012 erf 1e-10 -> 1.1283791670955126e-10
+
+-- small integers
+erf0020 erf 1 -> 0.84270079294971489
+erf0021 erf 2 -> 0.99532226501895271
+erf0022 erf 3 -> 0.99997790950300136
+erf0023 erf 4 -> 0.99999998458274209
+erf0024 erf 5 -> 0.99999999999846256
+erf0025 erf 6 -> 1.0
+
+erf0030 erf -1 -> -0.84270079294971489
+erf0031 erf -2 -> -0.99532226501895271
+erf0032 erf -3 -> -0.99997790950300136
+erf0033 erf -4 -> -0.99999998458274209
+erf0034 erf -5 -> -0.99999999999846256
+erf0035 erf -6 -> -1.0
+
+-- huge values should all go to +/-1, depending on sign
+erf0040 erf -40 -> -1.0
+erf0041 erf 1e16 -> 1.0
+erf0042 erf -1e150 -> -1.0
+erf0043 erf 1.7e308 -> 1.0
+
+-- Issue 8986: inputs x with exp(-x*x) near the underflow threshold
+-- incorrectly signalled overflow on some platforms.
+erf0100 erf 26.2 -> 1.0
+erf0101 erf 26.4 -> 1.0
+erf0102 erf 26.6 -> 1.0
+erf0103 erf 26.8 -> 1.0
+erf0104 erf 27.0 -> 1.0
+erf0105 erf 27.2 -> 1.0
+erf0106 erf 27.4 -> 1.0
+erf0107 erf 27.6 -> 1.0
+
+erf0110 erf -26.2 -> -1.0
+erf0111 erf -26.4 -> -1.0
+erf0112 erf -26.6 -> -1.0
+erf0113 erf -26.8 -> -1.0
+erf0114 erf -27.0 -> -1.0
+erf0115 erf -27.2 -> -1.0
+erf0116 erf -27.4 -> -1.0
+erf0117 erf -27.6 -> -1.0
+
+----------------------------------------
+-- erfc: complementary error function --
+----------------------------------------
+
+erfc0000 erfc 0.0 -> 1.0
+erfc0001 erfc -0.0 -> 1.0
+erfc0002 erfc inf -> 0.0
+erfc0003 erfc -inf -> 2.0
+erfc0004 erfc nan -> nan
+
+-- tiny values
+erfc0010 erfc 1e-308 -> 1.0
+erfc0011 erfc 5e-324 -> 1.0
+erfc0012 erfc 1e-10 -> 0.99999999988716204
+
+-- small integers
+erfc0020 erfc 1 -> 0.15729920705028513
+erfc0021 erfc 2 -> 0.0046777349810472662
+erfc0022 erfc 3 -> 2.2090496998585441e-05
+erfc0023 erfc 4 -> 1.541725790028002e-08
+erfc0024 erfc 5 -> 1.5374597944280349e-12
+erfc0025 erfc 6 -> 2.1519736712498913e-17
+
+erfc0030 erfc -1 -> 1.8427007929497148
+erfc0031 erfc -2 -> 1.9953222650189528
+erfc0032 erfc -3 -> 1.9999779095030015
+erfc0033 erfc -4 -> 1.9999999845827421
+erfc0034 erfc -5 -> 1.9999999999984626
+erfc0035 erfc -6 -> 2.0
+
+-- as x -> infinity, erfc(x) behaves like exp(-x*x)/x/sqrt(pi)
+erfc0040 erfc 20 -> 5.3958656116079012e-176
+erfc0041 erfc 25 -> 8.3001725711965228e-274
+erfc0042 erfc 27 -> 5.2370464393526292e-319
+erfc0043 erfc 28 -> 0.0
+
+-- huge values
+erfc0050 erfc -40 -> 2.0
+erfc0051 erfc 1e16 -> 0.0
+erfc0052 erfc -1e150 -> 2.0
+erfc0053 erfc 1.7e308 -> 0.0
+
+-- Issue 8986: inputs x with exp(-x*x) near the underflow threshold
+-- incorrectly signalled overflow on some platforms.
+erfc0100 erfc 26.2 -> 1.6432507924389461e-300
+erfc0101 erfc 26.4 -> 4.4017768588035426e-305
+erfc0102 erfc 26.6 -> 1.0885125885442269e-309
+erfc0103 erfc 26.8 -> 2.4849621571966629e-314
+erfc0104 erfc 27.0 -> 5.2370464393526292e-319
+erfc0105 erfc 27.2 -> 9.8813129168249309e-324
+erfc0106 erfc 27.4 -> 0.0
+erfc0107 erfc 27.6 -> 0.0
+
+erfc0110 erfc -26.2 -> 2.0
+erfc0111 erfc -26.4 -> 2.0
+erfc0112 erfc -26.6 -> 2.0
+erfc0113 erfc -26.8 -> 2.0
+erfc0114 erfc -27.0 -> 2.0
+erfc0115 erfc -27.2 -> 2.0
+erfc0116 erfc -27.4 -> 2.0
+erfc0117 erfc -27.6 -> 2.0
+
+---------------------------------------------------------
+-- lgamma: log of absolute value of the gamma function --
+---------------------------------------------------------
+
+-- special values
+lgam0000 lgamma 0.0 -> inf divide-by-zero
+lgam0001 lgamma -0.0 -> inf divide-by-zero
+lgam0002 lgamma inf -> inf
+lgam0003 lgamma -inf -> inf
+lgam0004 lgamma nan -> nan
+
+-- negative integers
+lgam0010 lgamma -1 -> inf divide-by-zero
+lgam0011 lgamma -2 -> inf divide-by-zero
+lgam0012 lgamma -1e16 -> inf divide-by-zero
+lgam0013 lgamma -1e300 -> inf divide-by-zero
+lgam0014 lgamma -1.79e308 -> inf divide-by-zero
+
+-- small positive integers give factorials
+lgam0020 lgamma 1 -> 0.0
+lgam0021 lgamma 2 -> 0.0
+lgam0022 lgamma 3 -> 0.69314718055994529
+lgam0023 lgamma 4 -> 1.791759469228055
+lgam0024 lgamma 5 -> 3.1780538303479458
+lgam0025 lgamma 6 -> 4.7874917427820458
+
+-- half integers
+lgam0030 lgamma 0.5 -> 0.57236494292470008
+lgam0031 lgamma 1.5 -> -0.12078223763524522
+lgam0032 lgamma 2.5 -> 0.28468287047291918
+lgam0033 lgamma 3.5 -> 1.2009736023470743
+lgam0034 lgamma -0.5 -> 1.2655121234846454
+lgam0035 lgamma -1.5 -> 0.86004701537648098
+lgam0036 lgamma -2.5 -> -0.056243716497674054
+lgam0037 lgamma -3.5 -> -1.309006684993042
+
+-- values near 0
+lgam0040 lgamma 0.1 -> 2.252712651734206
+lgam0041 lgamma 0.01 -> 4.5994798780420219
+lgam0042 lgamma 1e-8 -> 18.420680738180209
+lgam0043 lgamma 1e-16 -> 36.841361487904734
+lgam0044 lgamma 1e-30 -> 69.077552789821368
+lgam0045 lgamma 1e-160 -> 368.41361487904732
+lgam0046 lgamma 1e-308 -> 709.19620864216608
+lgam0047 lgamma 5.6e-309 -> 709.77602713741896
+lgam0048 lgamma 5.5e-309 -> 709.79404564292167
+lgam0049 lgamma 1e-309 -> 711.49879373516012
+lgam0050 lgamma 1e-323 -> 743.74692474082133
+lgam0051 lgamma 5e-324 -> 744.44007192138122
+lgam0060 lgamma -0.1 -> 2.3689613327287886
+lgam0061 lgamma -0.01 -> 4.6110249927528013
+lgam0062 lgamma -1e-8 -> 18.420680749724522
+lgam0063 lgamma -1e-16 -> 36.841361487904734
+lgam0064 lgamma -1e-30 -> 69.077552789821368
+lgam0065 lgamma -1e-160 -> 368.41361487904732
+lgam0066 lgamma -1e-308 -> 709.19620864216608
+lgam0067 lgamma -5.6e-309 -> 709.77602713741896
+lgam0068 lgamma -5.5e-309 -> 709.79404564292167
+lgam0069 lgamma -1e-309 -> 711.49879373516012
+lgam0070 lgamma -1e-323 -> 743.74692474082133
+lgam0071 lgamma -5e-324 -> 744.44007192138122
+
+-- values near negative integers
+lgam0080 lgamma -0.99999999999999989 -> 36.736800569677101
+lgam0081 lgamma -1.0000000000000002 -> 36.043653389117154
+lgam0082 lgamma -1.9999999999999998 -> 35.350506208557213
+lgam0083 lgamma -2.0000000000000004 -> 34.657359027997266
+lgam0084 lgamma -100.00000000000001 -> -331.85460524980607
+lgam0085 lgamma -99.999999999999986 -> -331.85460524980596
+
+-- large inputs
+lgam0100 lgamma 170 -> 701.43726380873704
+lgam0101 lgamma 171 -> 706.57306224578736
+lgam0102 lgamma 171.624 -> 709.78077443669895
+lgam0103 lgamma 171.625 -> 709.78591682948365
+lgam0104 lgamma 172 -> 711.71472580228999
+lgam0105 lgamma 2000 -> 13198.923448054265
+lgam0106 lgamma 2.55998332785163e305 -> 1.7976931348623099e+308
+lgam0107 lgamma 2.55998332785164e305 -> inf overflow
+lgam0108 lgamma 1.7e308 -> inf overflow
+
+-- inputs for which gamma(x) is tiny
+lgam0120 lgamma -100.5 -> -364.90096830942736
+lgam0121 lgamma -160.5 -> -656.88005261126432
+lgam0122 lgamma -170.5 -> -707.99843314507882
+lgam0123 lgamma -171.5 -> -713.14301641168481
+lgam0124 lgamma -176.5 -> -738.95247590846486
+lgam0125 lgamma -177.5 -> -744.13144651738037
+lgam0126 lgamma -178.5 -> -749.3160351186001
+
+lgam0130 lgamma -1000.5 -> -5914.4377011168517
+lgam0131 lgamma -30000.5 -> -279278.6629959144
+lgam0132 lgamma -4503599627370495.5 -> -1.5782258434492883e+17
+
+-- results close to 0: positive argument ...
+lgam0150 lgamma 0.99999999999999989 -> 6.4083812134800075e-17
+lgam0151 lgamma 1.0000000000000002 -> -1.2816762426960008e-16
+lgam0152 lgamma 1.9999999999999998 -> -9.3876980655431170e-17
+lgam0153 lgamma 2.0000000000000004 -> 1.8775396131086244e-16
+
+-- ... and negative argument
+lgam0160 lgamma -2.7476826467 -> -5.2477408147689136e-11
+lgam0161 lgamma -2.457024738 -> 3.3464637541912932e-10
+
+
+---------------------------
+-- gamma: Gamma function --
+---------------------------
+
+-- special values
+gam0000 gamma 0.0 -> inf divide-by-zero
+gam0001 gamma -0.0 -> -inf divide-by-zero
+gam0002 gamma inf -> inf
+gam0003 gamma -inf -> nan invalid
+gam0004 gamma nan -> nan
+
+-- negative integers inputs are invalid
+gam0010 gamma -1 -> nan invalid
+gam0011 gamma -2 -> nan invalid
+gam0012 gamma -1e16 -> nan invalid
+gam0013 gamma -1e300 -> nan invalid
+
+-- small positive integers give factorials
+gam0020 gamma 1 -> 1
+gam0021 gamma 2 -> 1
+gam0022 gamma 3 -> 2
+gam0023 gamma 4 -> 6
+gam0024 gamma 5 -> 24
+gam0025 gamma 6 -> 120
+
+-- half integers
+gam0030 gamma 0.5 -> 1.7724538509055161
+gam0031 gamma 1.5 -> 0.88622692545275805
+gam0032 gamma 2.5 -> 1.3293403881791370
+gam0033 gamma 3.5 -> 3.3233509704478426
+gam0034 gamma -0.5 -> -3.5449077018110322
+gam0035 gamma -1.5 -> 2.3632718012073548
+gam0036 gamma -2.5 -> -0.94530872048294190
+gam0037 gamma -3.5 -> 0.27008820585226911
+
+-- values near 0
+gam0040 gamma 0.1 -> 9.5135076986687306
+gam0041 gamma 0.01 -> 99.432585119150602
+gam0042 gamma 1e-8 -> 99999999.422784343
+gam0043 gamma 1e-16 -> 10000000000000000
+gam0044 gamma 1e-30 -> 9.9999999999999988e+29
+gam0045 gamma 1e-160 -> 1.0000000000000000e+160
+gam0046 gamma 1e-308 -> 1.0000000000000000e+308
+gam0047 gamma 5.6e-309 -> 1.7857142857142848e+308
+gam0048 gamma 5.5e-309 -> inf overflow
+gam0049 gamma 1e-309 -> inf overflow
+gam0050 gamma 1e-323 -> inf overflow
+gam0051 gamma 5e-324 -> inf overflow
+gam0060 gamma -0.1 -> -10.686287021193193
+gam0061 gamma -0.01 -> -100.58719796441078
+gam0062 gamma -1e-8 -> -100000000.57721567
+gam0063 gamma -1e-16 -> -10000000000000000
+gam0064 gamma -1e-30 -> -9.9999999999999988e+29
+gam0065 gamma -1e-160 -> -1.0000000000000000e+160
+gam0066 gamma -1e-308 -> -1.0000000000000000e+308
+gam0067 gamma -5.6e-309 -> -1.7857142857142848e+308
+gam0068 gamma -5.5e-309 -> -inf overflow
+gam0069 gamma -1e-309 -> -inf overflow
+gam0070 gamma -1e-323 -> -inf overflow
+gam0071 gamma -5e-324 -> -inf overflow
+
+-- values near negative integers
+gam0080 gamma -0.99999999999999989 -> -9007199254740992.0
+gam0081 gamma -1.0000000000000002 -> 4503599627370495.5
+gam0082 gamma -1.9999999999999998 -> 2251799813685248.5
+gam0083 gamma -2.0000000000000004 -> -1125899906842623.5
+gam0084 gamma -100.00000000000001 -> -7.5400833348831090e-145
+gam0085 gamma -99.999999999999986 -> 7.5400833348840962e-145
+
+-- large inputs
+gam0100 gamma 170 -> 4.2690680090047051e+304
+gam0101 gamma 171 -> 7.2574156153079990e+306
+gam0102 gamma 171.624 -> 1.7942117599248104e+308
+gam0103 gamma 171.625 -> inf overflow
+gam0104 gamma 172 -> inf overflow
+gam0105 gamma 2000 -> inf overflow
+gam0106 gamma 1.7e308 -> inf overflow
+
+-- inputs for which gamma(x) is tiny
+gam0120 gamma -100.5 -> -3.3536908198076787e-159
+gam0121 gamma -160.5 -> -5.2555464470078293e-286
+gam0122 gamma -170.5 -> -3.3127395215386074e-308
+gam0123 gamma -171.5 -> 1.9316265431711902e-310
+gam0124 gamma -176.5 -> -1.1956388629358166e-321
+gam0125 gamma -177.5 -> 4.9406564584124654e-324
+gam0126 gamma -178.5 -> -0.0
+gam0127 gamma -179.5 -> 0.0
+gam0128 gamma -201.0001 -> 0.0
+gam0129 gamma -202.9999 -> -0.0
+gam0130 gamma -1000.5 -> -0.0
+gam0131 gamma -1000000000.3 -> -0.0
+gam0132 gamma -4503599627370495.5 -> 0.0
+
+-- inputs that cause problems for the standard reflection formula,
+-- thanks to loss of accuracy in 1-x
+gam0140 gamma -63.349078729022985 -> 4.1777971677761880e-88
+gam0141 gamma -127.45117632943295 -> 1.1831110896236810e-214
+
+
+-----------------------------------------------------------
+-- expm1: exp(x) - 1, without precision loss for small x --
+-----------------------------------------------------------
+
+-- special values
+expm10000 expm1 0.0 -> 0.0
+expm10001 expm1 -0.0 -> -0.0
+expm10002 expm1 inf -> inf
+expm10003 expm1 -inf -> -1.0
+expm10004 expm1 nan -> nan
+
+-- expm1(x) ~ x for tiny x
+expm10010 expm1 5e-324 -> 5e-324
+expm10011 expm1 1e-320 -> 1e-320
+expm10012 expm1 1e-300 -> 1e-300
+expm10013 expm1 1e-150 -> 1e-150
+expm10014 expm1 1e-20 -> 1e-20
+
+expm10020 expm1 -5e-324 -> -5e-324
+expm10021 expm1 -1e-320 -> -1e-320
+expm10022 expm1 -1e-300 -> -1e-300
+expm10023 expm1 -1e-150 -> -1e-150
+expm10024 expm1 -1e-20 -> -1e-20
+
+-- moderate sized values, where direct evaluation runs into trouble
+expm10100 expm1 1e-10 -> 1.0000000000500000e-10
+expm10101 expm1 -9.9999999999999995e-08 -> -9.9999995000000163e-8
+expm10102 expm1 3.0000000000000001e-05 -> 3.0000450004500034e-5
+expm10103 expm1 -0.0070000000000000001 -> -0.0069755570667648951
+expm10104 expm1 -0.071499208740094633 -> -0.069002985744820250
+expm10105 expm1 -0.063296004180116799 -> -0.061334416373633009
+expm10106 expm1 0.02390954035597756 -> 0.024197665143819942
+expm10107 expm1 0.085637352649044901 -> 0.089411184580357767
+expm10108 expm1 0.5966174947411006 -> 0.81596588596501485
+expm10109 expm1 0.30247206212075139 -> 0.35319987035848677
+expm10110 expm1 0.74574727375889516 -> 1.1080161116737459
+expm10111 expm1 0.97767512926555711 -> 1.6582689207372185
+expm10112 expm1 0.8450154566787712 -> 1.3280137976535897
+expm10113 expm1 -0.13979260323125264 -> -0.13046144381396060
+expm10114 expm1 -0.52899322039643271 -> -0.41080213643695923
+expm10115 expm1 -0.74083261478900631 -> -0.52328317124797097
+expm10116 expm1 -0.93847766984546055 -> -0.60877704724085946
+expm10117 expm1 10.0 -> 22025.465794806718
+expm10118 expm1 27.0 -> 532048240600.79865
+expm10119 expm1 123 -> 2.6195173187490626e+53
+expm10120 expm1 -12.0 -> -0.99999385578764666
+expm10121 expm1 -35.100000000000001 -> -0.99999999999999944
+
+-- extreme negative values
+expm10201 expm1 -37.0 -> -0.99999999999999989
+expm10200 expm1 -38.0 -> -1.0
+expm10210 expm1 -710.0 -> -1.0
+-- the formula expm1(x) = 2 * sinh(x/2) * exp(x/2) doesn't work so
+-- well when exp(x/2) is subnormal or underflows to zero; check we're
+-- not using it!
+expm10211 expm1 -1420.0 -> -1.0
+expm10212 expm1 -1450.0 -> -1.0
+expm10213 expm1 -1500.0 -> -1.0
+expm10214 expm1 -1e50 -> -1.0
+expm10215 expm1 -1.79e308 -> -1.0
+
+-- extreme positive values
+expm10300 expm1 300 -> 1.9424263952412558e+130
+expm10301 expm1 700 -> 1.0142320547350045e+304
+-- the next test (expm10302) is disabled because it causes failure on
+-- OS X 10.4/Intel: apparently all values over 709.78 produce an
+-- overflow on that platform. See issue #7575.
+-- expm10302 expm1 709.78271289328393 -> 1.7976931346824240e+308
+expm10303 expm1 709.78271289348402 -> inf overflow
+expm10304 expm1 1000 -> inf overflow
+expm10305 expm1 1e50 -> inf overflow
+expm10306 expm1 1.79e308 -> inf overflow
+
+-- weaker version of expm10302
+expm10307 expm1 709.5 -> 1.3549863193146328e+308