summaryrefslogtreecommitdiff
path: root/lib/xray/xray_allocator.h
blob: 4b42c473261dfa3c7577c2a49b7ec8c2ec32dae7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
//===-- xray_allocator.h ---------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Defines the allocator interface for an arena allocator, used primarily for
// the profiling runtime.
//
//===----------------------------------------------------------------------===//
#ifndef XRAY_ALLOCATOR_H
#define XRAY_ALLOCATOR_H

#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_internal_defs.h"
#include "sanitizer_common/sanitizer_mutex.h"
#if SANITIZER_FUCHSIA
#include <zircon/process.h>
#include <zircon/status.h>
#include <zircon/syscalls.h>
#else
#include "sanitizer_common/sanitizer_posix.h"
#endif
#include "xray_defs.h"
#include "xray_utils.h"
#include <cstddef>
#include <cstdint>
#include <sys/mman.h>

namespace __xray {

// We implement our own memory allocation routine which will bypass the
// internal allocator. This allows us to manage the memory directly, using
// mmap'ed memory to back the allocators.
template <class T> T *allocate() XRAY_NEVER_INSTRUMENT {
  uptr RoundedSize = RoundUpTo(sizeof(T), GetPageSizeCached());
#if SANITIZER_FUCHSIA
  zx_handle_t Vmo;
  zx_status_t Status = _zx_vmo_create(RoundedSize, 0, &Vmo);
  if (Status != ZX_OK) {
    if (Verbosity())
      Report("XRay Profiling: Failed to create VMO of size %zu: %s\n",
             sizeof(T), _zx_status_get_string(Status));
    return nullptr;
  }
  uintptr_t B;
  Status =
      _zx_vmar_map(_zx_vmar_root_self(), ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0,
                   Vmo, 0, sizeof(T), &B);
  _zx_handle_close(Vmo);
  if (Status != ZX_OK) {
    if (Verbosity())
      Report("XRay Profiling: Failed to map VMAR of size %zu: %s\n", sizeof(T),
             _zx_status_get_string(Status));
    return nullptr;
  }
  return reinterpret_cast<T *>(B);
#else
  uptr B = internal_mmap(NULL, RoundedSize, PROT_READ | PROT_WRITE,
                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  int ErrNo = 0;
  if (UNLIKELY(internal_iserror(B, &ErrNo))) {
    if (Verbosity())
      Report(
          "XRay Profiling: Failed to allocate memory of size %d; Error = %d.\n",
          RoundedSize, B);
    return nullptr;
  }
#endif
  return reinterpret_cast<T *>(B);
}

template <class T> void deallocate(T *B) XRAY_NEVER_INSTRUMENT {
  if (B == nullptr)
    return;
  uptr RoundedSize = RoundUpTo(sizeof(T), GetPageSizeCached());
#if SANITIZER_FUCHSIA
  _zx_vmar_unmap(_zx_vmar_root_self(), reinterpret_cast<uintptr_t>(B),
                 RoundedSize);
#else
  internal_munmap(B, RoundedSize);
#endif
}

template <class T = unsigned char>
T *allocateBuffer(size_t S) XRAY_NEVER_INSTRUMENT {
  uptr RoundedSize = RoundUpTo(S * sizeof(T), GetPageSizeCached());
#if SANITIZER_FUCHSIA
  zx_handle_t Vmo;
  zx_status_t Status = _zx_vmo_create(RoundedSize, 0, &Vmo);
  if (Status != ZX_OK) {
    if (Verbosity())
      Report("XRay Profiling: Failed to create VMO of size %zu: %s\n", S,
             _zx_status_get_string(Status));
    return nullptr;
  }
  uintptr_t B;
  Status = _zx_vmar_map(_zx_vmar_root_self(),
                        ZX_VM_PERM_READ | ZX_VM_PERM_WRITE, 0, Vmo, 0, S, &B);
  _zx_handle_close(Vmo);
  if (Status != ZX_OK) {
    if (Verbosity())
      Report("XRay Profiling: Failed to map VMAR of size %zu: %s\n", S,
             _zx_status_get_string(Status));
    return nullptr;
  }
#else
  uptr B = internal_mmap(NULL, RoundedSize, PROT_READ | PROT_WRITE,
                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
  int ErrNo = 0;
  if (UNLIKELY(internal_iserror(B, &ErrNo))) {
    if (Verbosity())
      Report(
          "XRay Profiling: Failed to allocate memory of size %d; Error = %d.\n",
          RoundedSize, B);
    return nullptr;
  }
#endif
  return reinterpret_cast<T *>(B);
}

template <class T> void deallocateBuffer(T *B, size_t S) XRAY_NEVER_INSTRUMENT {
  if (B == nullptr)
    return;
  uptr RoundedSize = RoundUpTo(S * sizeof(T), GetPageSizeCached());
#if SANITIZER_FUCHSIA
  _zx_vmar_unmap(_zx_vmar_root_self(), reinterpret_cast<uintptr_t>(B),
                 RoundedSize);
#else
  internal_munmap(B, RoundedSize);
#endif
}

template <class T, class... U>
T *initArray(size_t N, U &&... Us) XRAY_NEVER_INSTRUMENT {
  auto A = allocateBuffer<T>(N);
  if (A != nullptr)
    while (N > 0)
      new (A + (--N)) T(std::forward<U>(Us)...);
  return A;
}

/// The Allocator type hands out fixed-sized chunks of memory that are
/// cache-line aligned and sized. This is useful for placement of
/// performance-sensitive data in memory that's frequently accessed. The
/// allocator also self-limits the peak memory usage to a dynamically defined
/// maximum.
///
/// N is the lower-bound size of the block of memory to return from the
/// allocation function. N is used to compute the size of a block, which is
/// cache-line-size multiples worth of memory. We compute the size of a block by
/// determining how many cache lines worth of memory is required to subsume N.
///
/// The Allocator instance will manage its own memory acquired through mmap.
/// This severely constrains the platforms on which this can be used to POSIX
/// systems where mmap semantics are well-defined.
///
/// FIXME: Isolate the lower-level memory management to a different abstraction
/// that can be platform-specific.
template <size_t N> struct Allocator {
  // The Allocator returns memory as Block instances.
  struct Block {
    /// Compute the minimum cache-line size multiple that is >= N.
    static constexpr auto Size = nearest_boundary(N, kCacheLineSize);
    void *Data;
  };

private:
  size_t MaxMemory{0};
  unsigned char *BackingStore = nullptr;
  unsigned char *AlignedNextBlock = nullptr;
  size_t AllocatedBlocks = 0;
  bool Owned;
  SpinMutex Mutex{};

  void *Alloc() XRAY_NEVER_INSTRUMENT {
    SpinMutexLock Lock(&Mutex);
    if (UNLIKELY(BackingStore == nullptr)) {
      BackingStore = allocateBuffer(MaxMemory);
      if (BackingStore == nullptr) {
        if (Verbosity())
          Report("XRay Profiling: Failed to allocate memory for allocator.\n");
        return nullptr;
      }

      AlignedNextBlock = BackingStore;

      // Ensure that NextBlock is aligned appropriately.
      auto BackingStoreNum = reinterpret_cast<uintptr_t>(BackingStore);
      auto AlignedNextBlockNum = nearest_boundary(
          reinterpret_cast<uintptr_t>(AlignedNextBlock), kCacheLineSize);
      if (diff(AlignedNextBlockNum, BackingStoreNum) > ptrdiff_t(MaxMemory)) {
        deallocateBuffer(BackingStore, MaxMemory);
        AlignedNextBlock = BackingStore = nullptr;
        if (Verbosity())
          Report("XRay Profiling: Cannot obtain enough memory from "
                 "preallocated region.\n");
        return nullptr;
      }

      AlignedNextBlock = reinterpret_cast<unsigned char *>(AlignedNextBlockNum);

      // Assert that AlignedNextBlock is cache-line aligned.
      DCHECK_EQ(reinterpret_cast<uintptr_t>(AlignedNextBlock) % kCacheLineSize,
                0);
    }

    if (((AllocatedBlocks + 1) * Block::Size) > MaxMemory)
      return nullptr;

    // Align the pointer we'd like to return to an appropriate alignment, then
    // advance the pointer from where to start allocations.
    void *Result = AlignedNextBlock;
    AlignedNextBlock =
        reinterpret_cast<unsigned char *>(AlignedNextBlock) + Block::Size;
    ++AllocatedBlocks;
    return Result;
  }

public:
  explicit Allocator(size_t M) XRAY_NEVER_INSTRUMENT
      : MaxMemory(RoundUpTo(M, kCacheLineSize)),
        BackingStore(nullptr),
        AlignedNextBlock(nullptr),
        AllocatedBlocks(0),
        Owned(true),
        Mutex() {}

  explicit Allocator(void *P, size_t M) XRAY_NEVER_INSTRUMENT
      : MaxMemory(M),
        BackingStore(reinterpret_cast<unsigned char *>(P)),
        AlignedNextBlock(reinterpret_cast<unsigned char *>(P)),
        AllocatedBlocks(0),
        Owned(false),
        Mutex() {}

  Allocator(const Allocator &) = delete;
  Allocator &operator=(const Allocator &) = delete;

  Allocator(Allocator &&O) XRAY_NEVER_INSTRUMENT {
    SpinMutexLock L0(&Mutex);
    SpinMutexLock L1(&O.Mutex);
    MaxMemory = O.MaxMemory;
    O.MaxMemory = 0;
    BackingStore = O.BackingStore;
    O.BackingStore = nullptr;
    AlignedNextBlock = O.AlignedNextBlock;
    O.AlignedNextBlock = nullptr;
    AllocatedBlocks = O.AllocatedBlocks;
    O.AllocatedBlocks = 0;
    Owned = O.Owned;
    O.Owned = false;
  }

  Allocator &operator=(Allocator &&O) XRAY_NEVER_INSTRUMENT {
    SpinMutexLock L0(&Mutex);
    SpinMutexLock L1(&O.Mutex);
    MaxMemory = O.MaxMemory;
    O.MaxMemory = 0;
    if (BackingStore != nullptr)
      deallocateBuffer(BackingStore, MaxMemory);
    BackingStore = O.BackingStore;
    O.BackingStore = nullptr;
    AlignedNextBlock = O.AlignedNextBlock;
    O.AlignedNextBlock = nullptr;
    AllocatedBlocks = O.AllocatedBlocks;
    O.AllocatedBlocks = 0;
    Owned = O.Owned;
    O.Owned = false;
    return *this;
  }

  Block Allocate() XRAY_NEVER_INSTRUMENT { return {Alloc()}; }

  ~Allocator() NOEXCEPT XRAY_NEVER_INSTRUMENT {
    if (Owned && BackingStore != nullptr) {
      deallocateBuffer(BackingStore, MaxMemory);
    }
  }
};

} // namespace __xray

#endif // XRAY_ALLOCATOR_H