summaryrefslogtreecommitdiff
path: root/lib/tsan/rtl/tsan_platform_linux.cc
blob: 8db6635b1411b1225a2c3db511153ce82bcbfb11 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
//===-- tsan_platform_linux.cc --------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of ThreadSanitizer (TSan), a race detector.
//
// Linux- and FreeBSD-specific code.
//===----------------------------------------------------------------------===//


#include "sanitizer_common/sanitizer_platform.h"
#if SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_NETBSD

#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_libc.h"
#include "sanitizer_common/sanitizer_linux.h"
#include "sanitizer_common/sanitizer_platform_limits_netbsd.h"
#include "sanitizer_common/sanitizer_platform_limits_posix.h"
#include "sanitizer_common/sanitizer_posix.h"
#include "sanitizer_common/sanitizer_procmaps.h"
#include "sanitizer_common/sanitizer_stoptheworld.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "tsan_platform.h"
#include "tsan_rtl.h"
#include "tsan_flags.h"

#include <fcntl.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <sys/mman.h>
#if SANITIZER_LINUX
#include <sys/personality.h>
#include <setjmp.h>
#endif
#include <sys/syscall.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/resource.h>
#include <sys/stat.h>
#include <unistd.h>
#include <sched.h>
#include <dlfcn.h>
#if SANITIZER_LINUX
#define __need_res_state
#include <resolv.h>
#endif

#ifdef sa_handler
# undef sa_handler
#endif

#ifdef sa_sigaction
# undef sa_sigaction
#endif

#if SANITIZER_FREEBSD
extern "C" void *__libc_stack_end;
void *__libc_stack_end = 0;
#endif

#if SANITIZER_LINUX && defined(__aarch64__)
__tsan::uptr InitializeGuardPtr() __attribute__((visibility("hidden")));
extern "C" __tsan::uptr _tsan_pointer_chk_guard;
#endif

namespace __tsan {

#if SANITIZER_LINUX && defined(__aarch64__) && !SANITIZER_GO
static void InitializeLongjmpXorKey();
static uptr longjmp_xor_key;
#endif

#ifdef TSAN_RUNTIME_VMA
// Runtime detected VMA size.
uptr vmaSize;
#endif

enum {
  MemTotal  = 0,
  MemShadow = 1,
  MemMeta   = 2,
  MemFile   = 3,
  MemMmap   = 4,
  MemTrace  = 5,
  MemHeap   = 6,
  MemOther  = 7,
  MemCount  = 8,
};

void FillProfileCallback(uptr p, uptr rss, bool file,
                         uptr *mem, uptr stats_size) {
  mem[MemTotal] += rss;
  if (p >= ShadowBeg() && p < ShadowEnd())
    mem[MemShadow] += rss;
  else if (p >= MetaShadowBeg() && p < MetaShadowEnd())
    mem[MemMeta] += rss;
#if !SANITIZER_GO
  else if (p >= HeapMemBeg() && p < HeapMemEnd())
    mem[MemHeap] += rss;
  else if (p >= LoAppMemBeg() && p < LoAppMemEnd())
    mem[file ? MemFile : MemMmap] += rss;
  else if (p >= HiAppMemBeg() && p < HiAppMemEnd())
    mem[file ? MemFile : MemMmap] += rss;
#else
  else if (p >= AppMemBeg() && p < AppMemEnd())
    mem[file ? MemFile : MemMmap] += rss;
#endif
  else if (p >= TraceMemBeg() && p < TraceMemEnd())
    mem[MemTrace] += rss;
  else
    mem[MemOther] += rss;
}

void WriteMemoryProfile(char *buf, uptr buf_size, uptr nthread, uptr nlive) {
  uptr mem[MemCount];
  internal_memset(mem, 0, sizeof(mem[0]) * MemCount);
  __sanitizer::GetMemoryProfile(FillProfileCallback, mem, 7);
  StackDepotStats *stacks = StackDepotGetStats();
  internal_snprintf(buf, buf_size,
      "RSS %zd MB: shadow:%zd meta:%zd file:%zd mmap:%zd"
      " trace:%zd heap:%zd other:%zd stacks=%zd[%zd] nthr=%zd/%zd\n",
      mem[MemTotal] >> 20, mem[MemShadow] >> 20, mem[MemMeta] >> 20,
      mem[MemFile] >> 20, mem[MemMmap] >> 20, mem[MemTrace] >> 20,
      mem[MemHeap] >> 20, mem[MemOther] >> 20,
      stacks->allocated >> 20, stacks->n_uniq_ids,
      nlive, nthread);
}

#if SANITIZER_LINUX
void FlushShadowMemoryCallback(
    const SuspendedThreadsList &suspended_threads_list,
    void *argument) {
  ReleaseMemoryPagesToOS(ShadowBeg(), ShadowEnd());
}
#endif

void FlushShadowMemory() {
#if SANITIZER_LINUX
  StopTheWorld(FlushShadowMemoryCallback, 0);
#endif
}

#if !SANITIZER_GO
// Mark shadow for .rodata sections with the special kShadowRodata marker.
// Accesses to .rodata can't race, so this saves time, memory and trace space.
static void MapRodata() {
  // First create temp file.
  const char *tmpdir = GetEnv("TMPDIR");
  if (tmpdir == 0)
    tmpdir = GetEnv("TEST_TMPDIR");
#ifdef P_tmpdir
  if (tmpdir == 0)
    tmpdir = P_tmpdir;
#endif
  if (tmpdir == 0)
    return;
  char name[256];
  internal_snprintf(name, sizeof(name), "%s/tsan.rodata.%d",
                    tmpdir, (int)internal_getpid());
  uptr openrv = internal_open(name, O_RDWR | O_CREAT | O_EXCL, 0600);
  if (internal_iserror(openrv))
    return;
  internal_unlink(name);  // Unlink it now, so that we can reuse the buffer.
  fd_t fd = openrv;
  // Fill the file with kShadowRodata.
  const uptr kMarkerSize = 512 * 1024 / sizeof(u64);
  InternalMmapVector<u64> marker(kMarkerSize);
  // volatile to prevent insertion of memset
  for (volatile u64 *p = marker.data(); p < marker.data() + kMarkerSize; p++)
    *p = kShadowRodata;
  internal_write(fd, marker.data(), marker.size() * sizeof(u64));
  // Map the file into memory.
  uptr page = internal_mmap(0, GetPageSizeCached(), PROT_READ | PROT_WRITE,
                            MAP_PRIVATE | MAP_ANONYMOUS, fd, 0);
  if (internal_iserror(page)) {
    internal_close(fd);
    return;
  }
  // Map the file into shadow of .rodata sections.
  MemoryMappingLayout proc_maps(/*cache_enabled*/true);
  // Reusing the buffer 'name'.
  MemoryMappedSegment segment(name, ARRAY_SIZE(name));
  while (proc_maps.Next(&segment)) {
    if (segment.filename[0] != 0 && segment.filename[0] != '[' &&
        segment.IsReadable() && segment.IsExecutable() &&
        !segment.IsWritable() && IsAppMem(segment.start)) {
      // Assume it's .rodata
      char *shadow_start = (char *)MemToShadow(segment.start);
      char *shadow_end = (char *)MemToShadow(segment.end);
      for (char *p = shadow_start; p < shadow_end;
           p += marker.size() * sizeof(u64)) {
        internal_mmap(p, Min<uptr>(marker.size() * sizeof(u64), shadow_end - p),
                      PROT_READ, MAP_PRIVATE | MAP_FIXED, fd, 0);
      }
    }
  }
  internal_close(fd);
}

void InitializeShadowMemoryPlatform() {
  MapRodata();
}

#endif  // #if !SANITIZER_GO

void InitializePlatformEarly() {
#ifdef TSAN_RUNTIME_VMA
  vmaSize =
    (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
#if defined(__aarch64__)
# if !SANITIZER_GO
  if (vmaSize != 39 && vmaSize != 42 && vmaSize != 48) {
    Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
    Printf("FATAL: Found %zd - Supported 39, 42 and 48\n", vmaSize);
    Die();
  }
#else
  if (vmaSize != 48) {
    Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
    Printf("FATAL: Found %zd - Supported 48\n", vmaSize);
    Die();
  }
#endif
#elif defined(__powerpc64__)
# if !SANITIZER_GO
  if (vmaSize != 44 && vmaSize != 46 && vmaSize != 47) {
    Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
    Printf("FATAL: Found %zd - Supported 44, 46, and 47\n", vmaSize);
    Die();
  }
# else
  if (vmaSize != 46 && vmaSize != 47) {
    Printf("FATAL: ThreadSanitizer: unsupported VMA range\n");
    Printf("FATAL: Found %zd - Supported 46, and 47\n", vmaSize);
    Die();
  }
# endif
#endif
#endif
}

void InitializePlatform() {
  DisableCoreDumperIfNecessary();

  // Go maps shadow memory lazily and works fine with limited address space.
  // Unlimited stack is not a problem as well, because the executable
  // is not compiled with -pie.
#if !SANITIZER_GO
  {
    bool reexec = false;
    // TSan doesn't play well with unlimited stack size (as stack
    // overlaps with shadow memory). If we detect unlimited stack size,
    // we re-exec the program with limited stack size as a best effort.
    if (StackSizeIsUnlimited()) {
      const uptr kMaxStackSize = 32 * 1024 * 1024;
      VReport(1, "Program is run with unlimited stack size, which wouldn't "
                 "work with ThreadSanitizer.\n"
                 "Re-execing with stack size limited to %zd bytes.\n",
              kMaxStackSize);
      SetStackSizeLimitInBytes(kMaxStackSize);
      reexec = true;
    }

    if (!AddressSpaceIsUnlimited()) {
      Report("WARNING: Program is run with limited virtual address space,"
             " which wouldn't work with ThreadSanitizer.\n");
      Report("Re-execing with unlimited virtual address space.\n");
      SetAddressSpaceUnlimited();
      reexec = true;
    }
#if SANITIZER_LINUX && defined(__aarch64__)
    // After patch "arm64: mm: support ARCH_MMAP_RND_BITS." is introduced in
    // linux kernel, the random gap between stack and mapped area is increased
    // from 128M to 36G on 39-bit aarch64. As it is almost impossible to cover
    // this big range, we should disable randomized virtual space on aarch64.
    int old_personality = personality(0xffffffff);
    if (old_personality != -1 && (old_personality & ADDR_NO_RANDOMIZE) == 0) {
      VReport(1, "WARNING: Program is run with randomized virtual address "
              "space, which wouldn't work with ThreadSanitizer.\n"
              "Re-execing with fixed virtual address space.\n");
      CHECK_NE(personality(old_personality | ADDR_NO_RANDOMIZE), -1);
      reexec = true;
    }
    // Initialize the guard pointer used in {sig}{set,long}jump.
    longjmp_xor_key = InitializeGuardPtr();
    // uptr old_value = longjmp_xor_key;
    // InitializeLongjmpXorKey();
    // CHECK_EQ(longjmp_xor_key, old_value);
    // If the above check fails for you, please contact me (jlettner@apple.com)
    // and let me know the values of the two differing keys.  Please also set a
    // breakpoint on `InitializeGuardPtr` and `InitializeLongjmpXorKey` and tell
    // me the stack pointer (SP) values that go into the XOR operation (where we
    // derive the key):
    //
    //   InitializeLongjmpXorKey:
    //     uptr sp = (uptr)__builtin_frame_address(0);
    //
    //   InitializeGuardPtr (in tsan_rtl_aarch64.S):
    //       mov  x0, sp
    //       ...
    //       eor  x0, x0, x1
    //
    // Then feel free to comment out the call to `InitializeLongjmpXorKey`.
#endif
    if (reexec)
      ReExec();
  }

  CheckAndProtect();
  InitTlsSize();
#endif  // !SANITIZER_GO
}

#if !SANITIZER_GO
// Extract file descriptors passed to glibc internal __res_iclose function.
// This is required to properly "close" the fds, because we do not see internal
// closes within glibc. The code is a pure hack.
int ExtractResolvFDs(void *state, int *fds, int nfd) {
#if SANITIZER_LINUX && !SANITIZER_ANDROID
  int cnt = 0;
  struct __res_state *statp = (struct __res_state*)state;
  for (int i = 0; i < MAXNS && cnt < nfd; i++) {
    if (statp->_u._ext.nsaddrs[i] && statp->_u._ext.nssocks[i] != -1)
      fds[cnt++] = statp->_u._ext.nssocks[i];
  }
  return cnt;
#else
  return 0;
#endif
}

// Extract file descriptors passed via UNIX domain sockets.
// This is requried to properly handle "open" of these fds.
// see 'man recvmsg' and 'man 3 cmsg'.
int ExtractRecvmsgFDs(void *msgp, int *fds, int nfd) {
  int res = 0;
  msghdr *msg = (msghdr*)msgp;
  struct cmsghdr *cmsg = CMSG_FIRSTHDR(msg);
  for (; cmsg; cmsg = CMSG_NXTHDR(msg, cmsg)) {
    if (cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS)
      continue;
    int n = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(fds[0]);
    for (int i = 0; i < n; i++) {
      fds[res++] = ((int*)CMSG_DATA(cmsg))[i];
      if (res == nfd)
        return res;
    }
  }
  return res;
}

// Reverse operation of libc stack pointer mangling
static uptr UnmangleLongJmpSp(uptr mangled_sp) {
#if defined(__x86_64__)
# if SANITIZER_FREEBSD || SANITIZER_NETBSD
  return mangled_sp;
# else  // Linux
  // Reverse of:
  //   xor  %fs:0x30, %rsi
  //   rol  $0x11, %rsi
  uptr sp;
  asm("ror  $0x11,     %0 \n"
      "xor  %%fs:0x30, %0 \n"
      : "=r" (sp)
      : "0" (mangled_sp));
  return sp;
# endif
#elif defined(__aarch64__)
# if SANITIZER_LINUX
  return mangled_sp ^ longjmp_xor_key;
# else
  return mangled_sp;
# endif
#elif defined(__powerpc64__)
  // Reverse of:
  //  ld   r4, -28696(r13)
  //  xor  r4, r3, r4
  uptr xor_guard;
  asm("ld  %0, -28696(%%r13) \n" : "=r" (xor_guard));
  return mangled_sp ^ xor_guard;
#elif defined(__mips__)
  return mangled_sp;
#else
  #error "Unknown platform"
#endif
}

#ifdef __powerpc__
# define LONG_JMP_SP_ENV_SLOT 0
#elif SANITIZER_FREEBSD
# define LONG_JMP_SP_ENV_SLOT 2
#elif SANITIZER_NETBSD
# define LONG_JMP_SP_ENV_SLOT 6
#elif SANITIZER_LINUX
# ifdef __aarch64__
#  define LONG_JMP_SP_ENV_SLOT 13
# elif defined(__mips64)
#  define LONG_JMP_SP_ENV_SLOT 1
# else
#  define LONG_JMP_SP_ENV_SLOT 6
# endif
#endif

uptr ExtractLongJmpSp(uptr *env) {
  uptr mangled_sp = env[LONG_JMP_SP_ENV_SLOT];
  return UnmangleLongJmpSp(mangled_sp);
}

#if SANITIZER_LINUX && defined(__aarch64__)
#include "interception/interception.h"
DECLARE_REAL(int, _setjmp, void* env)
// GLIBC mangles the function pointers in jmp_buf (used in {set,long}*jmp
// functions) by XORing them with a random key.  For AArch64 it is a global
// variable rather than a TCB one (as for x86_64/powerpc).  We obtain the key by
// issuing a setjmp and XORing the SP pointer values to derive the key.
static void InitializeLongjmpXorKey() {
  // 1. Call REAL(setjmp), which stores the mangled SP in env.
  jmp_buf env;
  // REAL(_setjmp)(env); // TODO(yln)

  // 2. Retrieve mangled/vanilla SP.
  uptr mangled_sp = ((uptr *)&env)[LONG_JMP_SP_ENV_SLOT];
  uptr sp = (uptr)__builtin_frame_address(0);

  // 3. xor SPs to obtain key.
  longjmp_xor_key = mangled_sp ^ sp;
}
#endif

void ImitateTlsWrite(ThreadState *thr, uptr tls_addr, uptr tls_size) {
  // Check that the thr object is in tls;
  const uptr thr_beg = (uptr)thr;
  const uptr thr_end = (uptr)thr + sizeof(*thr);
  CHECK_GE(thr_beg, tls_addr);
  CHECK_LE(thr_beg, tls_addr + tls_size);
  CHECK_GE(thr_end, tls_addr);
  CHECK_LE(thr_end, tls_addr + tls_size);
  // Since the thr object is huge, skip it.
  MemoryRangeImitateWrite(thr, /*pc=*/2, tls_addr, thr_beg - tls_addr);
  MemoryRangeImitateWrite(thr, /*pc=*/2, thr_end,
                          tls_addr + tls_size - thr_end);
}

// Note: this function runs with async signals enabled,
// so it must not touch any tsan state.
int call_pthread_cancel_with_cleanup(int(*fn)(void *c, void *m,
    void *abstime), void *c, void *m, void *abstime,
    void(*cleanup)(void *arg), void *arg) {
  // pthread_cleanup_push/pop are hardcore macros mess.
  // We can't intercept nor call them w/o including pthread.h.
  int res;
  pthread_cleanup_push(cleanup, arg);
  res = fn(c, m, abstime);
  pthread_cleanup_pop(0);
  return res;
}
#endif  // !SANITIZER_GO

#if !SANITIZER_GO
void ReplaceSystemMalloc() { }
#endif

#if !SANITIZER_GO
#if SANITIZER_ANDROID
// On Android, one thread can call intercepted functions after
// DestroyThreadState(), so add a fake thread state for "dead" threads.
static ThreadState *dead_thread_state = nullptr;

ThreadState *cur_thread() {
  ThreadState* thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr());
  if (thr == nullptr) {
    __sanitizer_sigset_t emptyset;
    internal_sigfillset(&emptyset);
    __sanitizer_sigset_t oldset;
    CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &emptyset, &oldset));
    thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr());
    if (thr == nullptr) {
      thr = reinterpret_cast<ThreadState*>(MmapOrDie(sizeof(ThreadState),
                                                     "ThreadState"));
      *get_android_tls_ptr() = reinterpret_cast<uptr>(thr);
      if (dead_thread_state == nullptr) {
        dead_thread_state = reinterpret_cast<ThreadState*>(
            MmapOrDie(sizeof(ThreadState), "ThreadState"));
        dead_thread_state->fast_state.SetIgnoreBit();
        dead_thread_state->ignore_interceptors = 1;
        dead_thread_state->is_dead = true;
        *const_cast<int*>(&dead_thread_state->tid) = -1;
        CHECK_EQ(0, internal_mprotect(dead_thread_state, sizeof(ThreadState),
                                      PROT_READ));
      }
    }
    CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &oldset, nullptr));
  }
  return thr;
}

void set_cur_thread(ThreadState *thr) {
  *get_android_tls_ptr() = reinterpret_cast<uptr>(thr);
}

void cur_thread_finalize() {
  __sanitizer_sigset_t emptyset;
  internal_sigfillset(&emptyset);
  __sanitizer_sigset_t oldset;
  CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &emptyset, &oldset));
  ThreadState* thr = reinterpret_cast<ThreadState*>(*get_android_tls_ptr());
  if (thr != dead_thread_state) {
    *get_android_tls_ptr() = reinterpret_cast<uptr>(dead_thread_state);
    UnmapOrDie(thr, sizeof(ThreadState));
  }
  CHECK_EQ(0, internal_sigprocmask(SIG_SETMASK, &oldset, nullptr));
}
#endif  // SANITIZER_ANDROID
#endif  // if !SANITIZER_GO

}  // namespace __tsan

#endif  // SANITIZER_LINUX || SANITIZER_FREEBSD || SANITIZER_NETBSD