summaryrefslogtreecommitdiff
path: root/lib/fuzzer/FuzzerLoop.cpp
blob: 09c57c3f6b76daf63b5c0bb170ea5c6c6c9cc550 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
//===- FuzzerLoop.cpp - Fuzzer's main loop --------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Fuzzer's main loop.
//===----------------------------------------------------------------------===//

#include "FuzzerCorpus.h"
#include "FuzzerIO.h"
#include "FuzzerInternal.h"
#include "FuzzerMutate.h"
#include "FuzzerRandom.h"
#include "FuzzerShmem.h"
#include "FuzzerTracePC.h"
#include <algorithm>
#include <cstring>
#include <memory>
#include <mutex>
#include <set>

#if defined(__has_include)
#if __has_include(<sanitizer / lsan_interface.h>)
#include <sanitizer/lsan_interface.h>
#endif
#endif

#define NO_SANITIZE_MEMORY
#if defined(__has_feature)
#if __has_feature(memory_sanitizer)
#undef NO_SANITIZE_MEMORY
#define NO_SANITIZE_MEMORY __attribute__((no_sanitize_memory))
#endif
#endif

namespace fuzzer {
static const size_t kMaxUnitSizeToPrint = 256;

thread_local bool Fuzzer::IsMyThread;

SharedMemoryRegion SMR;

bool RunningUserCallback = false;

// Only one Fuzzer per process.
static Fuzzer *F;

// Leak detection is expensive, so we first check if there were more mallocs
// than frees (using the sanitizer malloc hooks) and only then try to call lsan.
struct MallocFreeTracer {
  void Start(int TraceLevel) {
    this->TraceLevel = TraceLevel;
    if (TraceLevel)
      Printf("MallocFreeTracer: START\n");
    Mallocs = 0;
    Frees = 0;
  }
  // Returns true if there were more mallocs than frees.
  bool Stop() {
    if (TraceLevel)
      Printf("MallocFreeTracer: STOP %zd %zd (%s)\n", Mallocs.load(),
             Frees.load(), Mallocs == Frees ? "same" : "DIFFERENT");
    bool Result = Mallocs > Frees;
    Mallocs = 0;
    Frees = 0;
    TraceLevel = 0;
    return Result;
  }
  std::atomic<size_t> Mallocs;
  std::atomic<size_t> Frees;
  int TraceLevel = 0;

  std::recursive_mutex TraceMutex;
  bool TraceDisabled = false;
};

static MallocFreeTracer AllocTracer;

// Locks printing and avoids nested hooks triggered from mallocs/frees in
// sanitizer.
class TraceLock {
public:
  TraceLock() : Lock(AllocTracer.TraceMutex) {
    AllocTracer.TraceDisabled = !AllocTracer.TraceDisabled;
  }
  ~TraceLock() { AllocTracer.TraceDisabled = !AllocTracer.TraceDisabled; }

  bool IsDisabled() const {
    // This is already inverted value.
    return !AllocTracer.TraceDisabled;
  }

private:
  std::lock_guard<std::recursive_mutex> Lock;
};

ATTRIBUTE_NO_SANITIZE_MEMORY
void MallocHook(const volatile void *ptr, size_t size) {
  size_t N = AllocTracer.Mallocs++;
  F->HandleMalloc(size);
  if (int TraceLevel = AllocTracer.TraceLevel) {
    TraceLock Lock;
    if (Lock.IsDisabled())
      return;
    Printf("MALLOC[%zd] %p %zd\n", N, ptr, size);
    if (TraceLevel >= 2 && EF)
      PrintStackTrace();
  }
}

ATTRIBUTE_NO_SANITIZE_MEMORY
void FreeHook(const volatile void *ptr) {
  size_t N = AllocTracer.Frees++;
  if (int TraceLevel = AllocTracer.TraceLevel) {
    TraceLock Lock;
    if (Lock.IsDisabled())
      return;
    Printf("FREE[%zd]   %p\n", N, ptr);
    if (TraceLevel >= 2 && EF)
      PrintStackTrace();
  }
}

// Crash on a single malloc that exceeds the rss limit.
void Fuzzer::HandleMalloc(size_t Size) {
  if (!Options.MallocLimitMb || (Size >> 20) < (size_t)Options.MallocLimitMb)
    return;
  Printf("==%d== ERROR: libFuzzer: out-of-memory (malloc(%zd))\n", GetPid(),
         Size);
  Printf("   To change the out-of-memory limit use -rss_limit_mb=<N>\n\n");
  PrintStackTrace();
  DumpCurrentUnit("oom-");
  Printf("SUMMARY: libFuzzer: out-of-memory\n");
  PrintFinalStats();
  _Exit(Options.ErrorExitCode); // Stop right now.
}

Fuzzer::Fuzzer(UserCallback CB, InputCorpus &Corpus, MutationDispatcher &MD,
               FuzzingOptions Options)
    : CB(CB), Corpus(Corpus), MD(MD), Options(Options) {
  if (EF->__sanitizer_set_death_callback)
    EF->__sanitizer_set_death_callback(StaticDeathCallback);
  assert(!F);
  F = this;
  TPC.ResetMaps();
  IsMyThread = true;
  if (Options.DetectLeaks && EF->__sanitizer_install_malloc_and_free_hooks)
    EF->__sanitizer_install_malloc_and_free_hooks(MallocHook, FreeHook);
  TPC.SetUseCounters(Options.UseCounters);
  TPC.SetUseValueProfileMask(Options.UseValueProfile);

  if (Options.Verbosity)
    TPC.PrintModuleInfo();
  if (!Options.OutputCorpus.empty() && Options.ReloadIntervalSec)
    EpochOfLastReadOfOutputCorpus = GetEpoch(Options.OutputCorpus);
  MaxInputLen = MaxMutationLen = Options.MaxLen;
  TmpMaxMutationLen = Max(size_t(4), Corpus.MaxInputSize());
  AllocateCurrentUnitData();
  CurrentUnitSize = 0;
  memset(BaseSha1, 0, sizeof(BaseSha1));
  TPC.SetFocusFunction(Options.FocusFunction);
  DFT.Init(Options.DataFlowTrace, Options.FocusFunction);
}

Fuzzer::~Fuzzer() {}

void Fuzzer::AllocateCurrentUnitData() {
  if (CurrentUnitData || MaxInputLen == 0)
    return;
  CurrentUnitData = new uint8_t[MaxInputLen];
}

void Fuzzer::StaticDeathCallback() {
  assert(F);
  F->DeathCallback();
}

void Fuzzer::DumpCurrentUnit(const char *Prefix) {
  if (!CurrentUnitData)
    return; // Happens when running individual inputs.
  ScopedDisableMsanInterceptorChecks S;
  MD.PrintMutationSequence();
  Printf("; base unit: %s\n", Sha1ToString(BaseSha1).c_str());
  size_t UnitSize = CurrentUnitSize;
  if (UnitSize <= kMaxUnitSizeToPrint) {
    PrintHexArray(CurrentUnitData, UnitSize, "\n");
    PrintASCII(CurrentUnitData, UnitSize, "\n");
  }
  WriteUnitToFileWithPrefix({CurrentUnitData, CurrentUnitData + UnitSize},
                            Prefix);
}

NO_SANITIZE_MEMORY
void Fuzzer::DeathCallback() {
  DumpCurrentUnit("crash-");
  PrintFinalStats();
}

void Fuzzer::StaticAlarmCallback() {
  assert(F);
  F->AlarmCallback();
}

void Fuzzer::StaticCrashSignalCallback() {
  assert(F);
  F->CrashCallback();
}

void Fuzzer::StaticExitCallback() {
  assert(F);
  F->ExitCallback();
}

void Fuzzer::StaticInterruptCallback() {
  assert(F);
  F->InterruptCallback();
}

void Fuzzer::StaticGracefulExitCallback() {
  assert(F);
  F->GracefulExitRequested = true;
  Printf("INFO: signal received, trying to exit gracefully\n");
}

void Fuzzer::StaticFileSizeExceedCallback() {
  Printf("==%lu== ERROR: libFuzzer: file size exceeded\n", GetPid());
  exit(1);
}

void Fuzzer::CrashCallback() {
  if (EF->__sanitizer_acquire_crash_state)
    EF->__sanitizer_acquire_crash_state();
  Printf("==%lu== ERROR: libFuzzer: deadly signal\n", GetPid());
  PrintStackTrace();
  Printf("NOTE: libFuzzer has rudimentary signal handlers.\n"
         "      Combine libFuzzer with AddressSanitizer or similar for better "
         "crash reports.\n");
  Printf("SUMMARY: libFuzzer: deadly signal\n");
  DumpCurrentUnit("crash-");
  PrintFinalStats();
  _Exit(Options.ErrorExitCode); // Stop right now.
}

void Fuzzer::ExitCallback() {
  if (!RunningUserCallback)
    return; // This exit did not come from the user callback
  if (EF->__sanitizer_acquire_crash_state &&
      !EF->__sanitizer_acquire_crash_state())
    return;
  Printf("==%lu== ERROR: libFuzzer: fuzz target exited\n", GetPid());
  PrintStackTrace();
  Printf("SUMMARY: libFuzzer: fuzz target exited\n");
  DumpCurrentUnit("crash-");
  PrintFinalStats();
  _Exit(Options.ErrorExitCode);
}

void Fuzzer::MaybeExitGracefully() {
  if (!GracefulExitRequested) return;
  Printf("==%lu== INFO: libFuzzer: exiting as requested\n", GetPid());
  PrintFinalStats();
  _Exit(0);
}

void Fuzzer::InterruptCallback() {
  Printf("==%lu== libFuzzer: run interrupted; exiting\n", GetPid());
  PrintFinalStats();
  _Exit(0); // Stop right now, don't perform any at-exit actions.
}

NO_SANITIZE_MEMORY
void Fuzzer::AlarmCallback() {
  assert(Options.UnitTimeoutSec > 0);
  // In Windows Alarm callback is executed by a different thread.
  // NetBSD's current behavior needs this change too.
#if !LIBFUZZER_WINDOWS && !LIBFUZZER_NETBSD
  if (!InFuzzingThread())
    return;
#endif
  if (!RunningUserCallback)
    return; // We have not started running units yet.
  size_t Seconds =
      duration_cast<seconds>(system_clock::now() - UnitStartTime).count();
  if (Seconds == 0)
    return;
  if (Options.Verbosity >= 2)
    Printf("AlarmCallback %zd\n", Seconds);
  if (Seconds >= (size_t)Options.UnitTimeoutSec) {
    if (EF->__sanitizer_acquire_crash_state &&
        !EF->__sanitizer_acquire_crash_state())
      return;
    Printf("ALARM: working on the last Unit for %zd seconds\n", Seconds);
    Printf("       and the timeout value is %d (use -timeout=N to change)\n",
           Options.UnitTimeoutSec);
    DumpCurrentUnit("timeout-");
    Printf("==%lu== ERROR: libFuzzer: timeout after %d seconds\n", GetPid(),
           Seconds);
    PrintStackTrace();
    Printf("SUMMARY: libFuzzer: timeout\n");
    PrintFinalStats();
    _Exit(Options.TimeoutExitCode); // Stop right now.
  }
}

void Fuzzer::RssLimitCallback() {
  if (EF->__sanitizer_acquire_crash_state &&
      !EF->__sanitizer_acquire_crash_state())
    return;
  Printf(
      "==%lu== ERROR: libFuzzer: out-of-memory (used: %zdMb; limit: %zdMb)\n",
      GetPid(), GetPeakRSSMb(), Options.RssLimitMb);
  Printf("   To change the out-of-memory limit use -rss_limit_mb=<N>\n\n");
  PrintMemoryProfile();
  DumpCurrentUnit("oom-");
  Printf("SUMMARY: libFuzzer: out-of-memory\n");
  PrintFinalStats();
  _Exit(Options.ErrorExitCode); // Stop right now.
}

void Fuzzer::PrintStats(const char *Where, const char *End, size_t Units) {
  size_t ExecPerSec = execPerSec();
  if (!Options.Verbosity)
    return;
  Printf("#%zd\t%s", TotalNumberOfRuns, Where);
  if (size_t N = TPC.GetTotalPCCoverage())
    Printf(" cov: %zd", N);
  if (size_t N = Corpus.NumFeatures())
    Printf(" ft: %zd", N);
  if (!Corpus.empty()) {
    Printf(" corp: %zd", Corpus.NumActiveUnits());
    if (size_t N = Corpus.SizeInBytes()) {
      if (N < (1 << 14))
        Printf("/%zdb", N);
      else if (N < (1 << 24))
        Printf("/%zdKb", N >> 10);
      else
        Printf("/%zdMb", N >> 20);
    }
    if (size_t FF = Corpus.NumInputsThatTouchFocusFunction())
      Printf(" focus: %zd", FF);
  }
  if (TmpMaxMutationLen)
    Printf(" lim: %zd", TmpMaxMutationLen);
  if (Units)
    Printf(" units: %zd", Units);

  Printf(" exec/s: %zd", ExecPerSec);
  Printf(" rss: %zdMb", GetPeakRSSMb());
  Printf("%s", End);
}

void Fuzzer::PrintFinalStats() {
  if (Options.PrintCoverage)
    TPC.PrintCoverage();
  if (Options.PrintUnstableStats)
    TPC.PrintUnstableStats();
  if (Options.DumpCoverage)
    TPC.DumpCoverage();
  if (Options.PrintCorpusStats)
    Corpus.PrintStats();
  if (!Options.PrintFinalStats)
    return;
  size_t ExecPerSec = execPerSec();
  Printf("stat::number_of_executed_units: %zd\n", TotalNumberOfRuns);
  Printf("stat::average_exec_per_sec:     %zd\n", ExecPerSec);
  Printf("stat::new_units_added:          %zd\n", NumberOfNewUnitsAdded);
  Printf("stat::slowest_unit_time_sec:    %zd\n", TimeOfLongestUnitInSeconds);
  Printf("stat::peak_rss_mb:              %zd\n", GetPeakRSSMb());
}

void Fuzzer::SetMaxInputLen(size_t MaxInputLen) {
  assert(this->MaxInputLen == 0); // Can only reset MaxInputLen from 0 to non-0.
  assert(MaxInputLen);
  this->MaxInputLen = MaxInputLen;
  this->MaxMutationLen = MaxInputLen;
  AllocateCurrentUnitData();
  Printf("INFO: -max_len is not provided; "
         "libFuzzer will not generate inputs larger than %zd bytes\n",
         MaxInputLen);
}

void Fuzzer::SetMaxMutationLen(size_t MaxMutationLen) {
  assert(MaxMutationLen && MaxMutationLen <= MaxInputLen);
  this->MaxMutationLen = MaxMutationLen;
}

void Fuzzer::CheckExitOnSrcPosOrItem() {
  if (!Options.ExitOnSrcPos.empty()) {
    static auto *PCsSet = new Set<uintptr_t>;
    auto HandlePC = [&](uintptr_t PC) {
      if (!PCsSet->insert(PC).second)
        return;
      std::string Descr = DescribePC("%F %L", PC + 1);
      if (Descr.find(Options.ExitOnSrcPos) != std::string::npos) {
        Printf("INFO: found line matching '%s', exiting.\n",
               Options.ExitOnSrcPos.c_str());
        _Exit(0);
      }
    };
    TPC.ForEachObservedPC(HandlePC);
  }
  if (!Options.ExitOnItem.empty()) {
    if (Corpus.HasUnit(Options.ExitOnItem)) {
      Printf("INFO: found item with checksum '%s', exiting.\n",
             Options.ExitOnItem.c_str());
      _Exit(0);
    }
  }
}

void Fuzzer::RereadOutputCorpus(size_t MaxSize) {
  if (Options.OutputCorpus.empty() || !Options.ReloadIntervalSec)
    return;
  Vector<Unit> AdditionalCorpus;
  ReadDirToVectorOfUnits(Options.OutputCorpus.c_str(), &AdditionalCorpus,
                         &EpochOfLastReadOfOutputCorpus, MaxSize,
                         /*ExitOnError*/ false);
  if (Options.Verbosity >= 2)
    Printf("Reload: read %zd new units.\n", AdditionalCorpus.size());
  bool Reloaded = false;
  for (auto &U : AdditionalCorpus) {
    if (U.size() > MaxSize)
      U.resize(MaxSize);
    if (!Corpus.HasUnit(U)) {
      if (RunOne(U.data(), U.size())) {
        CheckExitOnSrcPosOrItem();
        Reloaded = true;
      }
    }
  }
  if (Reloaded)
    PrintStats("RELOAD");
}

void Fuzzer::PrintPulseAndReportSlowInput(const uint8_t *Data, size_t Size) {
  auto TimeOfUnit =
      duration_cast<seconds>(UnitStopTime - UnitStartTime).count();
  if (!(TotalNumberOfRuns & (TotalNumberOfRuns - 1)) &&
      secondsSinceProcessStartUp() >= 2)
    PrintStats("pulse ");
  if (TimeOfUnit > TimeOfLongestUnitInSeconds * 1.1 &&
      TimeOfUnit >= Options.ReportSlowUnits) {
    TimeOfLongestUnitInSeconds = TimeOfUnit;
    Printf("Slowest unit: %zd s:\n", TimeOfLongestUnitInSeconds);
    WriteUnitToFileWithPrefix({Data, Data + Size}, "slow-unit-");
  }
}

void Fuzzer::CheckForUnstableCounters(const uint8_t *Data, size_t Size) {
  auto CBSetupAndRun = [&]() {
    ScopedEnableMsanInterceptorChecks S;
    UnitStartTime = system_clock::now();
    TPC.ResetMaps();
    RunningUserCallback = true;
    CB(Data, Size);
    RunningUserCallback = false;
    UnitStopTime = system_clock::now();
  };

  // Copy original run counters into our unstable counters
  TPC.InitializeUnstableCounters();

  // First Rerun
  CBSetupAndRun();
  if (TPC.UpdateUnstableCounters(Options.HandleUnstable)) {
    // Second Rerun
    CBSetupAndRun();
    TPC.UpdateAndApplyUnstableCounters(Options.HandleUnstable);
  }
}

bool Fuzzer::RunOne(const uint8_t *Data, size_t Size, bool MayDeleteFile,
                    InputInfo *II, bool *FoundUniqFeatures) {
  if (!Size)
    return false;

  ExecuteCallback(Data, Size);

  UniqFeatureSetTmp.clear();
  size_t FoundUniqFeaturesOfII = 0;
  size_t NumUpdatesBefore = Corpus.NumFeatureUpdates();
  bool NewFeaturesUnstable = false;

  if (Options.HandleUnstable || Options.PrintUnstableStats) {
    TPC.CollectFeatures([&](size_t Feature) {
      if (Corpus.IsFeatureNew(Feature, Size, Options.Shrink))
        NewFeaturesUnstable = true;
    });
    if (NewFeaturesUnstable)
      CheckForUnstableCounters(Data, Size);
  }

  TPC.CollectFeatures([&](size_t Feature) {
    if (Corpus.AddFeature(Feature, Size, Options.Shrink))
      UniqFeatureSetTmp.push_back(Feature);
    if (Options.ReduceInputs && II)
      if (std::binary_search(II->UniqFeatureSet.begin(),
                             II->UniqFeatureSet.end(), Feature))
        FoundUniqFeaturesOfII++;
  });

  if (FoundUniqFeatures)
    *FoundUniqFeatures = FoundUniqFeaturesOfII;
  PrintPulseAndReportSlowInput(Data, Size);
  size_t NumNewFeatures = Corpus.NumFeatureUpdates() - NumUpdatesBefore;

  if (NumNewFeatures) {
    TPC.UpdateObservedPCs();
    Corpus.AddToCorpus({Data, Data + Size}, NumNewFeatures, MayDeleteFile,
                       TPC.ObservedFocusFunction(), UniqFeatureSetTmp, DFT, II);
    return true;
  }
  if (II && FoundUniqFeaturesOfII &&
      II->DataFlowTraceForFocusFunction.empty() &&
      FoundUniqFeaturesOfII == II->UniqFeatureSet.size() &&
      II->U.size() > Size) {
    Corpus.Replace(II, {Data, Data + Size});
    return true;
  }
  return false;
}

size_t Fuzzer::GetCurrentUnitInFuzzingThead(const uint8_t **Data) const {
  assert(InFuzzingThread());
  *Data = CurrentUnitData;
  return CurrentUnitSize;
}

void Fuzzer::CrashOnOverwrittenData() {
  Printf("==%d== ERROR: libFuzzer: fuzz target overwrites it's const input\n",
         GetPid());
  DumpCurrentUnit("crash-");
  Printf("SUMMARY: libFuzzer: out-of-memory\n");
  _Exit(Options.ErrorExitCode); // Stop right now.
}

// Compare two arrays, but not all bytes if the arrays are large.
static bool LooseMemeq(const uint8_t *A, const uint8_t *B, size_t Size) {
  const size_t Limit = 64;
  if (Size <= 64)
    return !memcmp(A, B, Size);
  // Compare first and last Limit/2 bytes.
  return !memcmp(A, B, Limit / 2) &&
         !memcmp(A + Size - Limit / 2, B + Size - Limit / 2, Limit / 2);
}

void Fuzzer::ExecuteCallback(const uint8_t *Data, size_t Size) {
  TPC.RecordInitialStack();
  TotalNumberOfRuns++;
  assert(InFuzzingThread());
  if (SMR.IsClient())
    SMR.WriteByteArray(Data, Size);
  // We copy the contents of Unit into a separate heap buffer
  // so that we reliably find buffer overflows in it.
  uint8_t *DataCopy = new uint8_t[Size];
  memcpy(DataCopy, Data, Size);
  if (EF->__msan_unpoison)
    EF->__msan_unpoison(DataCopy, Size);
  if (CurrentUnitData && CurrentUnitData != Data)
    memcpy(CurrentUnitData, Data, Size);
  CurrentUnitSize = Size;
  {
    ScopedEnableMsanInterceptorChecks S;
    AllocTracer.Start(Options.TraceMalloc);
    UnitStartTime = system_clock::now();
    TPC.ResetMaps();
    RunningUserCallback = true;
    int Res = CB(DataCopy, Size);
    RunningUserCallback = false;
    UnitStopTime = system_clock::now();
    (void)Res;
    assert(Res == 0);
    HasMoreMallocsThanFrees = AllocTracer.Stop();
  }
  if (!LooseMemeq(DataCopy, Data, Size))
    CrashOnOverwrittenData();
  CurrentUnitSize = 0;
  delete[] DataCopy;
}

void Fuzzer::WriteToOutputCorpus(const Unit &U) {
  if (Options.OnlyASCII)
    assert(IsASCII(U));
  if (Options.OutputCorpus.empty())
    return;
  std::string Path = DirPlusFile(Options.OutputCorpus, Hash(U));
  WriteToFile(U, Path);
  if (Options.Verbosity >= 2)
    Printf("Written %zd bytes to %s\n", U.size(), Path.c_str());
}

void Fuzzer::WriteUnitToFileWithPrefix(const Unit &U, const char *Prefix) {
  if (!Options.SaveArtifacts)
    return;
  std::string Path = Options.ArtifactPrefix + Prefix + Hash(U);
  if (!Options.ExactArtifactPath.empty())
    Path = Options.ExactArtifactPath; // Overrides ArtifactPrefix.
  WriteToFile(U, Path);
  Printf("artifact_prefix='%s'; Test unit written to %s\n",
         Options.ArtifactPrefix.c_str(), Path.c_str());
  if (U.size() <= kMaxUnitSizeToPrint)
    Printf("Base64: %s\n", Base64(U).c_str());
}

void Fuzzer::PrintStatusForNewUnit(const Unit &U, const char *Text) {
  if (!Options.PrintNEW)
    return;
  PrintStats(Text, "");
  if (Options.Verbosity) {
    Printf(" L: %zd/%zd ", U.size(), Corpus.MaxInputSize());
    MD.PrintMutationSequence();
    Printf("\n");
  }
}

void Fuzzer::ReportNewCoverage(InputInfo *II, const Unit &U) {
  II->NumSuccessfullMutations++;
  MD.RecordSuccessfulMutationSequence();
  PrintStatusForNewUnit(U, II->Reduced ? "REDUCE" : "NEW   ");
  WriteToOutputCorpus(U);
  NumberOfNewUnitsAdded++;
  CheckExitOnSrcPosOrItem(); // Check only after the unit is saved to corpus.
  LastCorpusUpdateRun = TotalNumberOfRuns;
}

// Tries detecting a memory leak on the particular input that we have just
// executed before calling this function.
void Fuzzer::TryDetectingAMemoryLeak(const uint8_t *Data, size_t Size,
                                     bool DuringInitialCorpusExecution) {
  if (!HasMoreMallocsThanFrees)
    return; // mallocs==frees, a leak is unlikely.
  if (!Options.DetectLeaks)
    return;
  if (!DuringInitialCorpusExecution &&
      TotalNumberOfRuns >= Options.MaxNumberOfRuns)
    return;
  if (!&(EF->__lsan_enable) || !&(EF->__lsan_disable) ||
      !(EF->__lsan_do_recoverable_leak_check))
    return; // No lsan.
  // Run the target once again, but with lsan disabled so that if there is
  // a real leak we do not report it twice.
  EF->__lsan_disable();
  ExecuteCallback(Data, Size);
  EF->__lsan_enable();
  if (!HasMoreMallocsThanFrees)
    return; // a leak is unlikely.
  if (NumberOfLeakDetectionAttempts++ > 1000) {
    Options.DetectLeaks = false;
    Printf("INFO: libFuzzer disabled leak detection after every mutation.\n"
           "      Most likely the target function accumulates allocated\n"
           "      memory in a global state w/o actually leaking it.\n"
           "      You may try running this binary with -trace_malloc=[12]"
           "      to get a trace of mallocs and frees.\n"
           "      If LeakSanitizer is enabled in this process it will still\n"
           "      run on the process shutdown.\n");
    return;
  }
  // Now perform the actual lsan pass. This is expensive and we must ensure
  // we don't call it too often.
  if (EF->__lsan_do_recoverable_leak_check()) { // Leak is found, report it.
    if (DuringInitialCorpusExecution)
      Printf("\nINFO: a leak has been found in the initial corpus.\n\n");
    Printf("INFO: to ignore leaks on libFuzzer side use -detect_leaks=0.\n\n");
    CurrentUnitSize = Size;
    DumpCurrentUnit("leak-");
    PrintFinalStats();
    _Exit(Options.ErrorExitCode); // not exit() to disable lsan further on.
  }
}

void Fuzzer::MutateAndTestOne() {
  MD.StartMutationSequence();

  auto &II = Corpus.ChooseUnitToMutate(MD.GetRand());
  const auto &U = II.U;
  memcpy(BaseSha1, II.Sha1, sizeof(BaseSha1));
  assert(CurrentUnitData);
  size_t Size = U.size();
  assert(Size <= MaxInputLen && "Oversized Unit");
  memcpy(CurrentUnitData, U.data(), Size);

  assert(MaxMutationLen > 0);

  size_t CurrentMaxMutationLen =
      Min(MaxMutationLen, Max(U.size(), TmpMaxMutationLen));
  assert(CurrentMaxMutationLen > 0);

  for (int i = 0; i < Options.MutateDepth; i++) {
    if (TotalNumberOfRuns >= Options.MaxNumberOfRuns)
      break;
    MaybeExitGracefully();
    size_t NewSize = 0;
    if (II.HasFocusFunction && !II.DataFlowTraceForFocusFunction.empty() &&
        Size <= CurrentMaxMutationLen)
      NewSize = MD.MutateWithMask(CurrentUnitData, Size, Size,
                                  II.DataFlowTraceForFocusFunction);
    else
      NewSize = MD.Mutate(CurrentUnitData, Size, CurrentMaxMutationLen);
    assert(NewSize > 0 && "Mutator returned empty unit");
    assert(NewSize <= CurrentMaxMutationLen && "Mutator return oversized unit");
    Size = NewSize;
    II.NumExecutedMutations++;

    bool FoundUniqFeatures = false;
    bool NewCov = RunOne(CurrentUnitData, Size, /*MayDeleteFile=*/true, &II,
                         &FoundUniqFeatures);
    TryDetectingAMemoryLeak(CurrentUnitData, Size,
                            /*DuringInitialCorpusExecution*/ false);
    if (NewCov) {
      ReportNewCoverage(&II, {CurrentUnitData, CurrentUnitData + Size});
      break;  // We will mutate this input more in the next rounds.
    }
    if (Options.ReduceDepth && !FoundUniqFeatures)
        break;
  }
}

void Fuzzer::PurgeAllocator() {
  if (Options.PurgeAllocatorIntervalSec < 0 || !EF->__sanitizer_purge_allocator)
    return;
  if (duration_cast<seconds>(system_clock::now() -
                             LastAllocatorPurgeAttemptTime)
          .count() < Options.PurgeAllocatorIntervalSec)
    return;

  if (Options.RssLimitMb <= 0 ||
      GetPeakRSSMb() > static_cast<size_t>(Options.RssLimitMb) / 2)
    EF->__sanitizer_purge_allocator();

  LastAllocatorPurgeAttemptTime = system_clock::now();
}

void Fuzzer::ReadAndExecuteSeedCorpora(const Vector<std::string> &CorpusDirs) {
  const size_t kMaxSaneLen = 1 << 20;
  const size_t kMinDefaultLen = 4096;
  Vector<SizedFile> SizedFiles;
  size_t MaxSize = 0;
  size_t MinSize = -1;
  size_t TotalSize = 0;
  size_t LastNumFiles = 0;
  for (auto &Dir : CorpusDirs) {
    GetSizedFilesFromDir(Dir, &SizedFiles);
    Printf("INFO: % 8zd files found in %s\n", SizedFiles.size() - LastNumFiles,
           Dir.c_str());
    LastNumFiles = SizedFiles.size();
  }
  for (auto &File : SizedFiles) {
    MaxSize = Max(File.Size, MaxSize);
    MinSize = Min(File.Size, MinSize);
    TotalSize += File.Size;
  }
  if (Options.MaxLen == 0)
    SetMaxInputLen(std::min(std::max(kMinDefaultLen, MaxSize), kMaxSaneLen));
  assert(MaxInputLen > 0);

  // Test the callback with empty input and never try it again.
  uint8_t dummy = 0;
  ExecuteCallback(&dummy, 0);

  if (SizedFiles.empty()) {
    Printf("INFO: A corpus is not provided, starting from an empty corpus\n");
    Unit U({'\n'}); // Valid ASCII input.
    RunOne(U.data(), U.size());
  } else {
    Printf("INFO: seed corpus: files: %zd min: %zdb max: %zdb total: %zdb"
           " rss: %zdMb\n",
           SizedFiles.size(), MinSize, MaxSize, TotalSize, GetPeakRSSMb());
    if (Options.ShuffleAtStartUp)
      std::shuffle(SizedFiles.begin(), SizedFiles.end(), MD.GetRand());

    if (Options.PreferSmall) {
      std::stable_sort(SizedFiles.begin(), SizedFiles.end());
      assert(SizedFiles.front().Size <= SizedFiles.back().Size);
    }

    // Load and execute inputs one by one.
    for (auto &SF : SizedFiles) {
      auto U = FileToVector(SF.File, MaxInputLen, /*ExitOnError=*/false);
      assert(U.size() <= MaxInputLen);
      RunOne(U.data(), U.size());
      CheckExitOnSrcPosOrItem();
      TryDetectingAMemoryLeak(U.data(), U.size(),
                              /*DuringInitialCorpusExecution*/ true);
    }
  }

  PrintStats("INITED");
  if (!Options.FocusFunction.empty())
    Printf("INFO: %zd/%zd inputs touch the focus function\n",
           Corpus.NumInputsThatTouchFocusFunction(), Corpus.size());
  if (!Options.DataFlowTrace.empty())
    Printf("INFO: %zd/%zd inputs have the Data Flow Trace\n",
           Corpus.NumInputsWithDataFlowTrace(), Corpus.size());

  if (Corpus.empty() && Options.MaxNumberOfRuns) {
    Printf("ERROR: no interesting inputs were found. "
           "Is the code instrumented for coverage? Exiting.\n");
    exit(1);
  }
}

void Fuzzer::Loop(const Vector<std::string> &CorpusDirs) {
  ReadAndExecuteSeedCorpora(CorpusDirs);
  DFT.Clear();  // No need for DFT any more.
  TPC.SetPrintNewPCs(Options.PrintNewCovPcs);
  TPC.SetPrintNewFuncs(Options.PrintNewCovFuncs);
  system_clock::time_point LastCorpusReload = system_clock::now();
  if (Options.DoCrossOver)
    MD.SetCorpus(&Corpus);
  while (true) {
    auto Now = system_clock::now();
    if (duration_cast<seconds>(Now - LastCorpusReload).count() >=
        Options.ReloadIntervalSec) {
      RereadOutputCorpus(MaxInputLen);
      LastCorpusReload = system_clock::now();
    }
    if (TotalNumberOfRuns >= Options.MaxNumberOfRuns)
      break;
    if (TimedOut())
      break;

    // Update TmpMaxMutationLen
    if (Options.LenControl) {
      if (TmpMaxMutationLen < MaxMutationLen &&
          TotalNumberOfRuns - LastCorpusUpdateRun >
              Options.LenControl * Log(TmpMaxMutationLen)) {
        TmpMaxMutationLen =
            Min(MaxMutationLen, TmpMaxMutationLen + Log(TmpMaxMutationLen));
        LastCorpusUpdateRun = TotalNumberOfRuns;
      }
    } else {
      TmpMaxMutationLen = MaxMutationLen;
    }

    // Perform several mutations and runs.
    MutateAndTestOne();

    PurgeAllocator();
  }

  PrintStats("DONE  ", "\n");
  MD.PrintRecommendedDictionary();
}

void Fuzzer::MinimizeCrashLoop(const Unit &U) {
  if (U.size() <= 1)
    return;
  while (!TimedOut() && TotalNumberOfRuns < Options.MaxNumberOfRuns) {
    MD.StartMutationSequence();
    memcpy(CurrentUnitData, U.data(), U.size());
    for (int i = 0; i < Options.MutateDepth; i++) {
      size_t NewSize = MD.Mutate(CurrentUnitData, U.size(), MaxMutationLen);
      assert(NewSize > 0 && NewSize <= MaxMutationLen);
      ExecuteCallback(CurrentUnitData, NewSize);
      PrintPulseAndReportSlowInput(CurrentUnitData, NewSize);
      TryDetectingAMemoryLeak(CurrentUnitData, NewSize,
                              /*DuringInitialCorpusExecution*/ false);
    }
  }
}

void Fuzzer::AnnounceOutput(const uint8_t *Data, size_t Size) {
  if (SMR.IsServer()) {
    SMR.WriteByteArray(Data, Size);
  } else if (SMR.IsClient()) {
    SMR.PostClient();
    SMR.WaitServer();
    size_t OtherSize = SMR.ReadByteArraySize();
    uint8_t *OtherData = SMR.GetByteArray();
    if (Size != OtherSize || memcmp(Data, OtherData, Size) != 0) {
      size_t i = 0;
      for (i = 0; i < Min(Size, OtherSize); i++)
        if (Data[i] != OtherData[i])
          break;
      Printf("==%lu== ERROR: libFuzzer: equivalence-mismatch. Sizes: %zd %zd; "
             "offset %zd\n",
             GetPid(), Size, OtherSize, i);
      DumpCurrentUnit("mismatch-");
      Printf("SUMMARY: libFuzzer: equivalence-mismatch\n");
      PrintFinalStats();
      _Exit(Options.ErrorExitCode);
    }
  }
}

} // namespace fuzzer

extern "C" {

__attribute__((visibility("default"))) size_t
LLVMFuzzerMutate(uint8_t *Data, size_t Size, size_t MaxSize) {
  assert(fuzzer::F);
  return fuzzer::F->GetMD().DefaultMutate(Data, Size, MaxSize);
}

// Experimental
__attribute__((visibility("default"))) void
LLVMFuzzerAnnounceOutput(const uint8_t *Data, size_t Size) {
  assert(fuzzer::F);
  fuzzer::F->AnnounceOutput(Data, Size);
}
} // extern "C"