summaryrefslogtreecommitdiff
path: root/lib/scudo/scudo_allocator.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/scudo/scudo_allocator.cpp')
-rw-r--r--lib/scudo/scudo_allocator.cpp703
1 files changed, 358 insertions, 345 deletions
diff --git a/lib/scudo/scudo_allocator.cpp b/lib/scudo/scudo_allocator.cpp
index dab6abedc..472017dff 100644
--- a/lib/scudo/scudo_allocator.cpp
+++ b/lib/scudo/scudo_allocator.cpp
@@ -15,56 +15,20 @@
//===----------------------------------------------------------------------===//
#include "scudo_allocator.h"
+#include "scudo_crc32.h"
+#include "scudo_flags.h"
+#include "scudo_tsd.h"
#include "scudo_utils.h"
+#include "sanitizer_common/sanitizer_allocator_checks.h"
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "sanitizer_common/sanitizer_quarantine.h"
-#include <limits.h>
-#include <pthread.h>
-
-#include <cstring>
+#include <errno.h>
+#include <string.h>
namespace __scudo {
-#if SANITIZER_CAN_USE_ALLOCATOR64
-const uptr AllocatorSpace = ~0ULL;
-const uptr AllocatorSize = 0x40000000000ULL;
-typedef DefaultSizeClassMap SizeClassMap;
-struct AP {
- static const uptr kSpaceBeg = AllocatorSpace;
- static const uptr kSpaceSize = AllocatorSize;
- static const uptr kMetadataSize = 0;
- typedef __scudo::SizeClassMap SizeClassMap;
- typedef NoOpMapUnmapCallback MapUnmapCallback;
- static const uptr kFlags =
- SizeClassAllocator64FlagMasks::kRandomShuffleChunks;
-};
-typedef SizeClassAllocator64<AP> PrimaryAllocator;
-#else
-// Currently, the 32-bit Sanitizer allocator has not yet benefited from all the
-// security improvements brought to the 64-bit one. This makes the 32-bit
-// version of Scudo slightly less toughened.
-static const uptr RegionSizeLog = 20;
-static const uptr NumRegions = SANITIZER_MMAP_RANGE_SIZE >> RegionSizeLog;
-# if SANITIZER_WORDSIZE == 32
-typedef FlatByteMap<NumRegions> ByteMap;
-# elif SANITIZER_WORDSIZE == 64
-typedef TwoLevelByteMap<(NumRegions >> 12), 1 << 12> ByteMap;
-# endif // SANITIZER_WORDSIZE
-typedef DefaultSizeClassMap SizeClassMap;
-typedef SizeClassAllocator32<0, SANITIZER_MMAP_RANGE_SIZE, 0, SizeClassMap,
- RegionSizeLog, ByteMap> PrimaryAllocator;
-#endif // SANITIZER_CAN_USE_ALLOCATOR64
-
-typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
-typedef ScudoLargeMmapAllocator SecondaryAllocator;
-typedef CombinedAllocator<PrimaryAllocator, AllocatorCache, SecondaryAllocator>
- ScudoAllocator;
-
-static ScudoAllocator &getAllocator();
-
-static thread_local Xorshift128Plus Prng;
// Global static cookie, initialized at start-up.
static uptr Cookie;
@@ -72,23 +36,32 @@ static uptr Cookie;
// at compilation or at runtime.
static atomic_uint8_t HashAlgorithm = { CRC32Software };
-SANITIZER_WEAK_ATTRIBUTE u32 computeHardwareCRC32(u32 Crc, uptr Data);
-
-INLINE u32 computeCRC32(u32 Crc, uptr Data, u8 HashType) {
- // If SSE4.2 is defined here, it was enabled everywhere, as opposed to only
- // for scudo_crc32.cpp. This means that other SSE instructions were likely
- // emitted at other places, and as a result there is no reason to not use
- // the hardware version of the CRC32.
+INLINE u32 computeCRC32(u32 Crc, uptr Value, uptr *Array, uptr ArraySize) {
+ // If the hardware CRC32 feature is defined here, it was enabled everywhere,
+ // as opposed to only for scudo_crc32.cpp. This means that other hardware
+ // specific instructions were likely emitted at other places, and as a
+ // result there is no reason to not use it here.
#if defined(__SSE4_2__) || defined(__ARM_FEATURE_CRC32)
- return computeHardwareCRC32(Crc, Data);
+ Crc = CRC32_INTRINSIC(Crc, Value);
+ for (uptr i = 0; i < ArraySize; i++)
+ Crc = CRC32_INTRINSIC(Crc, Array[i]);
+ return Crc;
#else
- if (computeHardwareCRC32 && HashType == CRC32Hardware)
- return computeHardwareCRC32(Crc, Data);
- else
- return computeSoftwareCRC32(Crc, Data);
-#endif // defined(__SSE4_2__)
+ if (atomic_load_relaxed(&HashAlgorithm) == CRC32Hardware) {
+ Crc = computeHardwareCRC32(Crc, Value);
+ for (uptr i = 0; i < ArraySize; i++)
+ Crc = computeHardwareCRC32(Crc, Array[i]);
+ return Crc;
+ }
+ Crc = computeSoftwareCRC32(Crc, Value);
+ for (uptr i = 0; i < ArraySize; i++)
+ Crc = computeSoftwareCRC32(Crc, Array[i]);
+ return Crc;
+#endif // defined(__SSE4_2__) || defined(__ARM_FEATURE_CRC32)
}
+static ScudoBackendAllocator &getBackendAllocator();
+
struct ScudoChunk : UnpackedHeader {
// We can't use the offset member of the chunk itself, as we would double
// fetch it without any warranty that it wouldn't have been tampered. To
@@ -101,9 +74,11 @@ struct ScudoChunk : UnpackedHeader {
// Returns the usable size for a chunk, meaning the amount of bytes from the
// beginning of the user data to the end of the backend allocated chunk.
uptr getUsableSize(UnpackedHeader *Header) {
- uptr Size = getAllocator().GetActuallyAllocatedSize(getAllocBeg(Header));
+ uptr Size =
+ getBackendAllocator().getActuallyAllocatedSize(getAllocBeg(Header),
+ Header->FromPrimary);
if (Size == 0)
- return Size;
+ return 0;
return Size - AlignedChunkHeaderSize - (Header->Offset << MinAlignmentLog);
}
@@ -113,14 +88,14 @@ struct ScudoChunk : UnpackedHeader {
ZeroChecksumHeader.Checksum = 0;
uptr HeaderHolder[sizeof(UnpackedHeader) / sizeof(uptr)];
memcpy(&HeaderHolder, &ZeroChecksumHeader, sizeof(HeaderHolder));
- u8 HashType = atomic_load_relaxed(&HashAlgorithm);
- u32 Crc = computeCRC32(Cookie, reinterpret_cast<uptr>(this), HashType);
- for (uptr i = 0; i < ARRAY_SIZE(HeaderHolder); i++)
- Crc = computeCRC32(Crc, HeaderHolder[i], HashType);
+ u32 Crc = computeCRC32(static_cast<u32>(Cookie),
+ reinterpret_cast<uptr>(this), HeaderHolder,
+ ARRAY_SIZE(HeaderHolder));
return static_cast<u16>(Crc);
}
- // Checks the validity of a chunk by verifying its checksum.
+ // Checks the validity of a chunk by verifying its checksum. It doesn't
+ // incur termination in the event of an invalid chunk.
bool isValid() {
UnpackedHeader NewUnpackedHeader;
const AtomicPackedHeader *AtomicHeader =
@@ -130,13 +105,27 @@ struct ScudoChunk : UnpackedHeader {
return (NewUnpackedHeader.Checksum == computeChecksum(&NewUnpackedHeader));
}
+ // Nulls out a chunk header. When returning the chunk to the backend, there
+ // is no need to store a valid ChunkAvailable header, as this would be
+ // computationally expensive. Zeroing out serves the same purpose by making
+ // the header invalid. In the extremely rare event where 0 would be a valid
+ // checksum for the chunk, the state of the chunk is ChunkAvailable anyway.
+ COMPILER_CHECK(ChunkAvailable == 0);
+ void eraseHeader() {
+ PackedHeader NullPackedHeader = 0;
+ AtomicPackedHeader *AtomicHeader =
+ reinterpret_cast<AtomicPackedHeader *>(this);
+ atomic_store_relaxed(AtomicHeader, NullPackedHeader);
+ }
+
// Loads and unpacks the header, verifying the checksum in the process.
void loadHeader(UnpackedHeader *NewUnpackedHeader) const {
const AtomicPackedHeader *AtomicHeader =
reinterpret_cast<const AtomicPackedHeader *>(this);
PackedHeader NewPackedHeader = atomic_load_relaxed(AtomicHeader);
*NewUnpackedHeader = bit_cast<UnpackedHeader>(NewPackedHeader);
- if (NewUnpackedHeader->Checksum != computeChecksum(NewUnpackedHeader)) {
+ if (UNLIKELY(NewUnpackedHeader->Checksum !=
+ computeChecksum(NewUnpackedHeader))) {
dieWithMessage("ERROR: corrupted chunk header at address %p\n", this);
}
}
@@ -160,155 +149,134 @@ struct ScudoChunk : UnpackedHeader {
PackedHeader OldPackedHeader = bit_cast<PackedHeader>(*OldUnpackedHeader);
AtomicPackedHeader *AtomicHeader =
reinterpret_cast<AtomicPackedHeader *>(this);
- if (!atomic_compare_exchange_strong(AtomicHeader,
- &OldPackedHeader,
- NewPackedHeader,
- memory_order_relaxed)) {
+ if (UNLIKELY(!atomic_compare_exchange_strong(AtomicHeader,
+ &OldPackedHeader,
+ NewPackedHeader,
+ memory_order_relaxed))) {
dieWithMessage("ERROR: race on chunk header at address %p\n", this);
}
}
};
-static bool ScudoInitIsRunning = false;
+ScudoChunk *getScudoChunk(uptr UserBeg) {
+ return reinterpret_cast<ScudoChunk *>(UserBeg - AlignedChunkHeaderSize);
+}
-static pthread_once_t GlobalInited = PTHREAD_ONCE_INIT;
-static pthread_key_t PThreadKey;
-
-static thread_local bool ThreadInited = false;
-static thread_local bool ThreadTornDown = false;
-static thread_local AllocatorCache Cache;
-
-static void teardownThread(void *p) {
- uptr v = reinterpret_cast<uptr>(p);
- // The glibc POSIX thread-local-storage deallocation routine calls user
- // provided destructors in a loop of PTHREAD_DESTRUCTOR_ITERATIONS.
- // We want to be called last since other destructors might call free and the
- // like, so we wait until PTHREAD_DESTRUCTOR_ITERATIONS before draining the
- // quarantine and swallowing the cache.
- if (v < PTHREAD_DESTRUCTOR_ITERATIONS) {
- pthread_setspecific(PThreadKey, reinterpret_cast<void *>(v + 1));
- return;
- }
- drainQuarantine();
- getAllocator().DestroyCache(&Cache);
- ThreadTornDown = true;
+struct AllocatorOptions {
+ u32 QuarantineSizeKb;
+ u32 ThreadLocalQuarantineSizeKb;
+ u32 QuarantineChunksUpToSize;
+ bool MayReturnNull;
+ s32 ReleaseToOSIntervalMs;
+ bool DeallocationTypeMismatch;
+ bool DeleteSizeMismatch;
+ bool ZeroContents;
+
+ void setFrom(const Flags *f, const CommonFlags *cf);
+};
+
+void AllocatorOptions::setFrom(const Flags *f, const CommonFlags *cf) {
+ MayReturnNull = cf->allocator_may_return_null;
+ ReleaseToOSIntervalMs = cf->allocator_release_to_os_interval_ms;
+ QuarantineSizeKb = f->QuarantineSizeKb;
+ ThreadLocalQuarantineSizeKb = f->ThreadLocalQuarantineSizeKb;
+ QuarantineChunksUpToSize = f->QuarantineChunksUpToSize;
+ DeallocationTypeMismatch = f->DeallocationTypeMismatch;
+ DeleteSizeMismatch = f->DeleteSizeMismatch;
+ ZeroContents = f->ZeroContents;
}
-static void initInternal() {
+static void initScudoInternal(const AllocatorOptions &Options);
+
+static bool ScudoInitIsRunning = false;
+
+void initScudo() {
SanitizerToolName = "Scudo";
CHECK(!ScudoInitIsRunning && "Scudo init calls itself!");
ScudoInitIsRunning = true;
- // Check is SSE4.2 is supported, if so, opt for the CRC32 hardware version.
- if (testCPUFeature(CRC32CPUFeature)) {
+ // Check if hardware CRC32 is supported in the binary and by the platform, if
+ // so, opt for the CRC32 hardware version of the checksum.
+ if (computeHardwareCRC32 && testCPUFeature(CRC32CPUFeature))
atomic_store_relaxed(&HashAlgorithm, CRC32Hardware);
- }
initFlags();
AllocatorOptions Options;
Options.setFrom(getFlags(), common_flags());
- initAllocator(Options);
+ initScudoInternal(Options);
- MaybeStartBackgroudThread();
+ // TODO(kostyak): determine if MaybeStartBackgroudThread could be of some use.
ScudoInitIsRunning = false;
}
-static void initGlobal() {
- pthread_key_create(&PThreadKey, teardownThread);
- initInternal();
-}
-
-static void NOINLINE initThread() {
- pthread_once(&GlobalInited, initGlobal);
- pthread_setspecific(PThreadKey, reinterpret_cast<void *>(1));
- getAllocator().InitCache(&Cache);
- ThreadInited = true;
-}
-
struct QuarantineCallback {
explicit QuarantineCallback(AllocatorCache *Cache)
: Cache_(Cache) {}
- // Chunk recycling function, returns a quarantined chunk to the backend.
+ // Chunk recycling function, returns a quarantined chunk to the backend,
+ // first making sure it hasn't been tampered with.
void Recycle(ScudoChunk *Chunk) {
UnpackedHeader Header;
Chunk->loadHeader(&Header);
- if (Header.State != ChunkQuarantine) {
+ if (UNLIKELY(Header.State != ChunkQuarantine)) {
dieWithMessage("ERROR: invalid chunk state when recycling address %p\n",
Chunk);
}
+ Chunk->eraseHeader();
void *Ptr = Chunk->getAllocBeg(&Header);
- getAllocator().Deallocate(Cache_, Ptr);
+ if (Header.FromPrimary)
+ getBackendAllocator().deallocatePrimary(Cache_, Ptr);
+ else
+ getBackendAllocator().deallocateSecondary(Ptr);
}
- /// Internal quarantine allocation and deallocation functions.
+ // Internal quarantine allocation and deallocation functions. We first check
+ // that the batches are indeed serviced by the Primary.
+ // TODO(kostyak): figure out the best way to protect the batches.
+ COMPILER_CHECK(sizeof(QuarantineBatch) < SizeClassMap::kMaxSize);
void *Allocate(uptr Size) {
- // The internal quarantine memory cannot be protected by us. But the only
- // structures allocated are QuarantineBatch, that are 8KB for x64. So we
- // will use mmap for those, and given that Deallocate doesn't pass a size
- // in, we enforce the size of the allocation to be sizeof(QuarantineBatch).
- // TODO(kostyak): switching to mmap impacts greatly performances, we have
- // to find another solution
- // CHECK_EQ(Size, sizeof(QuarantineBatch));
- // return MmapOrDie(Size, "QuarantineBatch");
- return getAllocator().Allocate(Cache_, Size, 1, false);
+ return getBackendAllocator().allocatePrimary(Cache_, Size);
}
void Deallocate(void *Ptr) {
- // UnmapOrDie(Ptr, sizeof(QuarantineBatch));
- getAllocator().Deallocate(Cache_, Ptr);
+ getBackendAllocator().deallocatePrimary(Cache_, Ptr);
}
AllocatorCache *Cache_;
};
typedef Quarantine<QuarantineCallback, ScudoChunk> ScudoQuarantine;
-typedef ScudoQuarantine::Cache QuarantineCache;
-static thread_local QuarantineCache ThreadQuarantineCache;
-
-void AllocatorOptions::setFrom(const Flags *f, const CommonFlags *cf) {
- MayReturnNull = cf->allocator_may_return_null;
- ReleaseToOSIntervalMs = cf->allocator_release_to_os_interval_ms;
- QuarantineSizeMb = f->QuarantineSizeMb;
- ThreadLocalQuarantineSizeKb = f->ThreadLocalQuarantineSizeKb;
- DeallocationTypeMismatch = f->DeallocationTypeMismatch;
- DeleteSizeMismatch = f->DeleteSizeMismatch;
- ZeroContents = f->ZeroContents;
-}
+typedef ScudoQuarantine::Cache ScudoQuarantineCache;
+COMPILER_CHECK(sizeof(ScudoQuarantineCache) <=
+ sizeof(ScudoTSD::QuarantineCachePlaceHolder));
-void AllocatorOptions::copyTo(Flags *f, CommonFlags *cf) const {
- cf->allocator_may_return_null = MayReturnNull;
- cf->allocator_release_to_os_interval_ms = ReleaseToOSIntervalMs;
- f->QuarantineSizeMb = QuarantineSizeMb;
- f->ThreadLocalQuarantineSizeKb = ThreadLocalQuarantineSizeKb;
- f->DeallocationTypeMismatch = DeallocationTypeMismatch;
- f->DeleteSizeMismatch = DeleteSizeMismatch;
- f->ZeroContents = ZeroContents;
+ScudoQuarantineCache *getQuarantineCache(ScudoTSD *TSD) {
+ return reinterpret_cast<ScudoQuarantineCache *>(
+ TSD->QuarantineCachePlaceHolder);
}
-struct Allocator {
+struct ScudoAllocator {
static const uptr MaxAllowedMallocSize =
FIRST_32_SECOND_64(2UL << 30, 1ULL << 40);
- ScudoAllocator BackendAllocator;
+ typedef ReturnNullOrDieOnFailure FailureHandler;
+
+ ScudoBackendAllocator BackendAllocator;
ScudoQuarantine AllocatorQuarantine;
- // The fallback caches are used when the thread local caches have been
- // 'detroyed' on thread tear-down. They are protected by a Mutex as they can
- // be accessed by different threads.
- StaticSpinMutex FallbackMutex;
- AllocatorCache FallbackAllocatorCache;
- QuarantineCache FallbackQuarantineCache;
+ StaticSpinMutex GlobalPrngMutex;
+ ScudoPrng GlobalPrng;
+
+ u32 QuarantineChunksUpToSize;
bool DeallocationTypeMismatch;
bool ZeroContents;
bool DeleteSizeMismatch;
- explicit Allocator(LinkerInitialized)
- : AllocatorQuarantine(LINKER_INITIALIZED),
- FallbackQuarantineCache(LINKER_INITIALIZED) {}
+ explicit ScudoAllocator(LinkerInitialized)
+ : AllocatorQuarantine(LINKER_INITIALIZED) {}
void init(const AllocatorOptions &Options) {
// Verify that the header offset field can hold the maximum offset. In the
@@ -320,23 +288,23 @@ struct Allocator {
// result, the maximum offset will be at most the maximum alignment for the
// last size class minus the header size, in multiples of MinAlignment.
UnpackedHeader Header = {};
- uptr MaxPrimaryAlignment = 1 << MostSignificantSetBitIndex(
- SizeClassMap::kMaxSize - MinAlignment);
- uptr MaxOffset = (MaxPrimaryAlignment - AlignedChunkHeaderSize) >>
- MinAlignmentLog;
+ uptr MaxPrimaryAlignment =
+ 1 << MostSignificantSetBitIndex(SizeClassMap::kMaxSize - MinAlignment);
+ uptr MaxOffset =
+ (MaxPrimaryAlignment - AlignedChunkHeaderSize) >> MinAlignmentLog;
Header.Offset = MaxOffset;
if (Header.Offset != MaxOffset) {
dieWithMessage("ERROR: the maximum possible offset doesn't fit in the "
"header\n");
}
- // Verify that we can fit the maximum amount of unused bytes in the header.
- // Given that the Secondary fits the allocation to a page, the worst case
- // scenario happens in the Primary. It will depend on the second to last
- // and last class sizes, as well as the dynamic base for the Primary. The
- // following is an over-approximation that works for our needs.
- uptr MaxUnusedBytes = SizeClassMap::kMaxSize - 1 - AlignedChunkHeaderSize;
- Header.UnusedBytes = MaxUnusedBytes;
- if (Header.UnusedBytes != MaxUnusedBytes) {
+ // Verify that we can fit the maximum size or amount of unused bytes in the
+ // header. Given that the Secondary fits the allocation to a page, the worst
+ // case scenario happens in the Primary. It will depend on the second to
+ // last and last class sizes, as well as the dynamic base for the Primary.
+ // The following is an over-approximation that works for our needs.
+ uptr MaxSizeOrUnusedBytes = SizeClassMap::kMaxSize - 1;
+ Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes;
+ if (Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes) {
dieWithMessage("ERROR: the maximum possible unused bytes doesn't fit in "
"the header\n");
}
@@ -344,184 +312,221 @@ struct Allocator {
DeallocationTypeMismatch = Options.DeallocationTypeMismatch;
DeleteSizeMismatch = Options.DeleteSizeMismatch;
ZeroContents = Options.ZeroContents;
- BackendAllocator.Init(Options.MayReturnNull, Options.ReleaseToOSIntervalMs);
+ SetAllocatorMayReturnNull(Options.MayReturnNull);
+ BackendAllocator.init(Options.ReleaseToOSIntervalMs);
AllocatorQuarantine.Init(
- static_cast<uptr>(Options.QuarantineSizeMb) << 20,
+ static_cast<uptr>(Options.QuarantineSizeKb) << 10,
static_cast<uptr>(Options.ThreadLocalQuarantineSizeKb) << 10);
- BackendAllocator.InitCache(&FallbackAllocatorCache);
- Cookie = Prng.Next();
+ QuarantineChunksUpToSize = Options.QuarantineChunksUpToSize;
+ GlobalPrng.init();
+ Cookie = GlobalPrng.getU64();
}
- // Helper function that checks for a valid Scudo chunk.
+ // Helper function that checks for a valid Scudo chunk. nullptr isn't.
bool isValidPointer(const void *UserPtr) {
- if (UNLIKELY(!ThreadInited))
- initThread();
- uptr ChunkBeg = reinterpret_cast<uptr>(UserPtr);
- if (!IsAligned(ChunkBeg, MinAlignment)) {
+ initThreadMaybe();
+ if (UNLIKELY(!UserPtr))
return false;
- }
- ScudoChunk *Chunk =
- reinterpret_cast<ScudoChunk *>(ChunkBeg - AlignedChunkHeaderSize);
- return Chunk->isValid();
+ uptr UserBeg = reinterpret_cast<uptr>(UserPtr);
+ if (!IsAligned(UserBeg, MinAlignment))
+ return false;
+ return getScudoChunk(UserBeg)->isValid();
}
// Allocates a chunk.
- void *allocate(uptr Size, uptr Alignment, AllocType Type) {
- if (UNLIKELY(!ThreadInited))
- initThread();
- if (!IsPowerOfTwo(Alignment)) {
- dieWithMessage("ERROR: alignment is not a power of 2\n");
- }
- if (Alignment > MaxAlignment)
- return BackendAllocator.ReturnNullOrDieOnBadRequest();
- if (Alignment < MinAlignment)
+ void *allocate(uptr Size, uptr Alignment, AllocType Type,
+ bool ForceZeroContents = false) {
+ initThreadMaybe();
+ if (UNLIKELY(Alignment > MaxAlignment))
+ return FailureHandler::OnBadRequest();
+ if (UNLIKELY(Alignment < MinAlignment))
Alignment = MinAlignment;
- if (Size == 0)
+ if (UNLIKELY(Size >= MaxAllowedMallocSize))
+ return FailureHandler::OnBadRequest();
+ if (UNLIKELY(Size == 0))
Size = 1;
- if (Size >= MaxAllowedMallocSize)
- return BackendAllocator.ReturnNullOrDieOnBadRequest();
uptr NeededSize = RoundUpTo(Size, MinAlignment) + AlignedChunkHeaderSize;
- if (Alignment > MinAlignment)
- NeededSize += Alignment;
- if (NeededSize >= MaxAllowedMallocSize)
- return BackendAllocator.ReturnNullOrDieOnBadRequest();
-
- // Primary backed and Secondary backed allocations have a different
- // treatment. We deal with alignment requirements of Primary serviced
- // allocations here, but the Secondary will take care of its own alignment
- // needs, which means we also have to work around some limitations of the
- // combined allocator to accommodate the situation.
- bool FromPrimary = PrimaryAllocator::CanAllocate(NeededSize, MinAlignment);
+ uptr AlignedSize = (Alignment > MinAlignment) ?
+ NeededSize + (Alignment - AlignedChunkHeaderSize) : NeededSize;
+ if (UNLIKELY(AlignedSize >= MaxAllowedMallocSize))
+ return FailureHandler::OnBadRequest();
+
+ // Primary and Secondary backed allocations have a different treatment. We
+ // deal with alignment requirements of Primary serviced allocations here,
+ // but the Secondary will take care of its own alignment needs.
+ bool FromPrimary = PrimaryAllocator::CanAllocate(AlignedSize, MinAlignment);
void *Ptr;
- if (LIKELY(!ThreadTornDown)) {
- Ptr = BackendAllocator.Allocate(&Cache, NeededSize,
- FromPrimary ? MinAlignment : Alignment);
+ u8 Salt;
+ uptr AllocSize;
+ if (FromPrimary) {
+ AllocSize = AlignedSize;
+ ScudoTSD *TSD = getTSDAndLock();
+ Salt = TSD->Prng.getU8();
+ Ptr = BackendAllocator.allocatePrimary(&TSD->Cache, AllocSize);
+ TSD->unlock();
} else {
- SpinMutexLock l(&FallbackMutex);
- Ptr = BackendAllocator.Allocate(&FallbackAllocatorCache, NeededSize,
- FromPrimary ? MinAlignment : Alignment);
- }
- if (!Ptr)
- return BackendAllocator.ReturnNullOrDieOnOOM();
-
- uptr AllocBeg = reinterpret_cast<uptr>(Ptr);
- // If the allocation was serviced by the secondary, the returned pointer
- // accounts for ChunkHeaderSize to pass the alignment check of the combined
- // allocator. Adjust it here.
- if (!FromPrimary) {
- AllocBeg -= AlignedChunkHeaderSize;
- if (Alignment > MinAlignment)
- NeededSize -= Alignment;
+ {
+ SpinMutexLock l(&GlobalPrngMutex);
+ Salt = GlobalPrng.getU8();
+ }
+ AllocSize = NeededSize;
+ Ptr = BackendAllocator.allocateSecondary(AllocSize, Alignment);
}
+ if (UNLIKELY(!Ptr))
+ return FailureHandler::OnOOM();
- uptr ActuallyAllocatedSize = BackendAllocator.GetActuallyAllocatedSize(
- reinterpret_cast<void *>(AllocBeg));
// If requested, we will zero out the entire contents of the returned chunk.
- if (ZeroContents && FromPrimary)
- memset(Ptr, 0, ActuallyAllocatedSize);
-
- uptr ChunkBeg = AllocBeg + AlignedChunkHeaderSize;
- if (!IsAligned(ChunkBeg, Alignment))
- ChunkBeg = RoundUpTo(ChunkBeg, Alignment);
- CHECK_LE(ChunkBeg + Size, AllocBeg + NeededSize);
- ScudoChunk *Chunk =
- reinterpret_cast<ScudoChunk *>(ChunkBeg - AlignedChunkHeaderSize);
+ if ((ForceZeroContents || ZeroContents) && FromPrimary)
+ memset(Ptr, 0, BackendAllocator.getActuallyAllocatedSize(
+ Ptr, /*FromPrimary=*/true));
+
UnpackedHeader Header = {};
+ uptr AllocBeg = reinterpret_cast<uptr>(Ptr);
+ uptr UserBeg = AllocBeg + AlignedChunkHeaderSize;
+ if (UNLIKELY(!IsAligned(UserBeg, Alignment))) {
+ // Since the Secondary takes care of alignment, a non-aligned pointer
+ // means it is from the Primary. It is also the only case where the offset
+ // field of the header would be non-zero.
+ CHECK(FromPrimary);
+ UserBeg = RoundUpTo(UserBeg, Alignment);
+ uptr Offset = UserBeg - AlignedChunkHeaderSize - AllocBeg;
+ Header.Offset = Offset >> MinAlignmentLog;
+ }
+ CHECK_LE(UserBeg + Size, AllocBeg + AllocSize);
Header.State = ChunkAllocated;
- uptr Offset = ChunkBeg - AlignedChunkHeaderSize - AllocBeg;
- Header.Offset = Offset >> MinAlignmentLog;
Header.AllocType = Type;
- Header.UnusedBytes = ActuallyAllocatedSize - Offset -
- AlignedChunkHeaderSize - Size;
- Header.Salt = static_cast<u8>(Prng.Next());
- Chunk->storeHeader(&Header);
- void *UserPtr = reinterpret_cast<void *>(ChunkBeg);
- // TODO(kostyak): hooks sound like a terrible idea security wise but might
- // be needed for things to work properly?
+ if (FromPrimary) {
+ Header.FromPrimary = 1;
+ Header.SizeOrUnusedBytes = Size;
+ } else {
+ // The secondary fits the allocations to a page, so the amount of unused
+ // bytes is the difference between the end of the user allocation and the
+ // next page boundary.
+ uptr PageSize = GetPageSizeCached();
+ uptr TrailingBytes = (UserBeg + Size) & (PageSize - 1);
+ if (TrailingBytes)
+ Header.SizeOrUnusedBytes = PageSize - TrailingBytes;
+ }
+ Header.Salt = Salt;
+ getScudoChunk(UserBeg)->storeHeader(&Header);
+ void *UserPtr = reinterpret_cast<void *>(UserBeg);
// if (&__sanitizer_malloc_hook) __sanitizer_malloc_hook(UserPtr, Size);
return UserPtr;
}
+ // Place a chunk in the quarantine or directly deallocate it in the event of
+ // a zero-sized quarantine, or if the size of the chunk is greater than the
+ // quarantine chunk size threshold.
+ void quarantineOrDeallocateChunk(ScudoChunk *Chunk, UnpackedHeader *Header,
+ uptr Size) {
+ const bool BypassQuarantine = (AllocatorQuarantine.GetCacheSize() == 0) ||
+ (Size > QuarantineChunksUpToSize);
+ if (BypassQuarantine) {
+ Chunk->eraseHeader();
+ void *Ptr = Chunk->getAllocBeg(Header);
+ if (Header->FromPrimary) {
+ ScudoTSD *TSD = getTSDAndLock();
+ getBackendAllocator().deallocatePrimary(&TSD->Cache, Ptr);
+ TSD->unlock();
+ } else {
+ getBackendAllocator().deallocateSecondary(Ptr);
+ }
+ } else {
+ // If a small memory amount was allocated with a larger alignment, we want
+ // to take that into account. Otherwise the Quarantine would be filled
+ // with tiny chunks, taking a lot of VA memory. This is an approximation
+ // of the usable size, that allows us to not call
+ // GetActuallyAllocatedSize.
+ uptr EstimatedSize = Size + (Header->Offset << MinAlignmentLog);
+ UnpackedHeader NewHeader = *Header;
+ NewHeader.State = ChunkQuarantine;
+ Chunk->compareExchangeHeader(&NewHeader, Header);
+ ScudoTSD *TSD = getTSDAndLock();
+ AllocatorQuarantine.Put(getQuarantineCache(TSD),
+ QuarantineCallback(&TSD->Cache),
+ Chunk, EstimatedSize);
+ TSD->unlock();
+ }
+ }
+
// Deallocates a Chunk, which means adding it to the delayed free list (or
// Quarantine).
void deallocate(void *UserPtr, uptr DeleteSize, AllocType Type) {
- if (UNLIKELY(!ThreadInited))
- initThread();
- // TODO(kostyak): see hook comment above
+ // For a deallocation, we only ensure minimal initialization, meaning thread
+ // local data will be left uninitialized for now (when using ELF TLS). The
+ // fallback cache will be used instead. This is a workaround for a situation
+ // where the only heap operation performed in a thread would be a free past
+ // the TLS destructors, ending up in initialized thread specific data never
+ // being destroyed properly. Any other heap operation will do a full init.
+ initThreadMaybe(/*MinimalInit=*/true);
// if (&__sanitizer_free_hook) __sanitizer_free_hook(UserPtr);
- if (!UserPtr)
+ if (UNLIKELY(!UserPtr))
return;
- uptr ChunkBeg = reinterpret_cast<uptr>(UserPtr);
- if (!IsAligned(ChunkBeg, MinAlignment)) {
+ uptr UserBeg = reinterpret_cast<uptr>(UserPtr);
+ if (UNLIKELY(!IsAligned(UserBeg, MinAlignment))) {
dieWithMessage("ERROR: attempted to deallocate a chunk not properly "
"aligned at address %p\n", UserPtr);
}
- ScudoChunk *Chunk =
- reinterpret_cast<ScudoChunk *>(ChunkBeg - AlignedChunkHeaderSize);
- UnpackedHeader OldHeader;
- Chunk->loadHeader(&OldHeader);
- if (OldHeader.State != ChunkAllocated) {
+ ScudoChunk *Chunk = getScudoChunk(UserBeg);
+ UnpackedHeader Header;
+ Chunk->loadHeader(&Header);
+ if (UNLIKELY(Header.State != ChunkAllocated)) {
dieWithMessage("ERROR: invalid chunk state when deallocating address "
"%p\n", UserPtr);
}
- uptr UsableSize = Chunk->getUsableSize(&OldHeader);
- UnpackedHeader NewHeader = OldHeader;
- NewHeader.State = ChunkQuarantine;
- Chunk->compareExchangeHeader(&NewHeader, &OldHeader);
if (DeallocationTypeMismatch) {
// The deallocation type has to match the allocation one.
- if (NewHeader.AllocType != Type) {
+ if (Header.AllocType != Type) {
// With the exception of memalign'd Chunks, that can be still be free'd.
- if (NewHeader.AllocType != FromMemalign || Type != FromMalloc) {
- dieWithMessage("ERROR: allocation type mismatch on address %p\n",
- Chunk);
+ if (Header.AllocType != FromMemalign || Type != FromMalloc) {
+ dieWithMessage("ERROR: allocation type mismatch when deallocating "
+ "address %p\n", UserPtr);
}
}
}
- uptr Size = UsableSize - OldHeader.UnusedBytes;
+ uptr Size = Header.FromPrimary ? Header.SizeOrUnusedBytes :
+ Chunk->getUsableSize(&Header) - Header.SizeOrUnusedBytes;
if (DeleteSizeMismatch) {
if (DeleteSize && DeleteSize != Size) {
dieWithMessage("ERROR: invalid sized delete on chunk at address %p\n",
- Chunk);
+ UserPtr);
}
}
-
- if (LIKELY(!ThreadTornDown)) {
- AllocatorQuarantine.Put(&ThreadQuarantineCache,
- QuarantineCallback(&Cache), Chunk, UsableSize);
- } else {
- SpinMutexLock l(&FallbackMutex);
- AllocatorQuarantine.Put(&FallbackQuarantineCache,
- QuarantineCallback(&FallbackAllocatorCache),
- Chunk, UsableSize);
- }
+ quarantineOrDeallocateChunk(Chunk, &Header, Size);
}
// Reallocates a chunk. We can save on a new allocation if the new requested
// size still fits in the chunk.
void *reallocate(void *OldPtr, uptr NewSize) {
- if (UNLIKELY(!ThreadInited))
- initThread();
- uptr ChunkBeg = reinterpret_cast<uptr>(OldPtr);
- ScudoChunk *Chunk =
- reinterpret_cast<ScudoChunk *>(ChunkBeg - AlignedChunkHeaderSize);
+ initThreadMaybe();
+ uptr UserBeg = reinterpret_cast<uptr>(OldPtr);
+ if (UNLIKELY(!IsAligned(UserBeg, MinAlignment))) {
+ dieWithMessage("ERROR: attempted to reallocate a chunk not properly "
+ "aligned at address %p\n", OldPtr);
+ }
+ ScudoChunk *Chunk = getScudoChunk(UserBeg);
UnpackedHeader OldHeader;
Chunk->loadHeader(&OldHeader);
- if (OldHeader.State != ChunkAllocated) {
+ if (UNLIKELY(OldHeader.State != ChunkAllocated)) {
dieWithMessage("ERROR: invalid chunk state when reallocating address "
"%p\n", OldPtr);
}
- uptr Size = Chunk->getUsableSize(&OldHeader);
- if (OldHeader.AllocType != FromMalloc) {
- dieWithMessage("ERROR: invalid chunk type when reallocating address %p\n",
- Chunk);
+ if (DeallocationTypeMismatch) {
+ if (UNLIKELY(OldHeader.AllocType != FromMalloc)) {
+ dieWithMessage("ERROR: allocation type mismatch when reallocating "
+ "address %p\n", OldPtr);
+ }
}
- UnpackedHeader NewHeader = OldHeader;
- // The new size still fits in the current chunk.
- if (NewSize <= Size) {
- NewHeader.UnusedBytes = Size - NewSize;
+ uptr UsableSize = Chunk->getUsableSize(&OldHeader);
+ // The new size still fits in the current chunk, and the size difference
+ // is reasonable.
+ if (NewSize <= UsableSize &&
+ (UsableSize - NewSize) < (SizeClassMap::kMaxSize / 2)) {
+ UnpackedHeader NewHeader = OldHeader;
+ NewHeader.SizeOrUnusedBytes =
+ OldHeader.FromPrimary ? NewSize : UsableSize - NewSize;
Chunk->compareExchangeHeader(&NewHeader, &OldHeader);
return OldPtr;
}
@@ -529,36 +534,25 @@ struct Allocator {
// old one.
void *NewPtr = allocate(NewSize, MinAlignment, FromMalloc);
if (NewPtr) {
- uptr OldSize = Size - OldHeader.UnusedBytes;
- memcpy(NewPtr, OldPtr, Min(NewSize, OldSize));
- NewHeader.State = ChunkQuarantine;
- Chunk->compareExchangeHeader(&NewHeader, &OldHeader);
- if (LIKELY(!ThreadTornDown)) {
- AllocatorQuarantine.Put(&ThreadQuarantineCache,
- QuarantineCallback(&Cache), Chunk, Size);
- } else {
- SpinMutexLock l(&FallbackMutex);
- AllocatorQuarantine.Put(&FallbackQuarantineCache,
- QuarantineCallback(&FallbackAllocatorCache),
- Chunk, Size);
- }
+ uptr OldSize = OldHeader.FromPrimary ? OldHeader.SizeOrUnusedBytes :
+ UsableSize - OldHeader.SizeOrUnusedBytes;
+ memcpy(NewPtr, OldPtr, Min(NewSize, UsableSize));
+ quarantineOrDeallocateChunk(Chunk, &OldHeader, OldSize);
}
return NewPtr;
}
// Helper function that returns the actual usable size of a chunk.
uptr getUsableSize(const void *Ptr) {
- if (UNLIKELY(!ThreadInited))
- initThread();
- if (!Ptr)
+ initThreadMaybe();
+ if (UNLIKELY(!Ptr))
return 0;
- uptr ChunkBeg = reinterpret_cast<uptr>(Ptr);
- ScudoChunk *Chunk =
- reinterpret_cast<ScudoChunk *>(ChunkBeg - AlignedChunkHeaderSize);
+ uptr UserBeg = reinterpret_cast<uptr>(Ptr);
+ ScudoChunk *Chunk = getScudoChunk(UserBeg);
UnpackedHeader Header;
Chunk->loadHeader(&Header);
// Getting the usable size of a chunk only makes sense if it's allocated.
- if (Header.State != ChunkAllocated) {
+ if (UNLIKELY(Header.State != ChunkAllocated)) {
dieWithMessage("ERROR: invalid chunk state when sizing address %p\n",
Ptr);
}
@@ -566,48 +560,54 @@ struct Allocator {
}
void *calloc(uptr NMemB, uptr Size) {
- if (UNLIKELY(!ThreadInited))
- initThread();
- uptr Total = NMemB * Size;
- if (Size != 0 && Total / Size != NMemB) // Overflow check
- return BackendAllocator.ReturnNullOrDieOnBadRequest();
- void *Ptr = allocate(Total, MinAlignment, FromMalloc);
- // If ZeroContents, the content of the chunk has already been zero'd out.
- if (!ZeroContents && Ptr && BackendAllocator.FromPrimary(Ptr))
- memset(Ptr, 0, getUsableSize(Ptr));
- return Ptr;
+ initThreadMaybe();
+ if (UNLIKELY(CheckForCallocOverflow(NMemB, Size)))
+ return FailureHandler::OnBadRequest();
+ return allocate(NMemB * Size, MinAlignment, FromMalloc, true);
}
- void drainQuarantine() {
- AllocatorQuarantine.Drain(&ThreadQuarantineCache,
- QuarantineCallback(&Cache));
+ void commitBack(ScudoTSD *TSD) {
+ AllocatorQuarantine.Drain(getQuarantineCache(TSD),
+ QuarantineCallback(&TSD->Cache));
+ BackendAllocator.destroyCache(&TSD->Cache);
}
uptr getStats(AllocatorStat StatType) {
- if (UNLIKELY(!ThreadInited))
- initThread();
+ initThreadMaybe();
uptr stats[AllocatorStatCount];
- BackendAllocator.GetStats(stats);
+ BackendAllocator.getStats(stats);
return stats[StatType];
}
+
+ void *handleBadRequest() {
+ initThreadMaybe();
+ return FailureHandler::OnBadRequest();
+ }
};
-static Allocator Instance(LINKER_INITIALIZED);
+static ScudoAllocator Instance(LINKER_INITIALIZED);
-static ScudoAllocator &getAllocator() {
+static ScudoBackendAllocator &getBackendAllocator() {
return Instance.BackendAllocator;
}
-void initAllocator(const AllocatorOptions &Options) {
+static void initScudoInternal(const AllocatorOptions &Options) {
Instance.init(Options);
}
-void drainQuarantine() {
- Instance.drainQuarantine();
+void ScudoTSD::init(bool Shared) {
+ UnlockRequired = Shared;
+ getBackendAllocator().initCache(&Cache);
+ Prng.init();
+ memset(QuarantineCachePlaceHolder, 0, sizeof(QuarantineCachePlaceHolder));
+}
+
+void ScudoTSD::commitBack() {
+ Instance.commitBack(this);
}
void *scudoMalloc(uptr Size, AllocType Type) {
- return Instance.allocate(Size, MinAlignment, Type);
+ return SetErrnoOnNull(Instance.allocate(Size, MinAlignment, Type));
}
void scudoFree(void *Ptr, AllocType Type) {
@@ -620,47 +620,60 @@ void scudoSizedFree(void *Ptr, uptr Size, AllocType Type) {
void *scudoRealloc(void *Ptr, uptr Size) {
if (!Ptr)
- return Instance.allocate(Size, MinAlignment, FromMalloc);
+ return SetErrnoOnNull(Instance.allocate(Size, MinAlignment, FromMalloc));
if (Size == 0) {
Instance.deallocate(Ptr, 0, FromMalloc);
return nullptr;
}
- return Instance.reallocate(Ptr, Size);
+ return SetErrnoOnNull(Instance.reallocate(Ptr, Size));
}
void *scudoCalloc(uptr NMemB, uptr Size) {
- return Instance.calloc(NMemB, Size);
+ return SetErrnoOnNull(Instance.calloc(NMemB, Size));
}
void *scudoValloc(uptr Size) {
- return Instance.allocate(Size, GetPageSizeCached(), FromMemalign);
-}
-
-void *scudoMemalign(uptr Alignment, uptr Size) {
- return Instance.allocate(Size, Alignment, FromMemalign);
+ return SetErrnoOnNull(
+ Instance.allocate(Size, GetPageSizeCached(), FromMemalign));
}
void *scudoPvalloc(uptr Size) {
uptr PageSize = GetPageSizeCached();
- Size = RoundUpTo(Size, PageSize);
- if (Size == 0) {
- // pvalloc(0) should allocate one page.
- Size = PageSize;
+ if (UNLIKELY(CheckForPvallocOverflow(Size, PageSize))) {
+ errno = ENOMEM;
+ return Instance.handleBadRequest();
}
- return Instance.allocate(Size, PageSize, FromMemalign);
+ // pvalloc(0) should allocate one page.
+ Size = Size ? RoundUpTo(Size, PageSize) : PageSize;
+ return SetErrnoOnNull(Instance.allocate(Size, PageSize, FromMemalign));
+}
+
+void *scudoMemalign(uptr Alignment, uptr Size) {
+ if (UNLIKELY(!IsPowerOfTwo(Alignment))) {
+ errno = EINVAL;
+ return Instance.handleBadRequest();
+ }
+ return SetErrnoOnNull(Instance.allocate(Size, Alignment, FromMemalign));
}
int scudoPosixMemalign(void **MemPtr, uptr Alignment, uptr Size) {
- *MemPtr = Instance.allocate(Size, Alignment, FromMemalign);
+ if (UNLIKELY(!CheckPosixMemalignAlignment(Alignment))) {
+ Instance.handleBadRequest();
+ return EINVAL;
+ }
+ void *Ptr = Instance.allocate(Size, Alignment, FromMemalign);
+ if (UNLIKELY(!Ptr))
+ return ENOMEM;
+ *MemPtr = Ptr;
return 0;
}
void *scudoAlignedAlloc(uptr Alignment, uptr Size) {
- // size must be a multiple of the alignment. To avoid a division, we first
- // make sure that alignment is a power of 2.
- CHECK(IsPowerOfTwo(Alignment));
- CHECK_EQ((Size & (Alignment - 1)), 0);
- return Instance.allocate(Size, Alignment, FromMalloc);
+ if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(Alignment, Size))) {
+ errno = EINVAL;
+ return Instance.handleBadRequest();
+ }
+ return SetErrnoOnNull(Instance.allocate(Size, Alignment, FromMalloc));
}
uptr scudoMallocUsableSize(void *Ptr) {