summaryrefslogtreecommitdiff
path: root/lib/Sema/SemaType.cpp
blob: 92439ff0da634c50e756bf57034916a3a86b5391 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
//===--- SemaType.cpp - Semantic Analysis for Types -----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file implements type-related semantic analysis.
//
//===----------------------------------------------------------------------===//

#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/Template.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/TypeLocVisitor.h"
#include "clang/AST/Expr.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Sema/DeclSpec.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/ErrorHandling.h"
using namespace clang;

/// \brief Perform adjustment on the parameter type of a function.
///
/// This routine adjusts the given parameter type @p T to the actual
/// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
/// C++ [dcl.fct]p3). The adjusted parameter type is returned.
QualType Sema::adjustParameterType(QualType T) {
  // C99 6.7.5.3p7:
  //   A declaration of a parameter as "array of type" shall be
  //   adjusted to "qualified pointer to type", where the type
  //   qualifiers (if any) are those specified within the [ and ] of
  //   the array type derivation.
  if (T->isArrayType())
    return Context.getArrayDecayedType(T);
  
  // C99 6.7.5.3p8:
  //   A declaration of a parameter as "function returning type"
  //   shall be adjusted to "pointer to function returning type", as
  //   in 6.3.2.1.
  if (T->isFunctionType())
    return Context.getPointerType(T);

  return T;
}



/// isOmittedBlockReturnType - Return true if this declarator is missing a
/// return type because this is a omitted return type on a block literal. 
static bool isOmittedBlockReturnType(const Declarator &D) {
  if (D.getContext() != Declarator::BlockLiteralContext ||
      D.getDeclSpec().hasTypeSpecifier())
    return false;
  
  if (D.getNumTypeObjects() == 0)
    return true;   // ^{ ... }
  
  if (D.getNumTypeObjects() == 1 &&
      D.getTypeObject(0).Kind == DeclaratorChunk::Function)
    return true;   // ^(int X, float Y) { ... }
  
  return false;
}

typedef std::pair<const AttributeList*,QualType> DelayedAttribute;
typedef llvm::SmallVectorImpl<DelayedAttribute> DelayedAttributeSet;

static void ProcessTypeAttributeList(Sema &S, QualType &Type,
                                     bool IsDeclSpec,
                                     const AttributeList *Attrs,
                                     DelayedAttributeSet &DelayedFnAttrs);
static bool ProcessFnAttr(Sema &S, QualType &Type, const AttributeList &Attr);

static void ProcessDelayedFnAttrs(Sema &S, QualType &Type,
                                  DelayedAttributeSet &Attrs) {
  for (DelayedAttributeSet::iterator I = Attrs.begin(),
         E = Attrs.end(); I != E; ++I)
    if (ProcessFnAttr(S, Type, *I->first)) {
      S.Diag(I->first->getLoc(), diag::warn_function_attribute_wrong_type)
        << I->first->getName() << I->second;
      // Avoid any further processing of this attribute.
      I->first->setInvalid();
    }
  Attrs.clear();
}

static void DiagnoseDelayedFnAttrs(Sema &S, DelayedAttributeSet &Attrs) {
  for (DelayedAttributeSet::iterator I = Attrs.begin(),
         E = Attrs.end(); I != E; ++I) {
    S.Diag(I->first->getLoc(), diag::warn_function_attribute_wrong_type)
      << I->first->getName() << I->second;
    // Avoid any further processing of this attribute.
    I->first->setInvalid();
  }
  Attrs.clear();
}

/// \brief Convert the specified declspec to the appropriate type
/// object.
/// \param D  the declarator containing the declaration specifier.
/// \returns The type described by the declaration specifiers.  This function
/// never returns null.
static QualType ConvertDeclSpecToType(Sema &TheSema,
                                      Declarator &TheDeclarator,
                                      DelayedAttributeSet &Delayed) {
  // FIXME: Should move the logic from DeclSpec::Finish to here for validity
  // checking.
  const DeclSpec &DS = TheDeclarator.getDeclSpec();
  SourceLocation DeclLoc = TheDeclarator.getIdentifierLoc();
  if (DeclLoc.isInvalid())
    DeclLoc = DS.getSourceRange().getBegin();
  
  ASTContext &Context = TheSema.Context;

  QualType Result;
  switch (DS.getTypeSpecType()) {
  case DeclSpec::TST_void:
    Result = Context.VoidTy;
    break;
  case DeclSpec::TST_char:
    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
      Result = Context.CharTy;
    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed)
      Result = Context.SignedCharTy;
    else {
      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
             "Unknown TSS value");
      Result = Context.UnsignedCharTy;
    }
    break;
  case DeclSpec::TST_wchar:
    if (DS.getTypeSpecSign() == DeclSpec::TSS_unspecified)
      Result = Context.WCharTy;
    else if (DS.getTypeSpecSign() == DeclSpec::TSS_signed) {
      TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
        << DS.getSpecifierName(DS.getTypeSpecType());
      Result = Context.getSignedWCharType();
    } else {
      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unsigned &&
        "Unknown TSS value");
      TheSema.Diag(DS.getTypeSpecSignLoc(), diag::ext_invalid_sign_spec)
        << DS.getSpecifierName(DS.getTypeSpecType());
      Result = Context.getUnsignedWCharType();
    }
    break;
  case DeclSpec::TST_char16:
      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
        "Unknown TSS value");
      Result = Context.Char16Ty;
    break;
  case DeclSpec::TST_char32:
      assert(DS.getTypeSpecSign() == DeclSpec::TSS_unspecified &&
        "Unknown TSS value");
      Result = Context.Char32Ty;
    break;
  case DeclSpec::TST_unspecified:
    // "<proto1,proto2>" is an objc qualified ID with a missing id.
    if (DeclSpec::ProtocolQualifierListTy PQ = DS.getProtocolQualifiers()) {
      Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
                                         (ObjCProtocolDecl**)PQ,
                                         DS.getNumProtocolQualifiers());
      Result = Context.getObjCObjectPointerType(Result);
      break;
    }
    
    // If this is a missing declspec in a block literal return context, then it
    // is inferred from the return statements inside the block.
    if (isOmittedBlockReturnType(TheDeclarator)) {
      Result = Context.DependentTy;
      break;
    }

    // Unspecified typespec defaults to int in C90.  However, the C90 grammar
    // [C90 6.5] only allows a decl-spec if there was *some* type-specifier,
    // type-qualifier, or storage-class-specifier.  If not, emit an extwarn.
    // Note that the one exception to this is function definitions, which are
    // allowed to be completely missing a declspec.  This is handled in the
    // parser already though by it pretending to have seen an 'int' in this
    // case.
    if (TheSema.getLangOptions().ImplicitInt) {
      // In C89 mode, we only warn if there is a completely missing declspec
      // when one is not allowed.
      if (DS.isEmpty()) {
        TheSema.Diag(DeclLoc, diag::ext_missing_declspec)
          << DS.getSourceRange()
        << FixItHint::CreateInsertion(DS.getSourceRange().getBegin(), "int");
      }
    } else if (!DS.hasTypeSpecifier()) {
      // C99 and C++ require a type specifier.  For example, C99 6.7.2p2 says:
      // "At least one type specifier shall be given in the declaration
      // specifiers in each declaration, and in the specifier-qualifier list in
      // each struct declaration and type name."
      // FIXME: Does Microsoft really have the implicit int extension in C++?
      if (TheSema.getLangOptions().CPlusPlus &&
          !TheSema.getLangOptions().Microsoft) {
        TheSema.Diag(DeclLoc, diag::err_missing_type_specifier)
          << DS.getSourceRange();

        // When this occurs in C++ code, often something is very broken with the
        // value being declared, poison it as invalid so we don't get chains of
        // errors.
        TheDeclarator.setInvalidType(true);
      } else {
        TheSema.Diag(DeclLoc, diag::ext_missing_type_specifier)
          << DS.getSourceRange();
      }
    }

    // FALL THROUGH.
  case DeclSpec::TST_int: {
    if (DS.getTypeSpecSign() != DeclSpec::TSS_unsigned) {
      switch (DS.getTypeSpecWidth()) {
      case DeclSpec::TSW_unspecified: Result = Context.IntTy; break;
      case DeclSpec::TSW_short:       Result = Context.ShortTy; break;
      case DeclSpec::TSW_long:        Result = Context.LongTy; break;
      case DeclSpec::TSW_longlong:
        Result = Context.LongLongTy;
          
        // long long is a C99 feature.
        if (!TheSema.getLangOptions().C99 &&
            !TheSema.getLangOptions().CPlusPlus0x)
          TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
        break;
      }
    } else {
      switch (DS.getTypeSpecWidth()) {
      case DeclSpec::TSW_unspecified: Result = Context.UnsignedIntTy; break;
      case DeclSpec::TSW_short:       Result = Context.UnsignedShortTy; break;
      case DeclSpec::TSW_long:        Result = Context.UnsignedLongTy; break;
      case DeclSpec::TSW_longlong:
        Result = Context.UnsignedLongLongTy;
          
        // long long is a C99 feature.
        if (!TheSema.getLangOptions().C99 &&
            !TheSema.getLangOptions().CPlusPlus0x)
          TheSema.Diag(DS.getTypeSpecWidthLoc(), diag::ext_longlong);
        break;
      }
    }
    break;
  }
  case DeclSpec::TST_float: Result = Context.FloatTy; break;
  case DeclSpec::TST_double:
    if (DS.getTypeSpecWidth() == DeclSpec::TSW_long)
      Result = Context.LongDoubleTy;
    else
      Result = Context.DoubleTy;
    break;
  case DeclSpec::TST_bool: Result = Context.BoolTy; break; // _Bool or bool
  case DeclSpec::TST_decimal32:    // _Decimal32
  case DeclSpec::TST_decimal64:    // _Decimal64
  case DeclSpec::TST_decimal128:   // _Decimal128
    TheSema.Diag(DS.getTypeSpecTypeLoc(), diag::err_decimal_unsupported);
    Result = Context.IntTy;
    TheDeclarator.setInvalidType(true);
    break;
  case DeclSpec::TST_class:
  case DeclSpec::TST_enum:
  case DeclSpec::TST_union:
  case DeclSpec::TST_struct: {
    TypeDecl *D = dyn_cast_or_null<TypeDecl>(DS.getRepAsDecl());
    if (!D) {
      // This can happen in C++ with ambiguous lookups.
      Result = Context.IntTy;
      TheDeclarator.setInvalidType(true);
      break;
    }

    // If the type is deprecated or unavailable, diagnose it.
    TheSema.DiagnoseUseOfDecl(D, DS.getTypeSpecTypeLoc());
    
    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
           DS.getTypeSpecSign() == 0 && "No qualifiers on tag names!");
    
    // TypeQuals handled by caller.
    Result = Context.getTypeDeclType(D);

    // In C++, make an ElaboratedType.
    if (TheSema.getLangOptions().CPlusPlus) {
      ElaboratedTypeKeyword Keyword
        = ElaboratedType::getKeywordForTypeSpec(DS.getTypeSpecType());
      Result = TheSema.getElaboratedType(Keyword, DS.getTypeSpecScope(),
                                         Result);
    }
    if (D->isInvalidDecl())
      TheDeclarator.setInvalidType(true);
    break;
  }
  case DeclSpec::TST_typename: {
    assert(DS.getTypeSpecWidth() == 0 && DS.getTypeSpecComplex() == 0 &&
           DS.getTypeSpecSign() == 0 &&
           "Can't handle qualifiers on typedef names yet!");
    Result = TheSema.GetTypeFromParser(DS.getRepAsType());
    if (Result.isNull())
      TheDeclarator.setInvalidType(true);
    else if (DeclSpec::ProtocolQualifierListTy PQ
               = DS.getProtocolQualifiers()) {
      if (const ObjCObjectType *ObjT = Result->getAs<ObjCObjectType>()) {
        // Silently drop any existing protocol qualifiers.
        // TODO: determine whether that's the right thing to do.
        if (ObjT->getNumProtocols())
          Result = ObjT->getBaseType();

        if (DS.getNumProtocolQualifiers())
          Result = Context.getObjCObjectType(Result,
                                             (ObjCProtocolDecl**) PQ,
                                             DS.getNumProtocolQualifiers());
      } else if (Result->isObjCIdType()) {
        // id<protocol-list>
        Result = Context.getObjCObjectType(Context.ObjCBuiltinIdTy,
                                           (ObjCProtocolDecl**) PQ,
                                           DS.getNumProtocolQualifiers());
        Result = Context.getObjCObjectPointerType(Result);
      } else if (Result->isObjCClassType()) {
        // Class<protocol-list>
        Result = Context.getObjCObjectType(Context.ObjCBuiltinClassTy,
                                           (ObjCProtocolDecl**) PQ,
                                           DS.getNumProtocolQualifiers());
        Result = Context.getObjCObjectPointerType(Result);
      } else {
        TheSema.Diag(DeclLoc, diag::err_invalid_protocol_qualifiers)
          << DS.getSourceRange();
        TheDeclarator.setInvalidType(true);
      }
    }

    // TypeQuals handled by caller.
    break;
  }
  case DeclSpec::TST_typeofType:
    // FIXME: Preserve type source info.
    Result = TheSema.GetTypeFromParser(DS.getRepAsType());
    assert(!Result.isNull() && "Didn't get a type for typeof?");
    // TypeQuals handled by caller.
    Result = Context.getTypeOfType(Result);
    break;
  case DeclSpec::TST_typeofExpr: {
    Expr *E = DS.getRepAsExpr();
    assert(E && "Didn't get an expression for typeof?");
    // TypeQuals handled by caller.
    Result = TheSema.BuildTypeofExprType(E);
    if (Result.isNull()) {
      Result = Context.IntTy;
      TheDeclarator.setInvalidType(true);
    }
    break;
  }
  case DeclSpec::TST_decltype: {
    Expr *E = DS.getRepAsExpr();
    assert(E && "Didn't get an expression for decltype?");
    // TypeQuals handled by caller.
    Result = TheSema.BuildDecltypeType(E);
    if (Result.isNull()) {
      Result = Context.IntTy;
      TheDeclarator.setInvalidType(true);
    }
    break;
  }
  case DeclSpec::TST_auto: {
    // TypeQuals handled by caller.
    Result = Context.UndeducedAutoTy;
    break;
  }

  case DeclSpec::TST_error:
    Result = Context.IntTy;
    TheDeclarator.setInvalidType(true);
    break;
  }

  // Handle complex types.
  if (DS.getTypeSpecComplex() == DeclSpec::TSC_complex) {
    if (TheSema.getLangOptions().Freestanding)
      TheSema.Diag(DS.getTypeSpecComplexLoc(), diag::ext_freestanding_complex);
    Result = Context.getComplexType(Result);
  } else if (DS.isTypeAltiVecVector()) {
    unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(Result));
    assert(typeSize > 0 && "type size for vector must be greater than 0 bits");
    VectorType::AltiVecSpecific AltiVecSpec = VectorType::AltiVec;
    if (DS.isTypeAltiVecPixel())
      AltiVecSpec = VectorType::Pixel;
    else if (DS.isTypeAltiVecBool())
      AltiVecSpec = VectorType::Bool;
    Result = Context.getVectorType(Result, 128/typeSize, AltiVecSpec);
  }

  assert(DS.getTypeSpecComplex() != DeclSpec::TSC_imaginary &&
         "FIXME: imaginary types not supported yet!");

  // See if there are any attributes on the declspec that apply to the type (as
  // opposed to the decl).
  if (const AttributeList *AL = DS.getAttributes())
    ProcessTypeAttributeList(TheSema, Result, true, AL, Delayed);

  // Apply const/volatile/restrict qualifiers to T.
  if (unsigned TypeQuals = DS.getTypeQualifiers()) {

    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
    // or incomplete types shall not be restrict-qualified."  C++ also allows
    // restrict-qualified references.
    if (TypeQuals & DeclSpec::TQ_restrict) {
      if (Result->isAnyPointerType() || Result->isReferenceType()) {
        QualType EltTy;
        if (Result->isObjCObjectPointerType())
          EltTy = Result;
        else
          EltTy = Result->isPointerType() ?
                    Result->getAs<PointerType>()->getPointeeType() :
                    Result->getAs<ReferenceType>()->getPointeeType();

        // If we have a pointer or reference, the pointee must have an object
        // incomplete type.
        if (!EltTy->isIncompleteOrObjectType()) {
          TheSema.Diag(DS.getRestrictSpecLoc(),
               diag::err_typecheck_invalid_restrict_invalid_pointee)
            << EltTy << DS.getSourceRange();
          TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
        }
      } else {
        TheSema.Diag(DS.getRestrictSpecLoc(),
             diag::err_typecheck_invalid_restrict_not_pointer)
          << Result << DS.getSourceRange();
        TypeQuals &= ~DeclSpec::TQ_restrict; // Remove the restrict qualifier.
      }
    }

    // Warn about CV qualifiers on functions: C99 6.7.3p8: "If the specification
    // of a function type includes any type qualifiers, the behavior is
    // undefined."
    if (Result->isFunctionType() && TypeQuals) {
      // Get some location to point at, either the C or V location.
      SourceLocation Loc;
      if (TypeQuals & DeclSpec::TQ_const)
        Loc = DS.getConstSpecLoc();
      else if (TypeQuals & DeclSpec::TQ_volatile)
        Loc = DS.getVolatileSpecLoc();
      else {
        assert((TypeQuals & DeclSpec::TQ_restrict) &&
               "Has CVR quals but not C, V, or R?");
        Loc = DS.getRestrictSpecLoc();
      }
      TheSema.Diag(Loc, diag::warn_typecheck_function_qualifiers)
        << Result << DS.getSourceRange();
    }

    // C++ [dcl.ref]p1:
    //   Cv-qualified references are ill-formed except when the
    //   cv-qualifiers are introduced through the use of a typedef
    //   (7.1.3) or of a template type argument (14.3), in which
    //   case the cv-qualifiers are ignored.
    // FIXME: Shouldn't we be checking SCS_typedef here?
    if (DS.getTypeSpecType() == DeclSpec::TST_typename &&
        TypeQuals && Result->isReferenceType()) {
      TypeQuals &= ~DeclSpec::TQ_const;
      TypeQuals &= ~DeclSpec::TQ_volatile;
    }

    Qualifiers Quals = Qualifiers::fromCVRMask(TypeQuals);
    Result = Context.getQualifiedType(Result, Quals);
  }

  return Result;
}

static std::string getPrintableNameForEntity(DeclarationName Entity) {
  if (Entity)
    return Entity.getAsString();

  return "type name";
}

QualType Sema::BuildQualifiedType(QualType T, SourceLocation Loc,
                                  Qualifiers Qs) {
  // Enforce C99 6.7.3p2: "Types other than pointer types derived from
  // object or incomplete types shall not be restrict-qualified."
  if (Qs.hasRestrict()) {
    unsigned DiagID = 0;
    QualType ProblemTy;

    const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
    if (const ReferenceType *RTy = dyn_cast<ReferenceType>(Ty)) {
      if (!RTy->getPointeeType()->isIncompleteOrObjectType()) {
        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
        ProblemTy = T->getAs<ReferenceType>()->getPointeeType();
      }
    } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
        ProblemTy = T->getAs<PointerType>()->getPointeeType();
      }
    } else if (const MemberPointerType *PTy = dyn_cast<MemberPointerType>(Ty)) {
      if (!PTy->getPointeeType()->isIncompleteOrObjectType()) {
        DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
        ProblemTy = T->getAs<PointerType>()->getPointeeType();
      }      
    } else if (!Ty->isDependentType()) {
      // FIXME: this deserves a proper diagnostic
      DiagID = diag::err_typecheck_invalid_restrict_invalid_pointee;
      ProblemTy = T;
    }

    if (DiagID) {
      Diag(Loc, DiagID) << ProblemTy;
      Qs.removeRestrict();
    }
  }

  return Context.getQualifiedType(T, Qs);
}

/// \brief Build a pointer type.
///
/// \param T The type to which we'll be building a pointer.
///
/// \param Loc The location of the entity whose type involves this
/// pointer type or, if there is no such entity, the location of the
/// type that will have pointer type.
///
/// \param Entity The name of the entity that involves the pointer
/// type, if known.
///
/// \returns A suitable pointer type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType Sema::BuildPointerType(QualType T,
                                SourceLocation Loc, DeclarationName Entity) {
  if (T->isReferenceType()) {
    // C++ 8.3.2p4: There shall be no ... pointers to references ...
    Diag(Loc, diag::err_illegal_decl_pointer_to_reference)
      << getPrintableNameForEntity(Entity) << T;
    return QualType();
  }

  assert(!T->isObjCObjectType() && "Should build ObjCObjectPointerType");

  // Build the pointer type.
  return Context.getPointerType(T);
}

/// \brief Build a reference type.
///
/// \param T The type to which we'll be building a reference.
///
/// \param Loc The location of the entity whose type involves this
/// reference type or, if there is no such entity, the location of the
/// type that will have reference type.
///
/// \param Entity The name of the entity that involves the reference
/// type, if known.
///
/// \returns A suitable reference type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType Sema::BuildReferenceType(QualType T, bool SpelledAsLValue,
                                  SourceLocation Loc,
                                  DeclarationName Entity) {
  bool LValueRef = SpelledAsLValue || T->getAs<LValueReferenceType>();

  // C++0x [dcl.typedef]p9: If a typedef TD names a type that is a
  //   reference to a type T, and attempt to create the type "lvalue
  //   reference to cv TD" creates the type "lvalue reference to T".
  // We use the qualifiers (restrict or none) of the original reference,
  // not the new ones. This is consistent with GCC.

  // C++ [dcl.ref]p4: There shall be no references to references.
  //
  // According to C++ DR 106, references to references are only
  // diagnosed when they are written directly (e.g., "int & &"),
  // but not when they happen via a typedef:
  //
  //   typedef int& intref;
  //   typedef intref& intref2;
  //
  // Parser::ParseDeclaratorInternal diagnoses the case where
  // references are written directly; here, we handle the
  // collapsing of references-to-references as described in C++
  // DR 106 and amended by C++ DR 540.

  // C++ [dcl.ref]p1:
  //   A declarator that specifies the type "reference to cv void"
  //   is ill-formed.
  if (T->isVoidType()) {
    Diag(Loc, diag::err_reference_to_void);
    return QualType();
  }

  // Handle restrict on references.
  if (LValueRef)
    return Context.getLValueReferenceType(T, SpelledAsLValue);
  return Context.getRValueReferenceType(T);
}

/// \brief Build an array type.
///
/// \param T The type of each element in the array.
///
/// \param ASM C99 array size modifier (e.g., '*', 'static').
///
/// \param ArraySize Expression describing the size of the array.
///
/// \param Loc The location of the entity whose type involves this
/// array type or, if there is no such entity, the location of the
/// type that will have array type.
///
/// \param Entity The name of the entity that involves the array
/// type, if known.
///
/// \returns A suitable array type, if there are no errors. Otherwise,
/// returns a NULL type.
QualType Sema::BuildArrayType(QualType T, ArrayType::ArraySizeModifier ASM,
                              Expr *ArraySize, unsigned Quals,
                              SourceRange Brackets, DeclarationName Entity) {

  SourceLocation Loc = Brackets.getBegin();
  if (getLangOptions().CPlusPlus) {
    // C++ [dcl.array]p1:
    //   T is called the array element type; this type shall not be a reference
    //   type, the (possibly cv-qualified) type void, a function type or an 
    //   abstract class type.
    //
    // Note: function types are handled in the common path with C.
    if (T->isReferenceType()) {
      Diag(Loc, diag::err_illegal_decl_array_of_references)
      << getPrintableNameForEntity(Entity) << T;
      return QualType();
    }
    
    if (T->isVoidType()) {
      Diag(Loc, diag::err_illegal_decl_array_incomplete_type) << T;
      return QualType();
    }
    
    if (RequireNonAbstractType(Brackets.getBegin(), T, 
                               diag::err_array_of_abstract_type))
      return QualType();
    
  } else {
    // C99 6.7.5.2p1: If the element type is an incomplete or function type,
    // reject it (e.g. void ary[7], struct foo ary[7], void ary[7]())
    if (RequireCompleteType(Loc, T,
                            diag::err_illegal_decl_array_incomplete_type))
      return QualType();
  }

  if (T->isFunctionType()) {
    Diag(Loc, diag::err_illegal_decl_array_of_functions)
      << getPrintableNameForEntity(Entity) << T;
    return QualType();
  }

  if (Context.getCanonicalType(T) == Context.UndeducedAutoTy) {
    Diag(Loc,  diag::err_illegal_decl_array_of_auto)
      << getPrintableNameForEntity(Entity);
    return QualType();
  }

  if (const RecordType *EltTy = T->getAs<RecordType>()) {
    // If the element type is a struct or union that contains a variadic
    // array, accept it as a GNU extension: C99 6.7.2.1p2.
    if (EltTy->getDecl()->hasFlexibleArrayMember())
      Diag(Loc, diag::ext_flexible_array_in_array) << T;
  } else if (T->isObjCObjectType()) {
    Diag(Loc, diag::err_objc_array_of_interfaces) << T;
    return QualType();
  }

  // C99 6.7.5.2p1: The size expression shall have integer type.
  if (ArraySize && !ArraySize->isTypeDependent() &&
      !ArraySize->getType()->isIntegerType()) {
    Diag(ArraySize->getLocStart(), diag::err_array_size_non_int)
      << ArraySize->getType() << ArraySize->getSourceRange();
    return QualType();
  }
  llvm::APSInt ConstVal(Context.getTypeSize(Context.getSizeType()));
  if (!ArraySize) {
    if (ASM == ArrayType::Star)
      T = Context.getVariableArrayType(T, 0, ASM, Quals, Brackets);
    else
      T = Context.getIncompleteArrayType(T, ASM, Quals);
  } else if (ArraySize->isTypeDependent() || ArraySize->isValueDependent()) {
    T = Context.getDependentSizedArrayType(T, ArraySize, ASM, Quals, Brackets);
  } else if (!ArraySize->isIntegerConstantExpr(ConstVal, Context) ||
             (!T->isDependentType() && !T->isIncompleteType() &&
              !T->isConstantSizeType())) {
    // Per C99, a variable array is an array with either a non-constant
    // size or an element type that has a non-constant-size
    T = Context.getVariableArrayType(T, ArraySize, ASM, Quals, Brackets);
  } else {
    // C99 6.7.5.2p1: If the expression is a constant expression, it shall
    // have a value greater than zero.
    if (ConstVal.isSigned() && ConstVal.isNegative()) {
      Diag(ArraySize->getLocStart(),
           diag::err_typecheck_negative_array_size)
        << ArraySize->getSourceRange();
      return QualType();
    }
    if (ConstVal == 0) {
      // GCC accepts zero sized static arrays. We allow them when
      // we're not in a SFINAE context.
      Diag(ArraySize->getLocStart(), 
           isSFINAEContext()? diag::err_typecheck_zero_array_size
                            : diag::ext_typecheck_zero_array_size)
        << ArraySize->getSourceRange();
    } else if (!T->isDependentType() && !T->isVariablyModifiedType() && 
               !T->isIncompleteType()) {
      // Is the array too large?      
      unsigned ActiveSizeBits
        = ConstantArrayType::getNumAddressingBits(Context, T, ConstVal);
      if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
        Diag(ArraySize->getLocStart(), diag::err_array_too_large)
          << ConstVal.toString(10)
          << ArraySize->getSourceRange();
    }
    
    T = Context.getConstantArrayType(T, ConstVal, ASM, Quals);
  }
  // If this is not C99, extwarn about VLA's and C99 array size modifiers.
  if (!getLangOptions().C99) {
    if (T->isVariableArrayType()) {
      // Prohibit the use of non-POD types in VLAs.
      if (!T->isDependentType() && 
          !Context.getBaseElementType(T)->isPODType()) {
        Diag(Loc, diag::err_vla_non_pod)
          << Context.getBaseElementType(T);
        return QualType();
      } 
      // Prohibit the use of VLAs during template argument deduction.
      else if (isSFINAEContext()) {
        Diag(Loc, diag::err_vla_in_sfinae);
        return QualType();
      }
      // Just extwarn about VLAs.
      else
        Diag(Loc, diag::ext_vla);
    } else if (ASM != ArrayType::Normal || Quals != 0)
      Diag(Loc, 
           getLangOptions().CPlusPlus? diag::err_c99_array_usage_cxx
                                     : diag::ext_c99_array_usage);
  }

  return T;
}

/// \brief Build an ext-vector type.
///
/// Run the required checks for the extended vector type.
QualType Sema::BuildExtVectorType(QualType T, Expr *ArraySize,
                                  SourceLocation AttrLoc) {
  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
  // in conjunction with complex types (pointers, arrays, functions, etc.).
  if (!T->isDependentType() &&
      !T->isIntegerType() && !T->isRealFloatingType()) {
    Diag(AttrLoc, diag::err_attribute_invalid_vector_type) << T;
    return QualType();
  }

  if (!ArraySize->isTypeDependent() && !ArraySize->isValueDependent()) {
    llvm::APSInt vecSize(32);
    if (!ArraySize->isIntegerConstantExpr(vecSize, Context)) {
      Diag(AttrLoc, diag::err_attribute_argument_not_int)
        << "ext_vector_type" << ArraySize->getSourceRange();
      return QualType();
    }

    // unlike gcc's vector_size attribute, the size is specified as the
    // number of elements, not the number of bytes.
    unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());

    if (vectorSize == 0) {
      Diag(AttrLoc, diag::err_attribute_zero_size)
      << ArraySize->getSourceRange();
      return QualType();
    }

    if (!T->isDependentType())
      return Context.getExtVectorType(T, vectorSize);
  }

  return Context.getDependentSizedExtVectorType(T, ArraySize, AttrLoc);
}

/// \brief Build a function type.
///
/// This routine checks the function type according to C++ rules and
/// under the assumption that the result type and parameter types have
/// just been instantiated from a template. It therefore duplicates
/// some of the behavior of GetTypeForDeclarator, but in a much
/// simpler form that is only suitable for this narrow use case.
///
/// \param T The return type of the function.
///
/// \param ParamTypes The parameter types of the function. This array
/// will be modified to account for adjustments to the types of the
/// function parameters.
///
/// \param NumParamTypes The number of parameter types in ParamTypes.
///
/// \param Variadic Whether this is a variadic function type.
///
/// \param Quals The cvr-qualifiers to be applied to the function type.
///
/// \param Loc The location of the entity whose type involves this
/// function type or, if there is no such entity, the location of the
/// type that will have function type.
///
/// \param Entity The name of the entity that involves the function
/// type, if known.
///
/// \returns A suitable function type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType Sema::BuildFunctionType(QualType T,
                                 QualType *ParamTypes,
                                 unsigned NumParamTypes,
                                 bool Variadic, unsigned Quals,
                                 SourceLocation Loc, DeclarationName Entity,
                                 const FunctionType::ExtInfo &Info) {
  if (T->isArrayType() || T->isFunctionType()) {
    Diag(Loc, diag::err_func_returning_array_function) 
      << T->isFunctionType() << T;
    return QualType();
  }
       
  bool Invalid = false;
  for (unsigned Idx = 0; Idx < NumParamTypes; ++Idx) {
    QualType ParamType = adjustParameterType(ParamTypes[Idx]);
    if (ParamType->isVoidType()) {
      Diag(Loc, diag::err_param_with_void_type);
      Invalid = true;
    }

    ParamTypes[Idx] = ParamType;
  }

  if (Invalid)
    return QualType();

  return Context.getFunctionType(T, ParamTypes, NumParamTypes, Variadic,
                                 Quals, false, false, 0, 0, Info);
}

/// \brief Build a member pointer type \c T Class::*.
///
/// \param T the type to which the member pointer refers.
/// \param Class the class type into which the member pointer points.
/// \param CVR Qualifiers applied to the member pointer type
/// \param Loc the location where this type begins
/// \param Entity the name of the entity that will have this member pointer type
///
/// \returns a member pointer type, if successful, or a NULL type if there was
/// an error.
QualType Sema::BuildMemberPointerType(QualType T, QualType Class,
                                      SourceLocation Loc,
                                      DeclarationName Entity) {
  // Verify that we're not building a pointer to pointer to function with
  // exception specification.
  if (CheckDistantExceptionSpec(T)) {
    Diag(Loc, diag::err_distant_exception_spec);

    // FIXME: If we're doing this as part of template instantiation,
    // we should return immediately.

    // Build the type anyway, but use the canonical type so that the
    // exception specifiers are stripped off.
    T = Context.getCanonicalType(T);
  }

  // C++ 8.3.3p3: A pointer to member shall not point to ... a member
  //   with reference type, or "cv void."
  if (T->isReferenceType()) {
    Diag(Loc, diag::err_illegal_decl_mempointer_to_reference)
      << (Entity? Entity.getAsString() : "type name") << T;
    return QualType();
  }

  if (T->isVoidType()) {
    Diag(Loc, diag::err_illegal_decl_mempointer_to_void)
      << (Entity? Entity.getAsString() : "type name");
    return QualType();
  }

  if (!Class->isDependentType() && !Class->isRecordType()) {
    Diag(Loc, diag::err_mempointer_in_nonclass_type) << Class;
    return QualType();
  }

  // In the Microsoft ABI, the class is allowed to be an incomplete
  // type. In such cases, the compiler makes a worst-case assumption.
  // We make no such assumption right now, so emit an error if the
  // class isn't a complete type.
  if (Context.Target.getCXXABI() == CXXABI_Microsoft &&
      RequireCompleteType(Loc, Class, diag::err_incomplete_type))
    return QualType();

  return Context.getMemberPointerType(T, Class.getTypePtr());
}

/// \brief Build a block pointer type.
///
/// \param T The type to which we'll be building a block pointer.
///
/// \param CVR The cvr-qualifiers to be applied to the block pointer type.
///
/// \param Loc The location of the entity whose type involves this
/// block pointer type or, if there is no such entity, the location of the
/// type that will have block pointer type.
///
/// \param Entity The name of the entity that involves the block pointer
/// type, if known.
///
/// \returns A suitable block pointer type, if there are no
/// errors. Otherwise, returns a NULL type.
QualType Sema::BuildBlockPointerType(QualType T, 
                                     SourceLocation Loc,
                                     DeclarationName Entity) {
  if (!T->isFunctionType()) {
    Diag(Loc, diag::err_nonfunction_block_type);
    return QualType();
  }

  return Context.getBlockPointerType(T);
}

QualType Sema::GetTypeFromParser(ParsedType Ty, TypeSourceInfo **TInfo) {
  QualType QT = Ty.get();
  if (QT.isNull()) {
    if (TInfo) *TInfo = 0;
    return QualType();
  }

  TypeSourceInfo *DI = 0;
  if (LocInfoType *LIT = dyn_cast<LocInfoType>(QT)) {
    QT = LIT->getType();
    DI = LIT->getTypeSourceInfo();
  }

  if (TInfo) *TInfo = DI;
  return QT;
}

/// GetTypeForDeclarator - Convert the type for the specified
/// declarator to Type instances.
///
/// If OwnedDecl is non-NULL, and this declarator's decl-specifier-seq
/// owns the declaration of a type (e.g., the definition of a struct
/// type), then *OwnedDecl will receive the owned declaration.
///
/// The result of this call will never be null, but the associated
/// type may be a null type if there's an unrecoverable error.
TypeSourceInfo *Sema::GetTypeForDeclarator(Declarator &D, Scope *S,
                                           TagDecl **OwnedDecl) {
  // Determine the type of the declarator. Not all forms of declarator
  // have a type.
  QualType T;
  TypeSourceInfo *ReturnTypeInfo = 0;
  
  llvm::SmallVector<DelayedAttribute,4> FnAttrsFromDeclSpec;

  switch (D.getName().getKind()) {
  case UnqualifiedId::IK_Identifier:
  case UnqualifiedId::IK_OperatorFunctionId:
  case UnqualifiedId::IK_LiteralOperatorId:
  case UnqualifiedId::IK_TemplateId:
    T = ConvertDeclSpecToType(*this, D, FnAttrsFromDeclSpec);
    
    if (!D.isInvalidType() && D.getDeclSpec().isTypeSpecOwned()) {
      TagDecl* Owned = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
      // Owned is embedded if it was defined here, or if it is the
      // very first (i.e., canonical) declaration of this tag type.
      Owned->setEmbeddedInDeclarator(Owned->isDefinition() ||
                                     Owned->isCanonicalDecl());
      if (OwnedDecl) *OwnedDecl = Owned;
    }
    break;

  case UnqualifiedId::IK_ConstructorName:
  case UnqualifiedId::IK_ConstructorTemplateId:
  case UnqualifiedId::IK_DestructorName:
    // Constructors and destructors don't have return types. Use
    // "void" instead. 
    T = Context.VoidTy;
    break;

  case UnqualifiedId::IK_ConversionFunctionId:
    // The result type of a conversion function is the type that it
    // converts to.
    T = GetTypeFromParser(D.getName().ConversionFunctionId, 
                          &ReturnTypeInfo);
    break;
  }
  
  if (T.isNull())
    return Context.getNullTypeSourceInfo();

  if (T == Context.UndeducedAutoTy) {
    int Error = -1;

    switch (D.getContext()) {
    case Declarator::KNRTypeListContext:
      assert(0 && "K&R type lists aren't allowed in C++");
      break;
    case Declarator::PrototypeContext:
      Error = 0; // Function prototype
      break;
    case Declarator::MemberContext:
      switch (cast<TagDecl>(CurContext)->getTagKind()) {
      case TTK_Enum: assert(0 && "unhandled tag kind"); break;
      case TTK_Struct: Error = 1; /* Struct member */ break;
      case TTK_Union:  Error = 2; /* Union member */ break;
      case TTK_Class:  Error = 3; /* Class member */ break;
      }
      break;
    case Declarator::CXXCatchContext:
      Error = 4; // Exception declaration
      break;
    case Declarator::TemplateParamContext:
      Error = 5; // Template parameter
      break;
    case Declarator::BlockLiteralContext:
      Error = 6;  // Block literal
      break;
    case Declarator::FileContext:
    case Declarator::BlockContext:
    case Declarator::ForContext:
    case Declarator::ConditionContext:
    case Declarator::TypeNameContext:
      break;
    }

    if (Error != -1) {
      Diag(D.getDeclSpec().getTypeSpecTypeLoc(), diag::err_auto_not_allowed)
        << Error;
      T = Context.IntTy;
      D.setInvalidType(true);
    }
  }

  // The name we're declaring, if any.
  DeclarationName Name;
  if (D.getIdentifier())
    Name = D.getIdentifier();

  llvm::SmallVector<DelayedAttribute,4> FnAttrsFromPreviousChunk;

  // Walk the DeclTypeInfo, building the recursive type as we go.
  // DeclTypeInfos are ordered from the identifier out, which is
  // opposite of what we want :).
  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
    DeclaratorChunk &DeclType = D.getTypeObject(e-i-1);
    switch (DeclType.Kind) {
    default: assert(0 && "Unknown decltype!");
    case DeclaratorChunk::BlockPointer:
      // If blocks are disabled, emit an error.
      if (!LangOpts.Blocks)
        Diag(DeclType.Loc, diag::err_blocks_disable);

      T = BuildBlockPointerType(T, D.getIdentifierLoc(), Name);
      if (DeclType.Cls.TypeQuals)
        T = BuildQualifiedType(T, DeclType.Loc, DeclType.Cls.TypeQuals);
      break;
    case DeclaratorChunk::Pointer:
      // Verify that we're not building a pointer to pointer to function with
      // exception specification.
      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
        D.setInvalidType(true);
        // Build the type anyway.
      }
      if (getLangOptions().ObjC1 && T->getAs<ObjCObjectType>()) {
        T = Context.getObjCObjectPointerType(T);
        if (DeclType.Ptr.TypeQuals)
          T = BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
        break;
      }
      T = BuildPointerType(T, DeclType.Loc, Name);
      if (DeclType.Ptr.TypeQuals)
        T = BuildQualifiedType(T, DeclType.Loc, DeclType.Ptr.TypeQuals);
      break;
    case DeclaratorChunk::Reference: {
      // Verify that we're not building a reference to pointer to function with
      // exception specification.
      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
        D.setInvalidType(true);
        // Build the type anyway.
      }
      T = BuildReferenceType(T, DeclType.Ref.LValueRef, DeclType.Loc, Name);

      Qualifiers Quals;
      if (DeclType.Ref.HasRestrict)
        T = BuildQualifiedType(T, DeclType.Loc, Qualifiers::Restrict);
      break;
    }
    case DeclaratorChunk::Array: {
      // Verify that we're not building an array of pointers to function with
      // exception specification.
      if (getLangOptions().CPlusPlus && CheckDistantExceptionSpec(T)) {
        Diag(D.getIdentifierLoc(), diag::err_distant_exception_spec);
        D.setInvalidType(true);
        // Build the type anyway.
      }
      DeclaratorChunk::ArrayTypeInfo &ATI = DeclType.Arr;
      Expr *ArraySize = static_cast<Expr*>(ATI.NumElts);
      ArrayType::ArraySizeModifier ASM;
      if (ATI.isStar)
        ASM = ArrayType::Star;
      else if (ATI.hasStatic)
        ASM = ArrayType::Static;
      else
        ASM = ArrayType::Normal;
      if (ASM == ArrayType::Star &&
          D.getContext() != Declarator::PrototypeContext) {
        // FIXME: This check isn't quite right: it allows star in prototypes
        // for function definitions, and disallows some edge cases detailed
        // in http://gcc.gnu.org/ml/gcc-patches/2009-02/msg00133.html
        Diag(DeclType.Loc, diag::err_array_star_outside_prototype);
        ASM = ArrayType::Normal;
        D.setInvalidType(true);
      }
      T = BuildArrayType(T, ASM, ArraySize,
                         Qualifiers::fromCVRMask(ATI.TypeQuals),
                         SourceRange(DeclType.Loc, DeclType.EndLoc), Name);
      break;
    }
    case DeclaratorChunk::Function: {
      // If the function declarator has a prototype (i.e. it is not () and
      // does not have a K&R-style identifier list), then the arguments are part
      // of the type, otherwise the argument list is ().
      const DeclaratorChunk::FunctionTypeInfo &FTI = DeclType.Fun;

      // C99 6.7.5.3p1: The return type may not be a function or array type.
      // For conversion functions, we'll diagnose this particular error later.
      if ((T->isArrayType() || T->isFunctionType()) &&
          (D.getName().getKind() != UnqualifiedId::IK_ConversionFunctionId)) {
        Diag(DeclType.Loc, diag::err_func_returning_array_function) 
          << T->isFunctionType() << T;
        T = Context.IntTy;
        D.setInvalidType(true);
      }

      // cv-qualifiers on return types are pointless except when the type is a
      // class type in C++.
      if (T.getCVRQualifiers() && D.getDeclSpec().getTypeQualifiers() &&
          (!getLangOptions().CPlusPlus ||
           (!T->isDependentType() && !T->isRecordType()))) {
        unsigned Quals = D.getDeclSpec().getTypeQualifiers();
        std::string QualStr;
        unsigned NumQuals = 0;
        SourceLocation Loc;
        if (Quals & Qualifiers::Const) {
          Loc = D.getDeclSpec().getConstSpecLoc();
          ++NumQuals;
          QualStr = "const";
        }
        if (Quals & Qualifiers::Volatile) {
          if (NumQuals == 0) {
            Loc = D.getDeclSpec().getVolatileSpecLoc();
            QualStr = "volatile";
          } else
            QualStr += " volatile";
          ++NumQuals;
        }
        if (Quals & Qualifiers::Restrict) {
          if (NumQuals == 0) {
            Loc = D.getDeclSpec().getRestrictSpecLoc();
            QualStr = "restrict";
          } else
            QualStr += " restrict";
          ++NumQuals;
        }
        assert(NumQuals > 0 && "No known qualifiers?");
            
        SemaDiagnosticBuilder DB = Diag(Loc, diag::warn_qual_return_type);
        DB << QualStr << NumQuals;
        if (Quals & Qualifiers::Const)
          DB << FixItHint::CreateRemoval(D.getDeclSpec().getConstSpecLoc());
        if (Quals & Qualifiers::Volatile)
          DB << FixItHint::CreateRemoval(D.getDeclSpec().getVolatileSpecLoc());
        if (Quals & Qualifiers::Restrict)
          DB << FixItHint::CreateRemoval(D.getDeclSpec().getRestrictSpecLoc());
      }
      
      if (getLangOptions().CPlusPlus && D.getDeclSpec().isTypeSpecOwned()) {
        // C++ [dcl.fct]p6:
        //   Types shall not be defined in return or parameter types.
        TagDecl *Tag = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
        if (Tag->isDefinition())
          Diag(Tag->getLocation(), diag::err_type_defined_in_result_type)
            << Context.getTypeDeclType(Tag);
      }

      // Exception specs are not allowed in typedefs. Complain, but add it
      // anyway.
      if (FTI.hasExceptionSpec &&
          D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
        Diag(FTI.getThrowLoc(), diag::err_exception_spec_in_typedef);

      if (!FTI.NumArgs && !FTI.isVariadic && !getLangOptions().CPlusPlus) {
        // Simple void foo(), where the incoming T is the result type.
        T = Context.getFunctionNoProtoType(T);
      } else {
        // We allow a zero-parameter variadic function in C if the
        // function is marked with the "overloadable" attribute. Scan
        // for this attribute now.
        if (!FTI.NumArgs && FTI.isVariadic && !getLangOptions().CPlusPlus) {
          bool Overloadable = false;
          for (const AttributeList *Attrs = D.getAttributes();
               Attrs; Attrs = Attrs->getNext()) {
            if (Attrs->getKind() == AttributeList::AT_overloadable) {
              Overloadable = true;
              break;
            }
          }

          if (!Overloadable)
            Diag(FTI.getEllipsisLoc(), diag::err_ellipsis_first_arg);
        }

        if (FTI.NumArgs && FTI.ArgInfo[0].Param == 0) {
          // C99 6.7.5.3p3: Reject int(x,y,z) when it's not a function
          // definition.
          Diag(FTI.ArgInfo[0].IdentLoc, diag::err_ident_list_in_fn_declaration);
          D.setInvalidType(true);
          break;
        }

        // Otherwise, we have a function with an argument list that is
        // potentially variadic.
        llvm::SmallVector<QualType, 16> ArgTys;
        ArgTys.reserve(FTI.NumArgs);

        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
          ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
          QualType ArgTy = Param->getType();
          assert(!ArgTy.isNull() && "Couldn't parse type?");

          // Adjust the parameter type.
          assert((ArgTy == adjustParameterType(ArgTy)) && "Unadjusted type?");

          // Look for 'void'.  void is allowed only as a single argument to a
          // function with no other parameters (C99 6.7.5.3p10).  We record
          // int(void) as a FunctionProtoType with an empty argument list.
          if (ArgTy->isVoidType()) {
            // If this is something like 'float(int, void)', reject it.  'void'
            // is an incomplete type (C99 6.2.5p19) and function decls cannot
            // have arguments of incomplete type.
            if (FTI.NumArgs != 1 || FTI.isVariadic) {
              Diag(DeclType.Loc, diag::err_void_only_param);
              ArgTy = Context.IntTy;
              Param->setType(ArgTy);
            } else if (FTI.ArgInfo[i].Ident) {
              // Reject, but continue to parse 'int(void abc)'.
              Diag(FTI.ArgInfo[i].IdentLoc,
                   diag::err_param_with_void_type);
              ArgTy = Context.IntTy;
              Param->setType(ArgTy);
            } else {
              // Reject, but continue to parse 'float(const void)'.
              if (ArgTy.hasQualifiers())
                Diag(DeclType.Loc, diag::err_void_param_qualified);

              // Do not add 'void' to the ArgTys list.
              break;
            }
          } else if (!FTI.hasPrototype) {
            if (ArgTy->isPromotableIntegerType()) {
              ArgTy = Context.getPromotedIntegerType(ArgTy);
            } else if (const BuiltinType* BTy = ArgTy->getAs<BuiltinType>()) {
              if (BTy->getKind() == BuiltinType::Float)
                ArgTy = Context.DoubleTy;
            }
          }

          ArgTys.push_back(ArgTy);
        }

        llvm::SmallVector<QualType, 4> Exceptions;
        Exceptions.reserve(FTI.NumExceptions);
        for (unsigned ei = 0, ee = FTI.NumExceptions; ei != ee; ++ei) {
          // FIXME: Preserve type source info.
          QualType ET = GetTypeFromParser(FTI.Exceptions[ei].Ty);
          // Check that the type is valid for an exception spec, and drop it if
          // not.
          if (!CheckSpecifiedExceptionType(ET, FTI.Exceptions[ei].Range))
            Exceptions.push_back(ET);
        }

        T = Context.getFunctionType(T, ArgTys.data(), ArgTys.size(),
                                    FTI.isVariadic, FTI.TypeQuals,
                                    FTI.hasExceptionSpec,
                                    FTI.hasAnyExceptionSpec,
                                    Exceptions.size(), Exceptions.data(),
                                    FunctionType::ExtInfo());
      }

      // For GCC compatibility, we allow attributes that apply only to
      // function types to be placed on a function's return type
      // instead (as long as that type doesn't happen to be function
      // or function-pointer itself).
      ProcessDelayedFnAttrs(*this, T, FnAttrsFromPreviousChunk);

      break;
    }
    case DeclaratorChunk::MemberPointer:
      // The scope spec must refer to a class, or be dependent.
      CXXScopeSpec &SS = DeclType.Mem.Scope();
      QualType ClsType;
      if (SS.isInvalid()) {
        // Avoid emitting extra errors if we already errored on the scope.
        D.setInvalidType(true);
      } else if (isDependentScopeSpecifier(SS) ||
                 dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS))) {
        NestedNameSpecifier *NNS
          = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
        NestedNameSpecifier *NNSPrefix = NNS->getPrefix();
        switch (NNS->getKind()) {
        case NestedNameSpecifier::Identifier:
          ClsType = Context.getDependentNameType(ETK_None, NNSPrefix,
                                                 NNS->getAsIdentifier());
          break;

        case NestedNameSpecifier::Namespace:
        case NestedNameSpecifier::Global:
          llvm_unreachable("Nested-name-specifier must name a type");
          break;

        case NestedNameSpecifier::TypeSpec:
        case NestedNameSpecifier::TypeSpecWithTemplate:
          ClsType = QualType(NNS->getAsType(), 0);
          // Note: if NNS is dependent, then its prefix (if any) is already
          // included in ClsType; this does not hold if the NNS is
          // nondependent: in this case (if there is indeed a prefix)
          // ClsType needs to be wrapped into an elaborated type.
          if (NNSPrefix && !NNS->isDependent())
            ClsType = Context.getElaboratedType(ETK_None, NNSPrefix, ClsType);
          break;
        }
      } else {
        Diag(DeclType.Mem.Scope().getBeginLoc(),
             diag::err_illegal_decl_mempointer_in_nonclass)
          << (D.getIdentifier() ? D.getIdentifier()->getName() : "type name")
          << DeclType.Mem.Scope().getRange();
        D.setInvalidType(true);
      }

      if (!ClsType.isNull())
        T = BuildMemberPointerType(T, ClsType, DeclType.Loc, D.getIdentifier());
      if (T.isNull()) {
        T = Context.IntTy;
        D.setInvalidType(true);
      } else if (DeclType.Mem.TypeQuals) {
        T = BuildQualifiedType(T, DeclType.Loc, DeclType.Mem.TypeQuals);
      }
      break;
    }

    if (T.isNull()) {
      D.setInvalidType(true);
      T = Context.IntTy;
    }

    DiagnoseDelayedFnAttrs(*this, FnAttrsFromPreviousChunk);

    // See if there are any attributes on this declarator chunk.
    if (const AttributeList *AL = DeclType.getAttrs())
      ProcessTypeAttributeList(*this, T, false, AL, FnAttrsFromPreviousChunk);
  }

  if (getLangOptions().CPlusPlus && T->isFunctionType()) {
    const FunctionProtoType *FnTy = T->getAs<FunctionProtoType>();
    assert(FnTy && "Why oh why is there not a FunctionProtoType here?");

    // C++ 8.3.5p4: A cv-qualifier-seq shall only be part of the function type
    // for a nonstatic member function, the function type to which a pointer
    // to member refers, or the top-level function type of a function typedef
    // declaration.
    bool FreeFunction = (D.getContext() != Declarator::MemberContext &&
        (!D.getCXXScopeSpec().isSet() ||
         !computeDeclContext(D.getCXXScopeSpec(), /*FIXME:*/true)->isRecord()));
    if (FnTy->getTypeQuals() != 0 &&
        D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
        (FreeFunction ||
         D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static)) {
      if (D.isFunctionDeclarator())
        Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_function_type);
      else
        Diag(D.getIdentifierLoc(),
             diag::err_invalid_qualified_typedef_function_type_use)
          << FreeFunction;

      // Strip the cv-quals from the type.
      T = Context.getFunctionType(FnTy->getResultType(), FnTy->arg_type_begin(),
                                  FnTy->getNumArgs(), FnTy->isVariadic(), 0, 
                                  false, false, 0, 0, FunctionType::ExtInfo());
    }
  }

  // If there's a constexpr specifier, treat it as a top-level const.
  if (D.getDeclSpec().isConstexprSpecified()) {
    T.addConst();
  }

  // Process any function attributes we might have delayed from the
  // declaration-specifiers.
  ProcessDelayedFnAttrs(*this, T, FnAttrsFromDeclSpec);

  // If there were any type attributes applied to the decl itself, not
  // the type, apply them to the result type.  But don't do this for
  // block-literal expressions, which are parsed wierdly.
  if (D.getContext() != Declarator::BlockLiteralContext)
    if (const AttributeList *Attrs = D.getAttributes())
      ProcessTypeAttributeList(*this, T, false, Attrs,
                               FnAttrsFromPreviousChunk);

  DiagnoseDelayedFnAttrs(*this, FnAttrsFromPreviousChunk);

  if (T.isNull())
    return Context.getNullTypeSourceInfo();
  else if (D.isInvalidType())
    return Context.getTrivialTypeSourceInfo(T);
  return GetTypeSourceInfoForDeclarator(D, T, ReturnTypeInfo);
}

namespace {
  class TypeSpecLocFiller : public TypeLocVisitor<TypeSpecLocFiller> {
    const DeclSpec &DS;

  public:
    TypeSpecLocFiller(const DeclSpec &DS) : DS(DS) {}

    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
      Visit(TL.getUnqualifiedLoc());
    }
    void VisitTypedefTypeLoc(TypedefTypeLoc TL) {
      TL.setNameLoc(DS.getTypeSpecTypeLoc());
    }
    void VisitObjCInterfaceTypeLoc(ObjCInterfaceTypeLoc TL) {
      TL.setNameLoc(DS.getTypeSpecTypeLoc());
    }
    void VisitObjCObjectTypeLoc(ObjCObjectTypeLoc TL) {
      // Handle the base type, which might not have been written explicitly.
      if (DS.getTypeSpecType() == DeclSpec::TST_unspecified) {
        TL.setHasBaseTypeAsWritten(false);
        TL.getBaseLoc().initialize(SourceLocation());
      } else {
        TL.setHasBaseTypeAsWritten(true);
        Visit(TL.getBaseLoc());
      }

      // Protocol qualifiers.
      if (DS.getProtocolQualifiers()) {
        assert(TL.getNumProtocols() > 0);
        assert(TL.getNumProtocols() == DS.getNumProtocolQualifiers());
        TL.setLAngleLoc(DS.getProtocolLAngleLoc());
        TL.setRAngleLoc(DS.getSourceRange().getEnd());
        for (unsigned i = 0, e = DS.getNumProtocolQualifiers(); i != e; ++i)
          TL.setProtocolLoc(i, DS.getProtocolLocs()[i]);
      } else {
        assert(TL.getNumProtocols() == 0);
        TL.setLAngleLoc(SourceLocation());
        TL.setRAngleLoc(SourceLocation());
      }
    }
    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
      TL.setStarLoc(SourceLocation());
      Visit(TL.getPointeeLoc());
    }
    void VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc TL) {
      TypeSourceInfo *TInfo = 0;
      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);

      // If we got no declarator info from previous Sema routines,
      // just fill with the typespec loc.
      if (!TInfo) {
        TL.initialize(DS.getTypeSpecTypeLoc());
        return;
      }

      TypeLoc OldTL = TInfo->getTypeLoc();
      if (TInfo->getType()->getAs<ElaboratedType>()) {
        ElaboratedTypeLoc ElabTL = cast<ElaboratedTypeLoc>(OldTL);
        TemplateSpecializationTypeLoc NamedTL =
          cast<TemplateSpecializationTypeLoc>(ElabTL.getNamedTypeLoc());
        TL.copy(NamedTL);
      }
      else
        TL.copy(cast<TemplateSpecializationTypeLoc>(OldTL));
    }
    void VisitTypeOfExprTypeLoc(TypeOfExprTypeLoc TL) {
      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofExpr);
      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
      TL.setParensRange(DS.getTypeofParensRange());
    }
    void VisitTypeOfTypeLoc(TypeOfTypeLoc TL) {
      assert(DS.getTypeSpecType() == DeclSpec::TST_typeofType);
      TL.setTypeofLoc(DS.getTypeSpecTypeLoc());
      TL.setParensRange(DS.getTypeofParensRange());
      assert(DS.getRepAsType());
      TypeSourceInfo *TInfo = 0;
      Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
      TL.setUnderlyingTInfo(TInfo);
    }
    void VisitBuiltinTypeLoc(BuiltinTypeLoc TL) {
      // By default, use the source location of the type specifier.
      TL.setBuiltinLoc(DS.getTypeSpecTypeLoc());
      if (TL.needsExtraLocalData()) {
        // Set info for the written builtin specifiers.
        TL.getWrittenBuiltinSpecs() = DS.getWrittenBuiltinSpecs();
        // Try to have a meaningful source location.
        if (TL.getWrittenSignSpec() != TSS_unspecified)
          // Sign spec loc overrides the others (e.g., 'unsigned long').
          TL.setBuiltinLoc(DS.getTypeSpecSignLoc());
        else if (TL.getWrittenWidthSpec() != TSW_unspecified)
          // Width spec loc overrides type spec loc (e.g., 'short int').
          TL.setBuiltinLoc(DS.getTypeSpecWidthLoc());
      }
    }
    void VisitElaboratedTypeLoc(ElaboratedTypeLoc TL) {
      ElaboratedTypeKeyword Keyword
        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
      if (Keyword == ETK_Typename) {
        TypeSourceInfo *TInfo = 0;
        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
        if (TInfo) {
          TL.copy(cast<ElaboratedTypeLoc>(TInfo->getTypeLoc()));
          return;
        }
      }
      TL.setKeywordLoc(Keyword != ETK_None
                       ? DS.getTypeSpecTypeLoc()
                       : SourceLocation());
      const CXXScopeSpec& SS = DS.getTypeSpecScope();
      TL.setQualifierRange(SS.isEmpty() ? SourceRange(): SS.getRange());
      Visit(TL.getNextTypeLoc().getUnqualifiedLoc());
    }
    void VisitDependentNameTypeLoc(DependentNameTypeLoc TL) {
      ElaboratedTypeKeyword Keyword
        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
      if (Keyword == ETK_Typename) {
        TypeSourceInfo *TInfo = 0;
        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
        if (TInfo) {
          TL.copy(cast<DependentNameTypeLoc>(TInfo->getTypeLoc()));
          return;
        }
      }
      TL.setKeywordLoc(Keyword != ETK_None
                       ? DS.getTypeSpecTypeLoc()
                       : SourceLocation());
      const CXXScopeSpec& SS = DS.getTypeSpecScope();
      TL.setQualifierRange(SS.isEmpty() ? SourceRange() : SS.getRange());
      // FIXME: load appropriate source location.
      TL.setNameLoc(DS.getTypeSpecTypeLoc());
    }
    void VisitDependentTemplateSpecializationTypeLoc(
                                 DependentTemplateSpecializationTypeLoc TL) {
      ElaboratedTypeKeyword Keyword
        = TypeWithKeyword::getKeywordForTypeSpec(DS.getTypeSpecType());
      if (Keyword == ETK_Typename) {
        TypeSourceInfo *TInfo = 0;
        Sema::GetTypeFromParser(DS.getRepAsType(), &TInfo);
        if (TInfo) {
          TL.copy(cast<DependentTemplateSpecializationTypeLoc>(
                    TInfo->getTypeLoc()));
          return;
        }
      }
      TL.initializeLocal(SourceLocation());
      TL.setKeywordLoc(Keyword != ETK_None
                       ? DS.getTypeSpecTypeLoc()
                       : SourceLocation());
      const CXXScopeSpec& SS = DS.getTypeSpecScope();
      TL.setQualifierRange(SS.isEmpty() ? SourceRange() : SS.getRange());
      // FIXME: load appropriate source location.
      TL.setNameLoc(DS.getTypeSpecTypeLoc());
    }

    void VisitTypeLoc(TypeLoc TL) {
      // FIXME: add other typespec types and change this to an assert.
      TL.initialize(DS.getTypeSpecTypeLoc());
    }
  };

  class DeclaratorLocFiller : public TypeLocVisitor<DeclaratorLocFiller> {
    const DeclaratorChunk &Chunk;

  public:
    DeclaratorLocFiller(const DeclaratorChunk &Chunk) : Chunk(Chunk) {}

    void VisitQualifiedTypeLoc(QualifiedTypeLoc TL) {
      llvm_unreachable("qualified type locs not expected here!");
    }

    void VisitBlockPointerTypeLoc(BlockPointerTypeLoc TL) {
      assert(Chunk.Kind == DeclaratorChunk::BlockPointer);
      TL.setCaretLoc(Chunk.Loc);
    }
    void VisitPointerTypeLoc(PointerTypeLoc TL) {
      assert(Chunk.Kind == DeclaratorChunk::Pointer);
      TL.setStarLoc(Chunk.Loc);
    }
    void VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc TL) {
      assert(Chunk.Kind == DeclaratorChunk::Pointer);
      TL.setStarLoc(Chunk.Loc);
    }
    void VisitMemberPointerTypeLoc(MemberPointerTypeLoc TL) {
      assert(Chunk.Kind == DeclaratorChunk::MemberPointer);
      TL.setStarLoc(Chunk.Loc);
      // FIXME: nested name specifier
    }
    void VisitLValueReferenceTypeLoc(LValueReferenceTypeLoc TL) {
      assert(Chunk.Kind == DeclaratorChunk::Reference);
      // 'Amp' is misleading: this might have been originally
      /// spelled with AmpAmp.
      TL.setAmpLoc(Chunk.Loc);
    }
    void VisitRValueReferenceTypeLoc(RValueReferenceTypeLoc TL) {
      assert(Chunk.Kind == DeclaratorChunk::Reference);
      assert(!Chunk.Ref.LValueRef);
      TL.setAmpAmpLoc(Chunk.Loc);
    }
    void VisitArrayTypeLoc(ArrayTypeLoc TL) {
      assert(Chunk.Kind == DeclaratorChunk::Array);
      TL.setLBracketLoc(Chunk.Loc);
      TL.setRBracketLoc(Chunk.EndLoc);
      TL.setSizeExpr(static_cast<Expr*>(Chunk.Arr.NumElts));
    }
    void VisitFunctionTypeLoc(FunctionTypeLoc TL) {
      assert(Chunk.Kind == DeclaratorChunk::Function);
      TL.setLParenLoc(Chunk.Loc);
      TL.setRParenLoc(Chunk.EndLoc);

      const DeclaratorChunk::FunctionTypeInfo &FTI = Chunk.Fun;
      for (unsigned i = 0, e = TL.getNumArgs(), tpi = 0; i != e; ++i) {
        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
        TL.setArg(tpi++, Param);
      }
      // FIXME: exception specs
    }

    void VisitTypeLoc(TypeLoc TL) {
      llvm_unreachable("unsupported TypeLoc kind in declarator!");
    }
  };
}

/// \brief Create and instantiate a TypeSourceInfo with type source information.
///
/// \param T QualType referring to the type as written in source code.
///
/// \param ReturnTypeInfo For declarators whose return type does not show
/// up in the normal place in the declaration specifiers (such as a C++
/// conversion function), this pointer will refer to a type source information
/// for that return type.
TypeSourceInfo *
Sema::GetTypeSourceInfoForDeclarator(Declarator &D, QualType T,
                                     TypeSourceInfo *ReturnTypeInfo) {
  TypeSourceInfo *TInfo = Context.CreateTypeSourceInfo(T);
  UnqualTypeLoc CurrTL = TInfo->getTypeLoc().getUnqualifiedLoc();

  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
    DeclaratorLocFiller(D.getTypeObject(i)).Visit(CurrTL);
    CurrTL = CurrTL.getNextTypeLoc().getUnqualifiedLoc();
  }
  
  // If we have different source information for the return type, use
  // that.  This really only applies to C++ conversion functions.
  if (ReturnTypeInfo) {
    TypeLoc TL = ReturnTypeInfo->getTypeLoc();
    assert(TL.getFullDataSize() == CurrTL.getFullDataSize());
    memcpy(CurrTL.getOpaqueData(), TL.getOpaqueData(), TL.getFullDataSize());
  } else {
    TypeSpecLocFiller(D.getDeclSpec()).Visit(CurrTL);
  }
      
  return TInfo;
}

/// \brief Create a LocInfoType to hold the given QualType and TypeSourceInfo.
ParsedType Sema::CreateParsedType(QualType T, TypeSourceInfo *TInfo) {
  // FIXME: LocInfoTypes are "transient", only needed for passing to/from Parser
  // and Sema during declaration parsing. Try deallocating/caching them when
  // it's appropriate, instead of allocating them and keeping them around.
  LocInfoType *LocT = (LocInfoType*)BumpAlloc.Allocate(sizeof(LocInfoType), 8);
  new (LocT) LocInfoType(T, TInfo);
  assert(LocT->getTypeClass() != T->getTypeClass() &&
         "LocInfoType's TypeClass conflicts with an existing Type class");
  return ParsedType::make(QualType(LocT, 0));
}

void LocInfoType::getAsStringInternal(std::string &Str,
                                      const PrintingPolicy &Policy) const {
  assert(false && "LocInfoType leaked into the type system; an opaque TypeTy*"
         " was used directly instead of getting the QualType through"
         " GetTypeFromParser");
}

TypeResult Sema::ActOnTypeName(Scope *S, Declarator &D) {
  // C99 6.7.6: Type names have no identifier.  This is already validated by
  // the parser.
  assert(D.getIdentifier() == 0 && "Type name should have no identifier!");

  TagDecl *OwnedTag = 0;
  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
  QualType T = TInfo->getType();
  if (D.isInvalidType())
    return true;

  if (getLangOptions().CPlusPlus) {
    // Check that there are no default arguments (C++ only).
    CheckExtraCXXDefaultArguments(D);

    // C++0x [dcl.type]p3:
    //   A type-specifier-seq shall not define a class or enumeration
    //   unless it appears in the type-id of an alias-declaration
    //   (7.1.3).
    if (OwnedTag && OwnedTag->isDefinition())
      Diag(OwnedTag->getLocation(), diag::err_type_defined_in_type_specifier)
        << Context.getTypeDeclType(OwnedTag);
  }

  return CreateParsedType(T, TInfo);
}



//===----------------------------------------------------------------------===//
// Type Attribute Processing
//===----------------------------------------------------------------------===//

/// HandleAddressSpaceTypeAttribute - Process an address_space attribute on the
/// specified type.  The attribute contains 1 argument, the id of the address
/// space for the type.
static void HandleAddressSpaceTypeAttribute(QualType &Type,
                                            const AttributeList &Attr, Sema &S){

  // If this type is already address space qualified, reject it.
  // Clause 6.7.3 - Type qualifiers: "No type shall be qualified by qualifiers
  // for two or more different address spaces."
  if (Type.getAddressSpace()) {
    S.Diag(Attr.getLoc(), diag::err_attribute_address_multiple_qualifiers);
    Attr.setInvalid();
    return;
  }

  // Check the attribute arguments.
  if (Attr.getNumArgs() != 1) {
    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
    Attr.setInvalid();
    return;
  }
  Expr *ASArgExpr = static_cast<Expr *>(Attr.getArg(0));
  llvm::APSInt addrSpace(32);
  if (ASArgExpr->isTypeDependent() || ASArgExpr->isValueDependent() ||
      !ASArgExpr->isIntegerConstantExpr(addrSpace, S.Context)) {
    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_not_int)
      << ASArgExpr->getSourceRange();
    Attr.setInvalid();
    return;
  }

  // Bounds checking.
  if (addrSpace.isSigned()) {
    if (addrSpace.isNegative()) {
      S.Diag(Attr.getLoc(), diag::err_attribute_address_space_negative)
        << ASArgExpr->getSourceRange();
      Attr.setInvalid();
      return;
    }
    addrSpace.setIsSigned(false);
  }
  llvm::APSInt max(addrSpace.getBitWidth());
  max = Qualifiers::MaxAddressSpace;
  if (addrSpace > max) {
    S.Diag(Attr.getLoc(), diag::err_attribute_address_space_too_high)
      << Qualifiers::MaxAddressSpace << ASArgExpr->getSourceRange();
    Attr.setInvalid();
    return;
  }

  unsigned ASIdx = static_cast<unsigned>(addrSpace.getZExtValue());
  Type = S.Context.getAddrSpaceQualType(Type, ASIdx);
}

/// HandleObjCGCTypeAttribute - Process an objc's gc attribute on the
/// specified type.  The attribute contains 1 argument, weak or strong.
static void HandleObjCGCTypeAttribute(QualType &Type,
                                      const AttributeList &Attr, Sema &S) {
  if (Type.getObjCGCAttr() != Qualifiers::GCNone) {
    S.Diag(Attr.getLoc(), diag::err_attribute_multiple_objc_gc);
    Attr.setInvalid();
    return;
  }

  // Check the attribute arguments.
  if (!Attr.getParameterName()) {
    S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_not_string)
      << "objc_gc" << 1;
    Attr.setInvalid();
    return;
  }
  Qualifiers::GC GCAttr;
  if (Attr.getNumArgs() != 0) {
    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
    Attr.setInvalid();
    return;
  }
  if (Attr.getParameterName()->isStr("weak"))
    GCAttr = Qualifiers::Weak;
  else if (Attr.getParameterName()->isStr("strong"))
    GCAttr = Qualifiers::Strong;
  else {
    S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
      << "objc_gc" << Attr.getParameterName();
    Attr.setInvalid();
    return;
  }

  Type = S.Context.getObjCGCQualType(Type, GCAttr);
}

/// Process an individual function attribute.  Returns true if the
/// attribute does not make sense to apply to this type.
bool ProcessFnAttr(Sema &S, QualType &Type, const AttributeList &Attr) {
  if (Attr.getKind() == AttributeList::AT_noreturn) {
    // Complain immediately if the arg count is wrong.
    if (Attr.getNumArgs() != 0) {
      S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
      Attr.setInvalid();
      return false;
    }

    // Delay if this is not a function or pointer to block.
    if (!Type->isFunctionPointerType()
        && !Type->isBlockPointerType()
        && !Type->isFunctionType()
        && !Type->isMemberFunctionPointerType())
      return true;
    
    // Otherwise we can process right away.
    Type = S.Context.getNoReturnType(Type);
    return false;
  }

  if (Attr.getKind() == AttributeList::AT_regparm) {
    // The warning is emitted elsewhere
    if (Attr.getNumArgs() != 1) {
      return false;
    }

    // Delay if this is not a function or pointer to block.
    if (!Type->isFunctionPointerType()
        && !Type->isBlockPointerType()
        && !Type->isFunctionType()
        && !Type->isMemberFunctionPointerType())
      return true;

    // Otherwise we can process right away.
    Expr *NumParamsExpr = static_cast<Expr *>(Attr.getArg(0));
    llvm::APSInt NumParams(32);

    // The warning is emitted elsewhere
    if (NumParamsExpr->isTypeDependent() || NumParamsExpr->isValueDependent() ||
        !NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context))
      return false;

    Type = S.Context.getRegParmType(Type, NumParams.getZExtValue());
    return false;
  }

  // Otherwise, a calling convention.
  if (Attr.getNumArgs() != 0) {
    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 0;
    Attr.setInvalid();
    return false;
  }

  QualType T = Type;
  if (const PointerType *PT = Type->getAs<PointerType>())
    T = PT->getPointeeType();
  else if (const BlockPointerType *BPT = Type->getAs<BlockPointerType>())
    T = BPT->getPointeeType();
  else if (const MemberPointerType *MPT = Type->getAs<MemberPointerType>())
    T = MPT->getPointeeType();
  else if (const ReferenceType *RT = Type->getAs<ReferenceType>())
    T = RT->getPointeeType();
  const FunctionType *Fn = T->getAs<FunctionType>();

  // Delay if the type didn't work out to a function.
  if (!Fn) return true;

  // TODO: diagnose uses of these conventions on the wrong target.
  CallingConv CC;
  switch (Attr.getKind()) {
  case AttributeList::AT_cdecl: CC = CC_C; break;
  case AttributeList::AT_fastcall: CC = CC_X86FastCall; break;
  case AttributeList::AT_stdcall: CC = CC_X86StdCall; break;
  case AttributeList::AT_thiscall: CC = CC_X86ThisCall; break;
  default: llvm_unreachable("unexpected attribute kind"); return false;
  }

  CallingConv CCOld = Fn->getCallConv();
  if (S.Context.getCanonicalCallConv(CC) ==
      S.Context.getCanonicalCallConv(CCOld)) {
    Attr.setInvalid();
    return false;
  }

  if (CCOld != CC_Default) {
    // Should we diagnose reapplications of the same convention?
    S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
      << FunctionType::getNameForCallConv(CC)
      << FunctionType::getNameForCallConv(CCOld);
    Attr.setInvalid();
    return false;
  }

  // Diagnose the use of X86 fastcall on varargs or unprototyped functions.
  if (CC == CC_X86FastCall) {
    if (isa<FunctionNoProtoType>(Fn)) {
      S.Diag(Attr.getLoc(), diag::err_cconv_knr)
        << FunctionType::getNameForCallConv(CC);
      Attr.setInvalid();
      return false;
    }

    const FunctionProtoType *FnP = cast<FunctionProtoType>(Fn);
    if (FnP->isVariadic()) {
      S.Diag(Attr.getLoc(), diag::err_cconv_varargs)
        << FunctionType::getNameForCallConv(CC);
      Attr.setInvalid();
      return false;
    }
  }

  Type = S.Context.getCallConvType(Type, CC);
  return false;
}

/// HandleVectorSizeAttribute - this attribute is only applicable to integral
/// and float scalars, although arrays, pointers, and function return values are
/// allowed in conjunction with this construct. Aggregates with this attribute
/// are invalid, even if they are of the same size as a corresponding scalar.
/// The raw attribute should contain precisely 1 argument, the vector size for
/// the variable, measured in bytes. If curType and rawAttr are well formed,
/// this routine will return a new vector type.
static void HandleVectorSizeAttr(QualType& CurType, const AttributeList &Attr,
                                 Sema &S) {
  // Check the attribute arugments.
  if (Attr.getNumArgs() != 1) {
    S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments) << 1;
    Attr.setInvalid();
    return;
  }
  Expr *sizeExpr = static_cast<Expr *>(Attr.getArg(0));
  llvm::APSInt vecSize(32);
  if (sizeExpr->isTypeDependent() || sizeExpr->isValueDependent() ||
      !sizeExpr->isIntegerConstantExpr(vecSize, S.Context)) {
    S.Diag(Attr.getLoc(), diag::err_attribute_argument_not_int)
      << "vector_size" << sizeExpr->getSourceRange();
    Attr.setInvalid();
    return;
  }
  // the base type must be integer or float, and can't already be a vector.
  if (!CurType->isIntegerType() && !CurType->isRealFloatingType()) {
    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_vector_type) << CurType;
    Attr.setInvalid();
    return;
  }
  unsigned typeSize = static_cast<unsigned>(S.Context.getTypeSize(CurType));
  // vecSize is specified in bytes - convert to bits.
  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);

  // the vector size needs to be an integral multiple of the type size.
  if (vectorSize % typeSize) {
    S.Diag(Attr.getLoc(), diag::err_attribute_invalid_size)
      << sizeExpr->getSourceRange();
    Attr.setInvalid();
    return;
  }
  if (vectorSize == 0) {
    S.Diag(Attr.getLoc(), diag::err_attribute_zero_size)
      << sizeExpr->getSourceRange();
    Attr.setInvalid();
    return;
  }

  // Success! Instantiate the vector type, the number of elements is > 0, and
  // not required to be a power of 2, unlike GCC.
  CurType = S.Context.getVectorType(CurType, vectorSize/typeSize,
                                    VectorType::NotAltiVec);
}

void ProcessTypeAttributeList(Sema &S, QualType &Result,
                              bool IsDeclSpec, const AttributeList *AL,
                              DelayedAttributeSet &FnAttrs) {
  // Scan through and apply attributes to this type where it makes sense.  Some
  // attributes (such as __address_space__, __vector_size__, etc) apply to the
  // type, but others can be present in the type specifiers even though they
  // apply to the decl.  Here we apply type attributes and ignore the rest.
  for (; AL; AL = AL->getNext()) {
    // Skip attributes that were marked to be invalid.
    if (AL->isInvalid())
      continue;

    // If this is an attribute we can handle, do so now,
    // otherwise, add it to the FnAttrs list for rechaining.
    switch (AL->getKind()) {
    default: break;

    case AttributeList::AT_address_space:
      HandleAddressSpaceTypeAttribute(Result, *AL, S);
      break;
    case AttributeList::AT_objc_gc:
      HandleObjCGCTypeAttribute(Result, *AL, S);
      break;
    case AttributeList::AT_vector_size:
      HandleVectorSizeAttr(Result, *AL, S);
      break;

    case AttributeList::AT_noreturn:
    case AttributeList::AT_cdecl:
    case AttributeList::AT_fastcall:
    case AttributeList::AT_stdcall:
    case AttributeList::AT_thiscall:
    case AttributeList::AT_regparm:
      // Don't process these on the DeclSpec.
      if (IsDeclSpec ||
          ProcessFnAttr(S, Result, *AL))
        FnAttrs.push_back(DelayedAttribute(AL, Result));
      break;
    }
  }
}

/// @brief Ensure that the type T is a complete type.
///
/// This routine checks whether the type @p T is complete in any
/// context where a complete type is required. If @p T is a complete
/// type, returns false. If @p T is a class template specialization,
/// this routine then attempts to perform class template
/// instantiation. If instantiation fails, or if @p T is incomplete
/// and cannot be completed, issues the diagnostic @p diag (giving it
/// the type @p T) and returns true.
///
/// @param Loc  The location in the source that the incomplete type
/// diagnostic should refer to.
///
/// @param T  The type that this routine is examining for completeness.
///
/// @param PD The partial diagnostic that will be printed out if T is not a
/// complete type.
///
/// @returns @c true if @p T is incomplete and a diagnostic was emitted,
/// @c false otherwise.
bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
                               const PartialDiagnostic &PD,
                               std::pair<SourceLocation, 
                                         PartialDiagnostic> Note) {
  unsigned diag = PD.getDiagID();

  // FIXME: Add this assertion to make sure we always get instantiation points.
  //  assert(!Loc.isInvalid() && "Invalid location in RequireCompleteType");
  // FIXME: Add this assertion to help us flush out problems with
  // checking for dependent types and type-dependent expressions.
  //
  //  assert(!T->isDependentType() &&
  //         "Can't ask whether a dependent type is complete");

  // If we have a complete type, we're done.
  if (!T->isIncompleteType())
    return false;

  // If we have a class template specialization or a class member of a
  // class template specialization, or an array with known size of such,
  // try to instantiate it.
  QualType MaybeTemplate = T;
  if (const ConstantArrayType *Array = Context.getAsConstantArrayType(T))
    MaybeTemplate = Array->getElementType();
  if (const RecordType *Record = MaybeTemplate->getAs<RecordType>()) {
    if (ClassTemplateSpecializationDecl *ClassTemplateSpec
          = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
      if (ClassTemplateSpec->getSpecializationKind() == TSK_Undeclared)
        return InstantiateClassTemplateSpecialization(Loc, ClassTemplateSpec,
                                                      TSK_ImplicitInstantiation,
                                                      /*Complain=*/diag != 0);
    } else if (CXXRecordDecl *Rec
                 = dyn_cast<CXXRecordDecl>(Record->getDecl())) {
      if (CXXRecordDecl *Pattern = Rec->getInstantiatedFromMemberClass()) {
        MemberSpecializationInfo *MSInfo = Rec->getMemberSpecializationInfo();
        assert(MSInfo && "Missing member specialization information?");
        // This record was instantiated from a class within a template.
        if (MSInfo->getTemplateSpecializationKind() 
                                               != TSK_ExplicitSpecialization)
          return InstantiateClass(Loc, Rec, Pattern,
                                  getTemplateInstantiationArgs(Rec),
                                  TSK_ImplicitInstantiation,
                                  /*Complain=*/diag != 0);
      }
    }
  }

  if (diag == 0)
    return true;

  const TagType *Tag = 0;
  if (const RecordType *Record = T->getAs<RecordType>())
    Tag = Record;
  else if (const EnumType *Enum = T->getAs<EnumType>())
    Tag = Enum;

  // Avoid diagnosing invalid decls as incomplete.
  if (Tag && Tag->getDecl()->isInvalidDecl())
    return true;

  // We have an incomplete type. Produce a diagnostic.
  Diag(Loc, PD) << T;

  // If we have a note, produce it.
  if (!Note.first.isInvalid())
    Diag(Note.first, Note.second);
    
  // If the type was a forward declaration of a class/struct/union
  // type, produce a note.
  if (Tag && !Tag->getDecl()->isInvalidDecl())
    Diag(Tag->getDecl()->getLocation(),
         Tag->isBeingDefined() ? diag::note_type_being_defined
                               : diag::note_forward_declaration)
        << QualType(Tag, 0);

  return true;
}

bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
                               const PartialDiagnostic &PD) {
  return RequireCompleteType(Loc, T, PD, 
                             std::make_pair(SourceLocation(), PDiag(0)));
}
  
bool Sema::RequireCompleteType(SourceLocation Loc, QualType T,
                               unsigned DiagID) {
  return RequireCompleteType(Loc, T, PDiag(DiagID),
                             std::make_pair(SourceLocation(), PDiag(0)));
}

/// \brief Retrieve a version of the type 'T' that is elaborated by Keyword
/// and qualified by the nested-name-specifier contained in SS.
QualType Sema::getElaboratedType(ElaboratedTypeKeyword Keyword,
                                 const CXXScopeSpec &SS, QualType T) {
  if (T.isNull())
    return T;
  NestedNameSpecifier *NNS;
  if (SS.isValid())
    NNS = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
  else {
    if (Keyword == ETK_None)
      return T;
    NNS = 0;
  }
  return Context.getElaboratedType(Keyword, NNS, T);
}

QualType Sema::BuildTypeofExprType(Expr *E) {
  if (E->getType() == Context.OverloadTy) {
    // C++ [temp.arg.explicit]p3 allows us to resolve a template-id to a 
    // function template specialization wherever deduction cannot occur.
    if (FunctionDecl *Specialization
        = ResolveSingleFunctionTemplateSpecialization(E)) {
      // The access doesn't really matter in this case.
      DeclAccessPair Found = DeclAccessPair::make(Specialization,
                                                  Specialization->getAccess());
      E = FixOverloadedFunctionReference(E, Found, Specialization);
      if (!E)
        return QualType();      
    } else {
      Diag(E->getLocStart(),
           diag::err_cannot_determine_declared_type_of_overloaded_function)
        << false << E->getSourceRange();
      return QualType();
    }
  }
  
  return Context.getTypeOfExprType(E);
}

QualType Sema::BuildDecltypeType(Expr *E) {
  if (E->getType() == Context.OverloadTy) {
    // C++ [temp.arg.explicit]p3 allows us to resolve a template-id to a 
    // function template specialization wherever deduction cannot occur.
    if (FunctionDecl *Specialization
          = ResolveSingleFunctionTemplateSpecialization(E)) {
      // The access doesn't really matter in this case.
      DeclAccessPair Found = DeclAccessPair::make(Specialization,
                                                  Specialization->getAccess());
      E = FixOverloadedFunctionReference(E, Found, Specialization);
      if (!E)
        return QualType();      
    } else {
      Diag(E->getLocStart(),
           diag::err_cannot_determine_declared_type_of_overloaded_function)
        << true << E->getSourceRange();
      return QualType();
    }
  }
  
  return Context.getDecltypeType(E);
}