summaryrefslogtreecommitdiff
path: root/src/LinearMath/btQuaternion.h
blob: 40d6e145c5fddf61e22ad93a442d75ba52c71a82 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
/*
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans  https://bulletphysics.org

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#ifndef BT_SIMD__QUATERNION_H_
#define BT_SIMD__QUATERNION_H_

#include "btVector3.h"
#include "btQuadWord.h"

#ifdef BT_USE_DOUBLE_PRECISION
#define btQuaternionData btQuaternionDoubleData
#define btQuaternionDataName "btQuaternionDoubleData"
#else
#define btQuaternionData btQuaternionFloatData
#define btQuaternionDataName "btQuaternionFloatData"
#endif  //BT_USE_DOUBLE_PRECISION

#ifdef BT_USE_SSE

//const __m128 ATTRIBUTE_ALIGNED16(vOnes) = {1.0f, 1.0f, 1.0f, 1.0f};
#define vOnes (_mm_set_ps(1.0f, 1.0f, 1.0f, 1.0f))

#endif

#if defined(BT_USE_SSE)

#define vQInv (_mm_set_ps(+0.0f, -0.0f, -0.0f, -0.0f))
#define vPPPM (_mm_set_ps(-0.0f, +0.0f, +0.0f, +0.0f))

#elif defined(BT_USE_NEON)

const btSimdFloat4 ATTRIBUTE_ALIGNED16(vQInv) = {-0.0f, -0.0f, -0.0f, +0.0f};
const btSimdFloat4 ATTRIBUTE_ALIGNED16(vPPPM) = {+0.0f, +0.0f, +0.0f, -0.0f};

#endif

/**@brief The btQuaternion implements quaternion to perform linear algebra rotations in combination with btMatrix3x3, btVector3 and btTransform. */
class btQuaternion : public btQuadWord
{
public:
	/**@brief No initialization constructor */
	btQuaternion() {}

#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
	// Set Vector
	SIMD_FORCE_INLINE btQuaternion(const btSimdFloat4 vec)
	{
		mVec128 = vec;
	}

	// Copy constructor
	SIMD_FORCE_INLINE btQuaternion(const btQuaternion& rhs)
	{
		mVec128 = rhs.mVec128;
	}

	// Assignment Operator
	SIMD_FORCE_INLINE btQuaternion&
	operator=(const btQuaternion& v)
	{
		mVec128 = v.mVec128;

		return *this;
	}

#endif

	//		template <typename btScalar>
	//		explicit Quaternion(const btScalar *v) : Tuple4<btScalar>(v) {}
	/**@brief Constructor from scalars */
	btQuaternion(const btScalar& _x, const btScalar& _y, const btScalar& _z, const btScalar& _w)
		: btQuadWord(_x, _y, _z, _w)
	{
	}
	/**@brief Axis angle Constructor
   * @param axis The axis which the rotation is around
   * @param angle The magnitude of the rotation around the angle (Radians) */
	btQuaternion(const btVector3& _axis, const btScalar& _angle)
	{
		setRotation(_axis, _angle);
	}
	/**@brief Constructor from Euler angles
   * @param yaw Angle around Y unless BT_EULER_DEFAULT_ZYX defined then Z
   * @param pitch Angle around X unless BT_EULER_DEFAULT_ZYX defined then Y
   * @param roll Angle around Z unless BT_EULER_DEFAULT_ZYX defined then X */
	btQuaternion(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
	{
#ifndef BT_EULER_DEFAULT_ZYX
		setEuler(yaw, pitch, roll);
#else
		setEulerZYX(yaw, pitch, roll);
#endif
	}
	/**@brief Set the rotation using axis angle notation 
   * @param axis The axis around which to rotate
   * @param angle The magnitude of the rotation in Radians */
	void setRotation(const btVector3& axis, const btScalar& _angle)
	{
		btScalar d = axis.length();
		btAssert(d != btScalar(0.0));
		btScalar s = btSin(_angle * btScalar(0.5)) / d;
		setValue(axis.x() * s, axis.y() * s, axis.z() * s,
				 btCos(_angle * btScalar(0.5)));
	}
	/**@brief Set the quaternion using Euler angles
   * @param yaw Angle around Y
   * @param pitch Angle around X
   * @param roll Angle around Z */
	void setEuler(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
	{
		btScalar halfYaw = btScalar(yaw) * btScalar(0.5);
		btScalar halfPitch = btScalar(pitch) * btScalar(0.5);
		btScalar halfRoll = btScalar(roll) * btScalar(0.5);
		btScalar cosYaw = btCos(halfYaw);
		btScalar sinYaw = btSin(halfYaw);
		btScalar cosPitch = btCos(halfPitch);
		btScalar sinPitch = btSin(halfPitch);
		btScalar cosRoll = btCos(halfRoll);
		btScalar sinRoll = btSin(halfRoll);
		setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw,
				 cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw,
				 sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw,
				 cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw);
	}
	/**@brief Set the quaternion using euler angles 
   * @param yaw Angle around Z
   * @param pitch Angle around Y
   * @param roll Angle around X */
	void setEulerZYX(const btScalar& yawZ, const btScalar& pitchY, const btScalar& rollX)
	{
		btScalar halfYaw = btScalar(yawZ) * btScalar(0.5);
		btScalar halfPitch = btScalar(pitchY) * btScalar(0.5);
		btScalar halfRoll = btScalar(rollX) * btScalar(0.5);
		btScalar cosYaw = btCos(halfYaw);
		btScalar sinYaw = btSin(halfYaw);
		btScalar cosPitch = btCos(halfPitch);
		btScalar sinPitch = btSin(halfPitch);
		btScalar cosRoll = btCos(halfRoll);
		btScalar sinRoll = btSin(halfRoll);
		setValue(sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw,   //x
				 cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw,   //y
				 cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw,   //z
				 cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw);  //formerly yzx
	}

	/**@brief Get the euler angles from this quaternion
	   * @param yaw Angle around Z
	   * @param pitch Angle around Y
	   * @param roll Angle around X */
	void getEulerZYX(btScalar& yawZ, btScalar& pitchY, btScalar& rollX) const
	{
		btScalar squ;
		btScalar sqx;
		btScalar sqy;
		btScalar sqz;
		btScalar sarg;
		sqx = m_floats[0] * m_floats[0];
		sqy = m_floats[1] * m_floats[1];
		sqz = m_floats[2] * m_floats[2];
		squ = m_floats[3] * m_floats[3];
		sarg = btScalar(-2.) * (m_floats[0] * m_floats[2] - m_floats[3] * m_floats[1]);

		// If the pitch angle is PI/2 or -PI/2, we can only compute
		// the sum roll + yaw.  However, any combination that gives
		// the right sum will produce the correct orientation, so we
		// set rollX = 0 and compute yawZ.
		if (sarg <= -btScalar(0.99999))
		{
			pitchY = btScalar(-0.5) * SIMD_PI;
			rollX = 0;
			yawZ = btScalar(2) * btAtan2(m_floats[0], -m_floats[1]);
		}
		else if (sarg >= btScalar(0.99999))
		{
			pitchY = btScalar(0.5) * SIMD_PI;
			rollX = 0;
			yawZ = btScalar(2) * btAtan2(-m_floats[0], m_floats[1]);
		}
		else
		{
			pitchY = btAsin(sarg);
			rollX = btAtan2(2 * (m_floats[1] * m_floats[2] + m_floats[3] * m_floats[0]), squ - sqx - sqy + sqz);
			yawZ = btAtan2(2 * (m_floats[0] * m_floats[1] + m_floats[3] * m_floats[2]), squ + sqx - sqy - sqz);
		}
	}

	/**@brief Add two quaternions
   * @param q The quaternion to add to this one */
	SIMD_FORCE_INLINE btQuaternion& operator+=(const btQuaternion& q)
	{
#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
		mVec128 = _mm_add_ps(mVec128, q.mVec128);
#elif defined(BT_USE_NEON)
		mVec128 = vaddq_f32(mVec128, q.mVec128);
#else
		m_floats[0] += q.x();
		m_floats[1] += q.y();
		m_floats[2] += q.z();
		m_floats[3] += q.m_floats[3];
#endif
		return *this;
	}

	/**@brief Subtract out a quaternion
   * @param q The quaternion to subtract from this one */
	btQuaternion& operator-=(const btQuaternion& q)
	{
#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
		mVec128 = _mm_sub_ps(mVec128, q.mVec128);
#elif defined(BT_USE_NEON)
		mVec128 = vsubq_f32(mVec128, q.mVec128);
#else
		m_floats[0] -= q.x();
		m_floats[1] -= q.y();
		m_floats[2] -= q.z();
		m_floats[3] -= q.m_floats[3];
#endif
		return *this;
	}

	/**@brief Scale this quaternion
   * @param s The scalar to scale by */
	btQuaternion& operator*=(const btScalar& s)
	{
#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
		__m128 vs = _mm_load_ss(&s);  //	(S 0 0 0)
		vs = bt_pshufd_ps(vs, 0);     //	(S S S S)
		mVec128 = _mm_mul_ps(mVec128, vs);
#elif defined(BT_USE_NEON)
		mVec128 = vmulq_n_f32(mVec128, s);
#else
		m_floats[0] *= s;
		m_floats[1] *= s;
		m_floats[2] *= s;
		m_floats[3] *= s;
#endif
		return *this;
	}

	/**@brief Multiply this quaternion by q on the right
   * @param q The other quaternion 
   * Equivilant to this = this * q */
	btQuaternion& operator*=(const btQuaternion& q)
	{
#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
		__m128 vQ2 = q.get128();

		__m128 A1 = bt_pshufd_ps(mVec128, BT_SHUFFLE(0, 1, 2, 0));
		__m128 B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3, 3, 3, 0));

		A1 = A1 * B1;

		__m128 A2 = bt_pshufd_ps(mVec128, BT_SHUFFLE(1, 2, 0, 1));
		__m128 B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2, 0, 1, 1));

		A2 = A2 * B2;

		B1 = bt_pshufd_ps(mVec128, BT_SHUFFLE(2, 0, 1, 2));
		B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1, 2, 0, 2));

		B1 = B1 * B2;  //	A3 *= B3

		mVec128 = bt_splat_ps(mVec128, 3);  //	A0
		mVec128 = mVec128 * vQ2;            //	A0 * B0

		A1 = A1 + A2;                //	AB12
		mVec128 = mVec128 - B1;      //	AB03 = AB0 - AB3
		A1 = _mm_xor_ps(A1, vPPPM);  //	change sign of the last element
		mVec128 = mVec128 + A1;      //	AB03 + AB12

#elif defined(BT_USE_NEON)

		float32x4_t vQ1 = mVec128;
		float32x4_t vQ2 = q.get128();
		float32x4_t A0, A1, B1, A2, B2, A3, B3;
		float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;

		{
			float32x2x2_t tmp;
			tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1));  // {z x}, {w y}
			vQ1zx = tmp.val[0];

			tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2));  // {z x}, {w y}
			vQ2zx = tmp.val[0];
		}
		vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);

		vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);

		vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
		vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);

		A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx);                     // X Y  z x
		B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx);  // W W  W X

		A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
		B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));

		A3 = vcombine_f32(vQ1zx, vQ1yz);  // Z X Y Z
		B3 = vcombine_f32(vQ2yz, vQ2xz);  // Y Z x z

		A1 = vmulq_f32(A1, B1);
		A2 = vmulq_f32(A2, B2);
		A3 = vmulq_f32(A3, B3);                           //	A3 *= B3
		A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1);  //	A0 * B0

		A1 = vaddq_f32(A1, A2);  //	AB12 = AB1 + AB2
		A0 = vsubq_f32(A0, A3);  //	AB03 = AB0 - AB3

		//	change the sign of the last element
		A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);
		A0 = vaddq_f32(A0, A1);  //	AB03 + AB12

		mVec128 = A0;
#else
		setValue(
			m_floats[3] * q.x() + m_floats[0] * q.m_floats[3] + m_floats[1] * q.z() - m_floats[2] * q.y(),
			m_floats[3] * q.y() + m_floats[1] * q.m_floats[3] + m_floats[2] * q.x() - m_floats[0] * q.z(),
			m_floats[3] * q.z() + m_floats[2] * q.m_floats[3] + m_floats[0] * q.y() - m_floats[1] * q.x(),
			m_floats[3] * q.m_floats[3] - m_floats[0] * q.x() - m_floats[1] * q.y() - m_floats[2] * q.z());
#endif
		return *this;
	}
	/**@brief Return the dot product between this quaternion and another
   * @param q The other quaternion */
	btScalar dot(const btQuaternion& q) const
	{
#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
		__m128 vd;

		vd = _mm_mul_ps(mVec128, q.mVec128);

		__m128 t = _mm_movehl_ps(vd, vd);
		vd = _mm_add_ps(vd, t);
		t = _mm_shuffle_ps(vd, vd, 0x55);
		vd = _mm_add_ss(vd, t);

		return _mm_cvtss_f32(vd);
#elif defined(BT_USE_NEON)
		float32x4_t vd = vmulq_f32(mVec128, q.mVec128);
		float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_high_f32(vd));
		x = vpadd_f32(x, x);
		return vget_lane_f32(x, 0);
#else
		return m_floats[0] * q.x() +
			   m_floats[1] * q.y() +
			   m_floats[2] * q.z() +
			   m_floats[3] * q.m_floats[3];
#endif
	}

	/**@brief Return the length squared of the quaternion */
	btScalar length2() const
	{
		return dot(*this);
	}

	/**@brief Return the length of the quaternion */
	btScalar length() const
	{
		return btSqrt(length2());
	}
	btQuaternion& safeNormalize()
	{
		btScalar l2 = length2();
		if (l2 > SIMD_EPSILON)
		{
			normalize();
		}
		return *this;
	}
	/**@brief Normalize the quaternion 
   * Such that x^2 + y^2 + z^2 +w^2 = 1 */
	btQuaternion& normalize()
	{
#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
		__m128 vd;

		vd = _mm_mul_ps(mVec128, mVec128);

		__m128 t = _mm_movehl_ps(vd, vd);
		vd = _mm_add_ps(vd, t);
		t = _mm_shuffle_ps(vd, vd, 0x55);
		vd = _mm_add_ss(vd, t);

		vd = _mm_sqrt_ss(vd);
		vd = _mm_div_ss(vOnes, vd);
		vd = bt_pshufd_ps(vd, 0);  // splat
		mVec128 = _mm_mul_ps(mVec128, vd);

		return *this;
#else
		return *this /= length();
#endif
	}

	/**@brief Return a scaled version of this quaternion
   * @param s The scale factor */
	SIMD_FORCE_INLINE btQuaternion
	operator*(const btScalar& s) const
	{
#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
		__m128 vs = _mm_load_ss(&s);  //	(S 0 0 0)
		vs = bt_pshufd_ps(vs, 0x00);  //	(S S S S)

		return btQuaternion(_mm_mul_ps(mVec128, vs));
#elif defined(BT_USE_NEON)
		return btQuaternion(vmulq_n_f32(mVec128, s));
#else
		return btQuaternion(x() * s, y() * s, z() * s, m_floats[3] * s);
#endif
	}

	/**@brief Return an inversely scaled versionof this quaternion
   * @param s The inverse scale factor */
	btQuaternion operator/(const btScalar& s) const
	{
		btAssert(s != btScalar(0.0));
		return *this * (btScalar(1.0) / s);
	}

	/**@brief Inversely scale this quaternion
   * @param s The scale factor */
	btQuaternion& operator/=(const btScalar& s)
	{
		btAssert(s != btScalar(0.0));
		return *this *= btScalar(1.0) / s;
	}

	/**@brief Return a normalized version of this quaternion */
	btQuaternion normalized() const
	{
		return *this / length();
	}
	/**@brief Return the ***half*** angle between this quaternion and the other
   * @param q The other quaternion */
	btScalar angle(const btQuaternion& q) const
	{
		btScalar s = btSqrt(length2() * q.length2());
		btAssert(s != btScalar(0.0));
		return btAcos(dot(q) / s);
	}

	/**@brief Return the angle between this quaternion and the other along the shortest path
	* @param q The other quaternion */
	btScalar angleShortestPath(const btQuaternion& q) const
	{
		btScalar s = btSqrt(length2() * q.length2());
		btAssert(s != btScalar(0.0));
		if (dot(q) < 0)  // Take care of long angle case see http://en.wikipedia.org/wiki/Slerp
			return btAcos(dot(-q) / s) * btScalar(2.0);
		else
			return btAcos(dot(q) / s) * btScalar(2.0);
	}

	/**@brief Return the angle [0, 2Pi] of rotation represented by this quaternion */
	btScalar getAngle() const
	{
		btScalar s = btScalar(2.) * btAcos(m_floats[3]);
		return s;
	}

	/**@brief Return the angle [0, Pi] of rotation represented by this quaternion along the shortest path */
	btScalar getAngleShortestPath() const
	{
		btScalar s;
		if (m_floats[3] >= 0)
			s = btScalar(2.) * btAcos(m_floats[3]);
		else
			s = btScalar(2.) * btAcos(-m_floats[3]);
		return s;
	}

	/**@brief Return the axis of the rotation represented by this quaternion */
	btVector3 getAxis() const
	{
		btScalar s_squared = 1.f - m_floats[3] * m_floats[3];

		if (s_squared < btScalar(10.) * SIMD_EPSILON)  //Check for divide by zero
			return btVector3(1.0, 0.0, 0.0);           // Arbitrary
		btScalar s = 1.f / btSqrt(s_squared);
		return btVector3(m_floats[0] * s, m_floats[1] * s, m_floats[2] * s);
	}

	/**@brief Return the inverse of this quaternion */
	btQuaternion inverse() const
	{
#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
		return btQuaternion(_mm_xor_ps(mVec128, vQInv));
#elif defined(BT_USE_NEON)
		return btQuaternion((btSimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)vQInv));
#else
		return btQuaternion(-m_floats[0], -m_floats[1], -m_floats[2], m_floats[3]);
#endif
	}

	/**@brief Return the sum of this quaternion and the other 
   * @param q2 The other quaternion */
	SIMD_FORCE_INLINE btQuaternion
	operator+(const btQuaternion& q2) const
	{
#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
		return btQuaternion(_mm_add_ps(mVec128, q2.mVec128));
#elif defined(BT_USE_NEON)
		return btQuaternion(vaddq_f32(mVec128, q2.mVec128));
#else
		const btQuaternion& q1 = *this;
		return btQuaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(), q1.m_floats[3] + q2.m_floats[3]);
#endif
	}

	/**@brief Return the difference between this quaternion and the other 
   * @param q2 The other quaternion */
	SIMD_FORCE_INLINE btQuaternion
	operator-(const btQuaternion& q2) const
	{
#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
		return btQuaternion(_mm_sub_ps(mVec128, q2.mVec128));
#elif defined(BT_USE_NEON)
		return btQuaternion(vsubq_f32(mVec128, q2.mVec128));
#else
		const btQuaternion& q1 = *this;
		return btQuaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(), q1.m_floats[3] - q2.m_floats[3]);
#endif
	}

	/**@brief Return the negative of this quaternion 
   * This simply negates each element */
	SIMD_FORCE_INLINE btQuaternion operator-() const
	{
#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
		return btQuaternion(_mm_xor_ps(mVec128, btvMzeroMask));
#elif defined(BT_USE_NEON)
		return btQuaternion((btSimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)btvMzeroMask));
#else
		const btQuaternion& q2 = *this;
		return btQuaternion(-q2.x(), -q2.y(), -q2.z(), -q2.m_floats[3]);
#endif
	}
	/**@todo document this and it's use */
	SIMD_FORCE_INLINE btQuaternion farthest(const btQuaternion& qd) const
	{
		btQuaternion diff, sum;
		diff = *this - qd;
		sum = *this + qd;
		if (diff.dot(diff) > sum.dot(sum))
			return qd;
		return (-qd);
	}

	/**@todo document this and it's use */
	SIMD_FORCE_INLINE btQuaternion nearest(const btQuaternion& qd) const
	{
		btQuaternion diff, sum;
		diff = *this - qd;
		sum = *this + qd;
		if (diff.dot(diff) < sum.dot(sum))
			return qd;
		return (-qd);
	}

	/**@brief Return the quaternion which is the result of Spherical Linear Interpolation between this and the other quaternion
   * @param q The other quaternion to interpolate with 
   * @param t The ratio between this and q to interpolate.  If t = 0 the result is this, if t=1 the result is q.
   * Slerp interpolates assuming constant velocity.  */
	btQuaternion slerp(const btQuaternion& q, const btScalar& t) const
	{
		const btScalar magnitude = btSqrt(length2() * q.length2());
		btAssert(magnitude > btScalar(0));

		const btScalar product = dot(q) / magnitude;
		const btScalar absproduct = btFabs(product);

		if (absproduct < btScalar(1.0 - SIMD_EPSILON))
		{
			// Take care of long angle case see http://en.wikipedia.org/wiki/Slerp
			const btScalar theta = btAcos(absproduct);
			const btScalar d = btSin(theta);
			btAssert(d > btScalar(0));

			const btScalar sign = (product < 0) ? btScalar(-1) : btScalar(1);
			const btScalar s0 = btSin((btScalar(1.0) - t) * theta) / d;
			const btScalar s1 = btSin(sign * t * theta) / d;

			return btQuaternion(
				(m_floats[0] * s0 + q.x() * s1),
				(m_floats[1] * s0 + q.y() * s1),
				(m_floats[2] * s0 + q.z() * s1),
				(m_floats[3] * s0 + q.w() * s1));
		}
		else
		{
			return *this;
		}
	}

	static const btQuaternion& getIdentity()
	{
		static const btQuaternion identityQuat(btScalar(0.), btScalar(0.), btScalar(0.), btScalar(1.));
		return identityQuat;
	}

	SIMD_FORCE_INLINE const btScalar& getW() const { return m_floats[3]; }

	SIMD_FORCE_INLINE void serialize(struct btQuaternionData& dataOut) const;

	SIMD_FORCE_INLINE void deSerialize(const struct btQuaternionFloatData& dataIn);

	SIMD_FORCE_INLINE void deSerialize(const struct btQuaternionDoubleData& dataIn);

	SIMD_FORCE_INLINE void serializeFloat(struct btQuaternionFloatData& dataOut) const;

	SIMD_FORCE_INLINE void deSerializeFloat(const struct btQuaternionFloatData& dataIn);

	SIMD_FORCE_INLINE void serializeDouble(struct btQuaternionDoubleData& dataOut) const;

	SIMD_FORCE_INLINE void deSerializeDouble(const struct btQuaternionDoubleData& dataIn);
};

/**@brief Return the product of two quaternions */
SIMD_FORCE_INLINE btQuaternion
operator*(const btQuaternion& q1, const btQuaternion& q2)
{
#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
	__m128 vQ1 = q1.get128();
	__m128 vQ2 = q2.get128();
	__m128 A0, A1, B1, A2, B2;

	A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(0, 1, 2, 0));  // X Y  z x     //      vtrn
	B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3, 3, 3, 0));  // W W  W X     // vdup vext

	A1 = A1 * B1;

	A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1, 2, 0, 1));  // Y Z  X Y     // vext
	B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2, 0, 1, 1));  // z x  Y Y     // vtrn vdup

	A2 = A2 * B2;

	B1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2, 0, 1, 2));  // z x Y Z      // vtrn vext
	B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1, 2, 0, 2));  // Y Z x z      // vext vtrn

	B1 = B1 * B2;  //	A3 *= B3

	A0 = bt_splat_ps(vQ1, 3);  //	A0
	A0 = A0 * vQ2;             //	A0 * B0

	A1 = A1 + A2;  //	AB12
	A0 = A0 - B1;  //	AB03 = AB0 - AB3

	A1 = _mm_xor_ps(A1, vPPPM);  //	change sign of the last element
	A0 = A0 + A1;                //	AB03 + AB12

	return btQuaternion(A0);

#elif defined(BT_USE_NEON)

	float32x4_t vQ1 = q1.get128();
	float32x4_t vQ2 = q2.get128();
	float32x4_t A0, A1, B1, A2, B2, A3, B3;
	float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;

	{
		float32x2x2_t tmp;
		tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1));  // {z x}, {w y}
		vQ1zx = tmp.val[0];

		tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2));  // {z x}, {w y}
		vQ2zx = tmp.val[0];
	}
	vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);

	vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);

	vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
	vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);

	A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx);                     // X Y  z x
	B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx);  // W W  W X

	A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
	B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));

	A3 = vcombine_f32(vQ1zx, vQ1yz);  // Z X Y Z
	B3 = vcombine_f32(vQ2yz, vQ2xz);  // Y Z x z

	A1 = vmulq_f32(A1, B1);
	A2 = vmulq_f32(A2, B2);
	A3 = vmulq_f32(A3, B3);                           //	A3 *= B3
	A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1);  //	A0 * B0

	A1 = vaddq_f32(A1, A2);  //	AB12 = AB1 + AB2
	A0 = vsubq_f32(A0, A3);  //	AB03 = AB0 - AB3

	//	change the sign of the last element
	A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);
	A0 = vaddq_f32(A0, A1);  //	AB03 + AB12

	return btQuaternion(A0);

#else
	return btQuaternion(
		q1.w() * q2.x() + q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y(),
		q1.w() * q2.y() + q1.y() * q2.w() + q1.z() * q2.x() - q1.x() * q2.z(),
		q1.w() * q2.z() + q1.z() * q2.w() + q1.x() * q2.y() - q1.y() * q2.x(),
		q1.w() * q2.w() - q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z());
#endif
}

SIMD_FORCE_INLINE btQuaternion
operator*(const btQuaternion& q, const btVector3& w)
{
#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
	__m128 vQ1 = q.get128();
	__m128 vQ2 = w.get128();
	__m128 A1, B1, A2, B2, A3, B3;

	A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(3, 3, 3, 0));
	B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(0, 1, 2, 0));

	A1 = A1 * B1;

	A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1, 2, 0, 1));
	B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2, 0, 1, 1));

	A2 = A2 * B2;

	A3 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2, 0, 1, 2));
	B3 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1, 2, 0, 2));

	A3 = A3 * B3;  //	A3 *= B3

	A1 = A1 + A2;                //	AB12
	A1 = _mm_xor_ps(A1, vPPPM);  //	change sign of the last element
	A1 = A1 - A3;                //	AB123 = AB12 - AB3

	return btQuaternion(A1);

#elif defined(BT_USE_NEON)

	float32x4_t vQ1 = q.get128();
	float32x4_t vQ2 = w.get128();
	float32x4_t A1, B1, A2, B2, A3, B3;
	float32x2_t vQ1wx, vQ2zx, vQ1yz, vQ2yz, vQ1zx, vQ2xz;

	vQ1wx = vext_f32(vget_high_f32(vQ1), vget_low_f32(vQ1), 1);
	{
		float32x2x2_t tmp;

		tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2));  // {z x}, {w y}
		vQ2zx = tmp.val[0];

		tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1));  // {z x}, {w y}
		vQ1zx = tmp.val[0];
	}

	vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);

	vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
	vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);

	A1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ1), 1), vQ1wx);  // W W  W X
	B1 = vcombine_f32(vget_low_f32(vQ2), vQ2zx);                     // X Y  z x

	A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
	B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));

	A3 = vcombine_f32(vQ1zx, vQ1yz);  // Z X Y Z
	B3 = vcombine_f32(vQ2yz, vQ2xz);  // Y Z x z

	A1 = vmulq_f32(A1, B1);
	A2 = vmulq_f32(A2, B2);
	A3 = vmulq_f32(A3, B3);  //	A3 *= B3

	A1 = vaddq_f32(A1, A2);  //	AB12 = AB1 + AB2

	//	change the sign of the last element
	A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);

	A1 = vsubq_f32(A1, A3);  //	AB123 = AB12 - AB3

	return btQuaternion(A1);

#else
	return btQuaternion(
		q.w() * w.x() + q.y() * w.z() - q.z() * w.y(),
		q.w() * w.y() + q.z() * w.x() - q.x() * w.z(),
		q.w() * w.z() + q.x() * w.y() - q.y() * w.x(),
		-q.x() * w.x() - q.y() * w.y() - q.z() * w.z());
#endif
}

SIMD_FORCE_INLINE btQuaternion
operator*(const btVector3& w, const btQuaternion& q)
{
#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
	__m128 vQ1 = w.get128();
	__m128 vQ2 = q.get128();
	__m128 A1, B1, A2, B2, A3, B3;

	A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(0, 1, 2, 0));  // X Y  z x
	B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3, 3, 3, 0));  // W W  W X

	A1 = A1 * B1;

	A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1, 2, 0, 1));
	B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2, 0, 1, 1));

	A2 = A2 * B2;

	A3 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2, 0, 1, 2));
	B3 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1, 2, 0, 2));

	A3 = A3 * B3;  //	A3 *= B3

	A1 = A1 + A2;                //	AB12
	A1 = _mm_xor_ps(A1, vPPPM);  //	change sign of the last element
	A1 = A1 - A3;                //	AB123 = AB12 - AB3

	return btQuaternion(A1);

#elif defined(BT_USE_NEON)

	float32x4_t vQ1 = w.get128();
	float32x4_t vQ2 = q.get128();
	float32x4_t A1, B1, A2, B2, A3, B3;
	float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;

	{
		float32x2x2_t tmp;

		tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1));  // {z x}, {w y}
		vQ1zx = tmp.val[0];

		tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2));  // {z x}, {w y}
		vQ2zx = tmp.val[0];
	}
	vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);

	vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);

	vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
	vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);

	A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx);                     // X Y  z x
	B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx);  // W W  W X

	A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
	B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));

	A3 = vcombine_f32(vQ1zx, vQ1yz);  // Z X Y Z
	B3 = vcombine_f32(vQ2yz, vQ2xz);  // Y Z x z

	A1 = vmulq_f32(A1, B1);
	A2 = vmulq_f32(A2, B2);
	A3 = vmulq_f32(A3, B3);  //	A3 *= B3

	A1 = vaddq_f32(A1, A2);  //	AB12 = AB1 + AB2

	//	change the sign of the last element
	A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);

	A1 = vsubq_f32(A1, A3);  //	AB123 = AB12 - AB3

	return btQuaternion(A1);

#else
	return btQuaternion(
		+w.x() * q.w() + w.y() * q.z() - w.z() * q.y(),
		+w.y() * q.w() + w.z() * q.x() - w.x() * q.z(),
		+w.z() * q.w() + w.x() * q.y() - w.y() * q.x(),
		-w.x() * q.x() - w.y() * q.y() - w.z() * q.z());
#endif
}

/**@brief Calculate the dot product between two quaternions */
SIMD_FORCE_INLINE btScalar
dot(const btQuaternion& q1, const btQuaternion& q2)
{
	return q1.dot(q2);
}

/**@brief Return the length of a quaternion */
SIMD_FORCE_INLINE btScalar
length(const btQuaternion& q)
{
	return q.length();
}

/**@brief Return the angle between two quaternions*/
SIMD_FORCE_INLINE btScalar
btAngle(const btQuaternion& q1, const btQuaternion& q2)
{
	return q1.angle(q2);
}

/**@brief Return the inverse of a quaternion*/
SIMD_FORCE_INLINE btQuaternion
inverse(const btQuaternion& q)
{
	return q.inverse();
}

/**@brief Return the result of spherical linear interpolation betwen two quaternions 
 * @param q1 The first quaternion
 * @param q2 The second quaternion 
 * @param t The ration between q1 and q2.  t = 0 return q1, t=1 returns q2 
 * Slerp assumes constant velocity between positions. */
SIMD_FORCE_INLINE btQuaternion
slerp(const btQuaternion& q1, const btQuaternion& q2, const btScalar& t)
{
	return q1.slerp(q2, t);
}

SIMD_FORCE_INLINE btVector3
quatRotate(const btQuaternion& rotation, const btVector3& v)
{
	btQuaternion q = rotation * v;
	q *= rotation.inverse();
#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
	return btVector3(_mm_and_ps(q.get128(), btvFFF0fMask));
#elif defined(BT_USE_NEON)
	return btVector3((float32x4_t)vandq_s32((int32x4_t)q.get128(), btvFFF0Mask));
#else
	return btVector3(q.getX(), q.getY(), q.getZ());
#endif
}

SIMD_FORCE_INLINE btQuaternion
shortestArcQuat(const btVector3& v0, const btVector3& v1)  // Game Programming Gems 2.10. make sure v0,v1 are normalized
{
	btVector3 c = v0.cross(v1);
	btScalar d = v0.dot(v1);

	if (d < -1.0 + SIMD_EPSILON)
	{
		btVector3 n, unused;
		btPlaneSpace1(v0, n, unused);
		return btQuaternion(n.x(), n.y(), n.z(), 0.0f);  // just pick any vector that is orthogonal to v0
	}

	btScalar s = btSqrt((1.0f + d) * 2.0f);
	btScalar rs = 1.0f / s;

	return btQuaternion(c.getX() * rs, c.getY() * rs, c.getZ() * rs, s * 0.5f);
}

SIMD_FORCE_INLINE btQuaternion
shortestArcQuatNormalize2(btVector3& v0, btVector3& v1)
{
	v0.normalize();
	v1.normalize();
	return shortestArcQuat(v0, v1);
}

struct btQuaternionFloatData
{
	float m_floats[4];
};

struct btQuaternionDoubleData
{
	double m_floats[4];
};

SIMD_FORCE_INLINE void btQuaternion::serializeFloat(struct btQuaternionFloatData& dataOut) const
{
	///could also do a memcpy, check if it is worth it
	for (int i = 0; i < 4; i++)
		dataOut.m_floats[i] = float(m_floats[i]);
}

SIMD_FORCE_INLINE void btQuaternion::deSerializeFloat(const struct btQuaternionFloatData& dataIn)
{
	for (int i = 0; i < 4; i++)
		m_floats[i] = btScalar(dataIn.m_floats[i]);
}

SIMD_FORCE_INLINE void btQuaternion::serializeDouble(struct btQuaternionDoubleData& dataOut) const
{
	///could also do a memcpy, check if it is worth it
	for (int i = 0; i < 4; i++)
		dataOut.m_floats[i] = double(m_floats[i]);
}

SIMD_FORCE_INLINE void btQuaternion::deSerializeDouble(const struct btQuaternionDoubleData& dataIn)
{
	for (int i = 0; i < 4; i++)
		m_floats[i] = btScalar(dataIn.m_floats[i]);
}

SIMD_FORCE_INLINE void btQuaternion::serialize(struct btQuaternionData& dataOut) const
{
	///could also do a memcpy, check if it is worth it
	for (int i = 0; i < 4; i++)
		dataOut.m_floats[i] = m_floats[i];
}

SIMD_FORCE_INLINE void btQuaternion::deSerialize(const struct btQuaternionFloatData& dataIn)
{
	for (int i = 0; i < 4; i++)
		m_floats[i] = (btScalar)dataIn.m_floats[i];
}

SIMD_FORCE_INLINE void btQuaternion::deSerialize(const struct btQuaternionDoubleData& dataIn)
{
	for (int i = 0; i < 4; i++)
		m_floats[i] = (btScalar)dataIn.m_floats[i];
}

#endif  //BT_SIMD__QUATERNION_H_