summaryrefslogtreecommitdiff
path: root/src/BulletSoftBody/btDeformableMultiBodyDynamicsWorld.cpp
blob: bc7b31273b04ad06bf7c9a16749ac6c3ed43c6b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
/*
 Written by Xuchen Han <xuchenhan2015@u.northwestern.edu>
 
 Bullet Continuous Collision Detection and Physics Library
 Copyright (c) 2019 Google Inc. http://bulletphysics.org
 This software is provided 'as-is', without any express or implied warranty.
 In no event will the authors be held liable for any damages arising from the use of this software.
 Permission is granted to anyone to use this software for any purpose,
 including commercial applications, and to alter it and redistribute it freely,
 subject to the following restrictions:
 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
 3. This notice may not be removed or altered from any source distribution.
 */

/* ====== Overview of the Deformable Algorithm ====== */

/*
A single step of the deformable body simulation contains the following main components:
Call internalStepSimulation multiple times, to achieve 240Hz (4 steps of 60Hz).
1. Deformable maintaintenance of rest lengths and volume preservation. Forces only depend on position: Update velocity to a temporary state v_{n+1}^* = v_n + explicit_force * dt / mass, where explicit forces include gravity and elastic forces.
2. Detect discrete collisions between rigid and deformable bodies at position x_{n+1}^* = x_n + dt * v_{n+1}^*.

3a. Solve all constraints, including LCP. Contact, position correction due to numerical drift, friction, and anchors for deformable.

3b. 5 Newton steps (multiple step). Conjugent Gradient solves linear system. Deformable Damping: Then velocities of deformable bodies v_{n+1} are solved in
        M(v_{n+1} - v_{n+1}^*) = damping_force * dt / mass,
   by a conjugate gradient solver, where the damping force is implicit and depends on v_{n+1}.
   Make sure contact constraints are not violated in step b by performing velocity projections as in the paper by Baraff and Witkin https://www.cs.cmu.edu/~baraff/papers/sig98.pdf. Dynamic frictions are treated as a force and added to the rhs of the CG solve, whereas static frictions are treated as constraints similar to contact.
4. Position is updated via x_{n+1} = x_n + dt * v_{n+1}.


The algorithm also closely resembles the one in http://physbam.stanford.edu/~fedkiw/papers/stanford2008-03.pdf
 */

#include <stdio.h>
#include "btDeformableMultiBodyDynamicsWorld.h"
#include "DeformableBodyInplaceSolverIslandCallback.h"
#include "btDeformableBodySolver.h"
#include "LinearMath/btQuickprof.h"
#include "btSoftBodyInternals.h"
btDeformableMultiBodyDynamicsWorld::btDeformableMultiBodyDynamicsWorld(btDispatcher* dispatcher, btBroadphaseInterface* pairCache, btDeformableMultiBodyConstraintSolver* constraintSolver, btCollisionConfiguration* collisionConfiguration, btDeformableBodySolver* deformableBodySolver)
	: btMultiBodyDynamicsWorld(dispatcher, pairCache, (btMultiBodyConstraintSolver*)constraintSolver, collisionConfiguration),
	  m_deformableBodySolver(deformableBodySolver),
	  m_solverCallback(0)
{
	m_drawFlags = fDrawFlags::Std;
	m_drawNodeTree = true;
	m_drawFaceTree = false;
	m_drawClusterTree = false;
	m_sbi.m_broadphase = pairCache;
	m_sbi.m_dispatcher = dispatcher;
	m_sbi.m_sparsesdf.Initialize();
	m_sbi.m_sparsesdf.setDefaultVoxelsz(0.005);
	m_sbi.m_sparsesdf.Reset();

	m_sbi.air_density = (btScalar)1.2;
	m_sbi.water_density = 0;
	m_sbi.water_offset = 0;
	m_sbi.water_normal = btVector3(0, 0, 0);
	m_sbi.m_gravity.setValue(0, -9.8, 0);
	m_internalTime = 0.0;
	m_implicit = false;
	m_lineSearch = false;
	m_useProjection = false;
	m_ccdIterations = 5;
	m_solverDeformableBodyIslandCallback = new DeformableBodyInplaceSolverIslandCallback(constraintSolver, dispatcher);
}

btDeformableMultiBodyDynamicsWorld::~btDeformableMultiBodyDynamicsWorld()
{
	delete m_solverDeformableBodyIslandCallback;
}

void btDeformableMultiBodyDynamicsWorld::internalSingleStepSimulation(btScalar timeStep)
{
	BT_PROFILE("internalSingleStepSimulation");
	if (0 != m_internalPreTickCallback)
	{
		(*m_internalPreTickCallback)(this, timeStep);
	}
	reinitialize(timeStep);

	// add gravity to velocity of rigid and multi bodys
	applyRigidBodyGravity(timeStep);

	///apply gravity and explicit force to velocity, predict motion
	predictUnconstraintMotion(timeStep);

	///perform collision detection that involves rigid/multi bodies
	btMultiBodyDynamicsWorld::performDiscreteCollisionDetection();

	btMultiBodyDynamicsWorld::calculateSimulationIslands();

	beforeSolverCallbacks(timeStep);

	///solve contact constraints and then deformable bodies momemtum equation
	solveConstraints(timeStep);

	afterSolverCallbacks(timeStep);

	performDeformableCollisionDetection();

	applyRepulsionForce(timeStep);

	performGeometricCollisions(timeStep);

	integrateTransforms(timeStep);

	///update vehicle simulation
	btMultiBodyDynamicsWorld::updateActions(timeStep);

	updateActivationState(timeStep);
	// End solver-wise simulation step
	// ///////////////////////////////
}

void btDeformableMultiBodyDynamicsWorld::performDeformableCollisionDetection()
{
	for (int i = 0; i < m_softBodies.size(); ++i)
	{
		m_softBodies[i]->m_softSoftCollision = true;
	}

	for (int i = 0; i < m_softBodies.size(); ++i)
	{
		for (int j = i; j < m_softBodies.size(); ++j)
		{
			m_softBodies[i]->defaultCollisionHandler(m_softBodies[j]);
		}
	}

	for (int i = 0; i < m_softBodies.size(); ++i)
	{
		m_softBodies[i]->m_softSoftCollision = false;
	}
}

void btDeformableMultiBodyDynamicsWorld::updateActivationState(btScalar timeStep)
{
	for (int i = 0; i < m_softBodies.size(); i++)
	{
		btSoftBody* psb = m_softBodies[i];
		psb->updateDeactivation(timeStep);
		if (psb->wantsSleeping())
		{
			if (psb->getActivationState() == ACTIVE_TAG)
				psb->setActivationState(WANTS_DEACTIVATION);
			if (psb->getActivationState() == ISLAND_SLEEPING)
			{
				psb->setZeroVelocity();
			}
		}
		else
		{
			if (psb->getActivationState() != DISABLE_DEACTIVATION)
				psb->setActivationState(ACTIVE_TAG);
		}
	}
	btMultiBodyDynamicsWorld::updateActivationState(timeStep);
}

void btDeformableMultiBodyDynamicsWorld::applyRepulsionForce(btScalar timeStep)
{
	BT_PROFILE("btDeformableMultiBodyDynamicsWorld::applyRepulsionForce");
	for (int i = 0; i < m_softBodies.size(); i++)
	{
		btSoftBody* psb = m_softBodies[i];
		if (psb->isActive())
		{
			psb->applyRepulsionForce(timeStep, true);
		}
	}
}

void btDeformableMultiBodyDynamicsWorld::performGeometricCollisions(btScalar timeStep)
{
	BT_PROFILE("btDeformableMultiBodyDynamicsWorld::performGeometricCollisions");
	// refit the BVH tree for CCD
	for (int i = 0; i < m_softBodies.size(); ++i)
	{
		btSoftBody* psb = m_softBodies[i];
		if (psb->isActive())
		{
			m_softBodies[i]->updateFaceTree(true, false);
			m_softBodies[i]->updateNodeTree(true, false);
			for (int j = 0; j < m_softBodies[i]->m_faces.size(); ++j)
			{
				btSoftBody::Face& f = m_softBodies[i]->m_faces[j];
				f.m_n0 = (f.m_n[1]->m_x - f.m_n[0]->m_x).cross(f.m_n[2]->m_x - f.m_n[0]->m_x);
			}
		}
	}

	// clear contact points & update DBVT
	for (int r = 0; r < m_ccdIterations; ++r)
	{
		for (int i = 0; i < m_softBodies.size(); ++i)
		{
			btSoftBody* psb = m_softBodies[i];
			if (psb->isActive())
			{
				// clear contact points in the previous iteration
				psb->m_faceNodeContactsCCD.clear();

				// update m_q and normals for CCD calculation
				for (int j = 0; j < psb->m_nodes.size(); ++j)
				{
					psb->m_nodes[j].m_q = psb->m_nodes[j].m_x + timeStep * psb->m_nodes[j].m_v;
				}
				for (int j = 0; j < psb->m_faces.size(); ++j)
				{
					btSoftBody::Face& f = psb->m_faces[j];
					f.m_n1 = (f.m_n[1]->m_q - f.m_n[0]->m_q).cross(f.m_n[2]->m_q - f.m_n[0]->m_q);
					f.m_vn = (f.m_n[1]->m_v - f.m_n[0]->m_v).cross(f.m_n[2]->m_v - f.m_n[0]->m_v) * timeStep * timeStep;
				}
			}
		}

		// apply CCD to register new contact points
		for (int i = 0; i < m_softBodies.size(); ++i)
		{
			for (int j = i; j < m_softBodies.size(); ++j)
			{
				btSoftBody* psb1 = m_softBodies[i];
				btSoftBody* psb2 = m_softBodies[j];
				if (psb1->isActive() && psb2->isActive())
				{
					m_softBodies[i]->geometricCollisionHandler(m_softBodies[j]);
				}
			}
		}

		int penetration_count = 0;
		for (int i = 0; i < m_softBodies.size(); ++i)
		{
			btSoftBody* psb = m_softBodies[i];
			if (psb->isActive())
			{
				penetration_count += psb->m_faceNodeContactsCCD.size();
				;
			}
		}
		if (penetration_count == 0)
		{
			break;
		}

		// apply inelastic impulse
		for (int i = 0; i < m_softBodies.size(); ++i)
		{
			btSoftBody* psb = m_softBodies[i];
			if (psb->isActive())
			{
				psb->applyRepulsionForce(timeStep, false);
			}
		}
	}
}

void btDeformableMultiBodyDynamicsWorld::softBodySelfCollision()
{
	BT_PROFILE("btDeformableMultiBodyDynamicsWorld::softBodySelfCollision");
	for (int i = 0; i < m_softBodies.size(); i++)
	{
		btSoftBody* psb = m_softBodies[i];
		if (psb->isActive())
		{
			psb->defaultCollisionHandler(psb);
		}
	}
}

void btDeformableMultiBodyDynamicsWorld::positionCorrection(btScalar timeStep)
{
	// correct the position of rigid bodies with temporary velocity generated from split impulse
	btContactSolverInfo infoGlobal;
	btVector3 zero(0, 0, 0);
	for (int i = 0; i < m_nonStaticRigidBodies.size(); ++i)
	{
		btRigidBody* rb = m_nonStaticRigidBodies[i];
		//correct the position/orientation based on push/turn recovery
		btTransform newTransform;
		btVector3 pushVelocity = rb->getPushVelocity();
		btVector3 turnVelocity = rb->getTurnVelocity();
		if (pushVelocity[0] != 0.f || pushVelocity[1] != 0 || pushVelocity[2] != 0 || turnVelocity[0] != 0.f || turnVelocity[1] != 0 || turnVelocity[2] != 0)
		{
			btTransformUtil::integrateTransform(rb->getWorldTransform(), pushVelocity, turnVelocity * infoGlobal.m_splitImpulseTurnErp, timeStep, newTransform);
			rb->setWorldTransform(newTransform);
			rb->setPushVelocity(zero);
			rb->setTurnVelocity(zero);
		}
	}
}

void btDeformableMultiBodyDynamicsWorld::integrateTransforms(btScalar timeStep)
{
	BT_PROFILE("integrateTransforms");
	positionCorrection(timeStep);
	btMultiBodyDynamicsWorld::integrateTransforms(timeStep);
	for (int i = 0; i < m_softBodies.size(); ++i)
	{
		btSoftBody* psb = m_softBodies[i];
		for (int j = 0; j < psb->m_nodes.size(); ++j)
		{
			btSoftBody::Node& node = psb->m_nodes[j];
			btScalar maxDisplacement = psb->getWorldInfo()->m_maxDisplacement;
			btScalar clampDeltaV = maxDisplacement / timeStep;
			for (int c = 0; c < 3; c++)
			{
				if (node.m_v[c] > clampDeltaV)
				{
					node.m_v[c] = clampDeltaV;
				}
				if (node.m_v[c] < -clampDeltaV)
				{
					node.m_v[c] = -clampDeltaV;
				}
			}
			node.m_x = node.m_x + timeStep * (node.m_v + node.m_splitv);
			node.m_q = node.m_x;
			node.m_vn = node.m_v;
		}
		// enforce anchor constraints
		for (int j = 0; j < psb->m_deformableAnchors.size(); ++j)
		{
			btSoftBody::DeformableNodeRigidAnchor& a = psb->m_deformableAnchors[j];
			btSoftBody::Node* n = a.m_node;
			n->m_x = a.m_cti.m_colObj->getWorldTransform() * a.m_local;

			// update multibody anchor info
			if (a.m_cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
			{
				btMultiBodyLinkCollider* multibodyLinkCol = (btMultiBodyLinkCollider*)btMultiBodyLinkCollider::upcast(a.m_cti.m_colObj);
				if (multibodyLinkCol)
				{
					btVector3 nrm;
					const btCollisionShape* shp = multibodyLinkCol->getCollisionShape();
					const btTransform& wtr = multibodyLinkCol->getWorldTransform();
					psb->m_worldInfo->m_sparsesdf.Evaluate(
						wtr.invXform(n->m_x),
						shp,
						nrm,
						0);
					a.m_cti.m_normal = wtr.getBasis() * nrm;
					btVector3 normal = a.m_cti.m_normal;
					btVector3 t1 = generateUnitOrthogonalVector(normal);
					btVector3 t2 = btCross(normal, t1);
					btMultiBodyJacobianData jacobianData_normal, jacobianData_t1, jacobianData_t2;
					findJacobian(multibodyLinkCol, jacobianData_normal, a.m_node->m_x, normal);
					findJacobian(multibodyLinkCol, jacobianData_t1, a.m_node->m_x, t1);
					findJacobian(multibodyLinkCol, jacobianData_t2, a.m_node->m_x, t2);

					btScalar* J_n = &jacobianData_normal.m_jacobians[0];
					btScalar* J_t1 = &jacobianData_t1.m_jacobians[0];
					btScalar* J_t2 = &jacobianData_t2.m_jacobians[0];

					btScalar* u_n = &jacobianData_normal.m_deltaVelocitiesUnitImpulse[0];
					btScalar* u_t1 = &jacobianData_t1.m_deltaVelocitiesUnitImpulse[0];
					btScalar* u_t2 = &jacobianData_t2.m_deltaVelocitiesUnitImpulse[0];

					btMatrix3x3 rot(normal.getX(), normal.getY(), normal.getZ(),
									t1.getX(), t1.getY(), t1.getZ(),
									t2.getX(), t2.getY(), t2.getZ());  // world frame to local frame
					const int ndof = multibodyLinkCol->m_multiBody->getNumDofs() + 6;
					btMatrix3x3 local_impulse_matrix = (Diagonal(n->m_im) + OuterProduct(J_n, J_t1, J_t2, u_n, u_t1, u_t2, ndof)).inverse();
					a.m_c0 = rot.transpose() * local_impulse_matrix * rot;
					a.jacobianData_normal = jacobianData_normal;
					a.jacobianData_t1 = jacobianData_t1;
					a.jacobianData_t2 = jacobianData_t2;
					a.t1 = t1;
					a.t2 = t2;
				}
			}
		}
		psb->interpolateRenderMesh();
	}
}

void btDeformableMultiBodyDynamicsWorld::solveConstraints(btScalar timeStep)
{
	BT_PROFILE("btDeformableMultiBodyDynamicsWorld::solveConstraints");
	// save v_{n+1}^* velocity after explicit forces
	m_deformableBodySolver->backupVelocity();

	// set up constraints among multibodies and between multibodies and deformable bodies
	setupConstraints();

	// solve contact constraints
	solveContactConstraints();

	// set up the directions in which the velocity does not change in the momentum solve
	if (m_useProjection)
		m_deformableBodySolver->m_objective->m_projection.setProjection();
	else
		m_deformableBodySolver->m_objective->m_projection.setLagrangeMultiplier();

	// for explicit scheme, m_backupVelocity = v_{n+1}^*
	// for implicit scheme, m_backupVelocity = v_n
	// Here, set dv = v_{n+1} - v_n for nodes in contact
	m_deformableBodySolver->setupDeformableSolve(m_implicit);

	// At this point, dv should be golden for nodes in contact
	// proceed to solve deformable momentum equation
	m_deformableBodySolver->solveDeformableConstraints(timeStep);
}

void btDeformableMultiBodyDynamicsWorld::setupConstraints()
{
	// set up constraints between multibody and deformable bodies
	m_deformableBodySolver->setConstraints(m_solverInfo);

	// set up constraints among multibodies
	{
		sortConstraints();
		// setup the solver callback
		btMultiBodyConstraint** sortedMultiBodyConstraints = m_sortedMultiBodyConstraints.size() ? &m_sortedMultiBodyConstraints[0] : 0;
		btTypedConstraint** constraintsPtr = getNumConstraints() ? &m_sortedConstraints[0] : 0;
		m_solverDeformableBodyIslandCallback->setup(&m_solverInfo, constraintsPtr, m_sortedConstraints.size(), sortedMultiBodyConstraints, m_sortedMultiBodyConstraints.size(), getDebugDrawer());

		// build islands
		m_islandManager->buildIslands(getCollisionWorld()->getDispatcher(), getCollisionWorld());
	}
}

void btDeformableMultiBodyDynamicsWorld::sortConstraints()
{
	m_sortedConstraints.resize(m_constraints.size());
	int i;
	for (i = 0; i < getNumConstraints(); i++)
	{
		m_sortedConstraints[i] = m_constraints[i];
	}
	m_sortedConstraints.quickSort(btSortConstraintOnIslandPredicate2());

	m_sortedMultiBodyConstraints.resize(m_multiBodyConstraints.size());
	for (i = 0; i < m_multiBodyConstraints.size(); i++)
	{
		m_sortedMultiBodyConstraints[i] = m_multiBodyConstraints[i];
	}
	m_sortedMultiBodyConstraints.quickSort(btSortMultiBodyConstraintOnIslandPredicate());
}

void btDeformableMultiBodyDynamicsWorld::solveContactConstraints()
{
	// process constraints on each island
	m_islandManager->processIslands(getCollisionWorld()->getDispatcher(), getCollisionWorld(), m_solverDeformableBodyIslandCallback);

	// process deferred
	m_solverDeformableBodyIslandCallback->processConstraints();
	m_constraintSolver->allSolved(m_solverInfo, m_debugDrawer);

	// write joint feedback
	{
		for (int i = 0; i < this->m_multiBodies.size(); i++)
		{
			btMultiBody* bod = m_multiBodies[i];

			bool isSleeping = false;

			if (bod->getBaseCollider() && bod->getBaseCollider()->getActivationState() == ISLAND_SLEEPING)
			{
				isSleeping = true;
			}
			for (int b = 0; b < bod->getNumLinks(); b++)
			{
				if (bod->getLink(b).m_collider && bod->getLink(b).m_collider->getActivationState() == ISLAND_SLEEPING)
					isSleeping = true;
			}

			if (!isSleeping)
			{
				//useless? they get resized in stepVelocities once again (AND DIFFERENTLY)
				m_scratch_r.resize(bod->getNumLinks() + 1);  //multidof? ("Y"s use it and it is used to store qdd)
				m_scratch_v.resize(bod->getNumLinks() + 1);
				m_scratch_m.resize(bod->getNumLinks() + 1);

				if (bod->internalNeedsJointFeedback())
				{
					if (!bod->isUsingRK4Integration())
					{
						if (bod->internalNeedsJointFeedback())
						{
							bool isConstraintPass = true;
							bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(m_solverInfo.m_timeStep, m_scratch_r, m_scratch_v, m_scratch_m, isConstraintPass,
																					  getSolverInfo().m_jointFeedbackInWorldSpace,
																					  getSolverInfo().m_jointFeedbackInJointFrame);
						}
					}
				}
			}
		}
	}

	for (int i = 0; i < this->m_multiBodies.size(); i++)
	{
		btMultiBody* bod = m_multiBodies[i];
		bod->processDeltaVeeMultiDof2();
	}
}

void btDeformableMultiBodyDynamicsWorld::addSoftBody(btSoftBody* body, int collisionFilterGroup, int collisionFilterMask)
{
	m_softBodies.push_back(body);

	// Set the soft body solver that will deal with this body
	// to be the world's solver
	body->setSoftBodySolver(m_deformableBodySolver);

	btCollisionWorld::addCollisionObject(body,
										 collisionFilterGroup,
										 collisionFilterMask);
}

void btDeformableMultiBodyDynamicsWorld::predictUnconstraintMotion(btScalar timeStep)
{
	BT_PROFILE("predictUnconstraintMotion");
	btMultiBodyDynamicsWorld::predictUnconstraintMotion(timeStep);
	m_deformableBodySolver->predictMotion(timeStep);
}

void btDeformableMultiBodyDynamicsWorld::reinitialize(btScalar timeStep)
{
	m_internalTime += timeStep;
	m_deformableBodySolver->setImplicit(m_implicit);
	m_deformableBodySolver->setLineSearch(m_lineSearch);
	m_deformableBodySolver->reinitialize(m_softBodies, timeStep);
	btDispatcherInfo& dispatchInfo = btMultiBodyDynamicsWorld::getDispatchInfo();
	dispatchInfo.m_timeStep = timeStep;
	dispatchInfo.m_stepCount = 0;
	dispatchInfo.m_debugDraw = btMultiBodyDynamicsWorld::getDebugDrawer();
	btMultiBodyDynamicsWorld::getSolverInfo().m_timeStep = timeStep;
	if (m_useProjection)
	{
		m_deformableBodySolver->m_useProjection = true;
		m_deformableBodySolver->m_objective->m_projection.m_useStrainLimiting = true;
		m_deformableBodySolver->m_objective->m_preconditioner = m_deformableBodySolver->m_objective->m_massPreconditioner;
	}
	else
	{
		m_deformableBodySolver->m_useProjection = false;
		m_deformableBodySolver->m_objective->m_projection.m_useStrainLimiting = false;
		m_deformableBodySolver->m_objective->m_preconditioner = m_deformableBodySolver->m_objective->m_KKTPreconditioner;
	}
}

void btDeformableMultiBodyDynamicsWorld::debugDrawWorld()
{
	btMultiBodyDynamicsWorld::debugDrawWorld();

	for (int i = 0; i < getSoftBodyArray().size(); i++)
	{
		btSoftBody* psb = (btSoftBody*)getSoftBodyArray()[i];
		{
			btSoftBodyHelpers::DrawFrame(psb, getDebugDrawer());
			btSoftBodyHelpers::Draw(psb, getDebugDrawer(), getDrawFlags());
		}
	}
}

void btDeformableMultiBodyDynamicsWorld::applyRigidBodyGravity(btScalar timeStep)
{
	// Gravity is applied in stepSimulation and then cleared here and then applied here and then cleared here again
	// so that 1) gravity is applied to velocity before constraint solve and 2) gravity is applied in each substep
	// when there are multiple substeps
	btMultiBodyDynamicsWorld::applyGravity();
	// integrate rigid body gravity
	for (int i = 0; i < m_nonStaticRigidBodies.size(); ++i)
	{
		btRigidBody* rb = m_nonStaticRigidBodies[i];
		rb->integrateVelocities(timeStep);
	}

	// integrate multibody gravity
	{
		forwardKinematics();
		clearMultiBodyConstraintForces();
		{
			for (int i = 0; i < this->m_multiBodies.size(); i++)
			{
				btMultiBody* bod = m_multiBodies[i];

				bool isSleeping = false;

				if (bod->getBaseCollider() && bod->getBaseCollider()->getActivationState() == ISLAND_SLEEPING)
				{
					isSleeping = true;
				}
				for (int b = 0; b < bod->getNumLinks(); b++)
				{
					if (bod->getLink(b).m_collider && bod->getLink(b).m_collider->getActivationState() == ISLAND_SLEEPING)
						isSleeping = true;
				}

				if (!isSleeping)
				{
					m_scratch_r.resize(bod->getNumLinks() + 1);
					m_scratch_v.resize(bod->getNumLinks() + 1);
					m_scratch_m.resize(bod->getNumLinks() + 1);
					bool isConstraintPass = false;
					{
						if (!bod->isUsingRK4Integration())
						{
							bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(m_solverInfo.m_timeStep,
																					  m_scratch_r, m_scratch_v, m_scratch_m, isConstraintPass,
																					  getSolverInfo().m_jointFeedbackInWorldSpace,
																					  getSolverInfo().m_jointFeedbackInJointFrame);
						}
						else
						{
							btAssert(" RK4Integration is not supported");
						}
					}
				}
			}
		}
	}
	clearGravity();
}

void btDeformableMultiBodyDynamicsWorld::clearGravity()
{
	BT_PROFILE("btMultiBody clearGravity");
	// clear rigid body gravity
	for (int i = 0; i < m_nonStaticRigidBodies.size(); i++)
	{
		btRigidBody* body = m_nonStaticRigidBodies[i];
		if (body->isActive())
		{
			body->clearGravity();
		}
	}
	// clear multibody gravity
	for (int i = 0; i < this->m_multiBodies.size(); i++)
	{
		btMultiBody* bod = m_multiBodies[i];

		bool isSleeping = false;

		if (bod->getBaseCollider() && bod->getBaseCollider()->getActivationState() == ISLAND_SLEEPING)
		{
			isSleeping = true;
		}
		for (int b = 0; b < bod->getNumLinks(); b++)
		{
			if (bod->getLink(b).m_collider && bod->getLink(b).m_collider->getActivationState() == ISLAND_SLEEPING)
				isSleeping = true;
		}

		if (!isSleeping)
		{
			bod->addBaseForce(-m_gravity * bod->getBaseMass());

			for (int j = 0; j < bod->getNumLinks(); ++j)
			{
				bod->addLinkForce(j, -m_gravity * bod->getLinkMass(j));
			}
		}
	}
}

void btDeformableMultiBodyDynamicsWorld::beforeSolverCallbacks(btScalar timeStep)
{
	if (0 != m_internalTickCallback)
	{
		(*m_internalTickCallback)(this, timeStep);
	}

	if (0 != m_solverCallback)
	{
		(*m_solverCallback)(m_internalTime, this);
	}
}

void btDeformableMultiBodyDynamicsWorld::afterSolverCallbacks(btScalar timeStep)
{
	if (0 != m_solverCallback)
	{
		(*m_solverCallback)(m_internalTime, this);
	}
}

void btDeformableMultiBodyDynamicsWorld::addForce(btSoftBody* psb, btDeformableLagrangianForce* force)
{
	btAlignedObjectArray<btDeformableLagrangianForce*>& forces = m_deformableBodySolver->m_objective->m_lf;
	bool added = false;
	for (int i = 0; i < forces.size(); ++i)
	{
		if (forces[i]->getForceType() == force->getForceType())
		{
			forces[i]->addSoftBody(psb);
			added = true;
			break;
		}
	}
	if (!added)
	{
		force->addSoftBody(psb);
		force->setIndices(m_deformableBodySolver->m_objective->getIndices());
		forces.push_back(force);
	}
}

void btDeformableMultiBodyDynamicsWorld::removeForce(btSoftBody* psb, btDeformableLagrangianForce* force)
{
	btAlignedObjectArray<btDeformableLagrangianForce*>& forces = m_deformableBodySolver->m_objective->m_lf;
	int removed_index = -1;
	for (int i = 0; i < forces.size(); ++i)
	{
		if (forces[i]->getForceType() == force->getForceType())
		{
			forces[i]->removeSoftBody(psb);
			if (forces[i]->m_softBodies.size() == 0)
				removed_index = i;
			break;
		}
	}
	if (removed_index >= 0)
		forces.removeAtIndex(removed_index);
}

void btDeformableMultiBodyDynamicsWorld::removeSoftBodyForce(btSoftBody* psb)
{
	btAlignedObjectArray<btDeformableLagrangianForce*>& forces = m_deformableBodySolver->m_objective->m_lf;
	for (int i = 0; i < forces.size(); ++i)
	{
		forces[i]->removeSoftBody(psb);
	}
}

void btDeformableMultiBodyDynamicsWorld::removeSoftBody(btSoftBody* body)
{
	removeSoftBodyForce(body);
	m_softBodies.remove(body);
	btCollisionWorld::removeCollisionObject(body);
	// force a reinitialize so that node indices get updated.
	m_deformableBodySolver->reinitialize(m_softBodies, btScalar(-1));
}

void btDeformableMultiBodyDynamicsWorld::removeCollisionObject(btCollisionObject* collisionObject)
{
	btSoftBody* body = btSoftBody::upcast(collisionObject);
	if (body)
		removeSoftBody(body);
	else
		btDiscreteDynamicsWorld::removeCollisionObject(collisionObject);
}

int btDeformableMultiBodyDynamicsWorld::stepSimulation(btScalar timeStep, int maxSubSteps, btScalar fixedTimeStep)
{
	startProfiling(timeStep);

	int numSimulationSubSteps = 0;

	if (maxSubSteps)
	{
		//fixed timestep with interpolation
		m_fixedTimeStep = fixedTimeStep;
		m_localTime += timeStep;
		if (m_localTime >= fixedTimeStep)
		{
			numSimulationSubSteps = int(m_localTime / fixedTimeStep);
			m_localTime -= numSimulationSubSteps * fixedTimeStep;
		}
	}
	else
	{
		//variable timestep
		fixedTimeStep = timeStep;
		m_localTime = m_latencyMotionStateInterpolation ? 0 : timeStep;
		m_fixedTimeStep = 0;
		if (btFuzzyZero(timeStep))
		{
			numSimulationSubSteps = 0;
			maxSubSteps = 0;
		}
		else
		{
			numSimulationSubSteps = 1;
			maxSubSteps = 1;
		}
	}

	//process some debugging flags
	if (getDebugDrawer())
	{
		btIDebugDraw* debugDrawer = getDebugDrawer();
		gDisableDeactivation = (debugDrawer->getDebugMode() & btIDebugDraw::DBG_NoDeactivation) != 0;
	}
	if (numSimulationSubSteps)
	{
		//clamp the number of substeps, to prevent simulation grinding spiralling down to a halt
		int clampedSimulationSteps = (numSimulationSubSteps > maxSubSteps) ? maxSubSteps : numSimulationSubSteps;

		saveKinematicState(fixedTimeStep * clampedSimulationSteps);

		for (int i = 0; i < clampedSimulationSteps; i++)
		{
			internalSingleStepSimulation(fixedTimeStep);
			synchronizeMotionStates();
		}
	}
	else
	{
		synchronizeMotionStates();
	}

	clearForces();

#ifndef BT_NO_PROFILE
	CProfileManager::Increment_Frame_Counter();
#endif  //BT_NO_PROFILE

	return numSimulationSubSteps;
}