summaryrefslogtreecommitdiff
path: root/src/BulletSoftBody/btDeformableBodySolver.cpp
blob: f98dfacbb079cf4c3ab1123e2dcfd9f5c45dbc09 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
//
//  btDeformableBodySolver.cpp
//  BulletSoftBody
//
//  Created by Xuchen Han on 7/9/19.
//

#include <stdio.h>
#include "btDeformableBodySolver.h"

btDeformableBodySolver::btDeformableBodySolver()
: m_numNodes(0)
, m_solveIterations(1)
, m_impulseIterations(1)
, m_world(nullptr)
{
    m_objective = new btBackwardEulerObjective(m_softBodySet, m_backupVelocity);
}

btDeformableBodySolver::~btDeformableBodySolver()
{
    delete m_objective;
}

void btDeformableBodySolver::postStabilize()
{
    for (int i = 0; i < m_softBodySet.size(); ++i)
    {
        btSoftBody* psb = m_softBodySet[i];
        btMultiBodyJacobianData jacobianData;
        const btScalar mrg = psb->getCollisionShape()->getMargin();
        for (int j = 0; j < psb->m_rcontacts.size(); ++j)
        {
            const btSoftBody::RContact& c = psb->m_rcontacts[j];
            // skip anchor points
            if (c.m_node->m_im == 0)
                continue;
            
            const btSoftBody::sCti& cti = c.m_cti;
            if (cti.m_colObj->hasContactResponse())
            {
                btVector3 va(0, 0, 0);
                btRigidBody* rigidCol = 0;
                btMultiBodyLinkCollider* multibodyLinkCol = 0;
                btScalar* deltaV;
                
                // grab the velocity of the rigid body
                if (cti.m_colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY)
                {
                    rigidCol = (btRigidBody*)btRigidBody::upcast(cti.m_colObj);
                    va = rigidCol ? (rigidCol->getVelocityInLocalPoint(c.m_c1)) * m_dt : btVector3(0, 0, 0);
                }
                else if (cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
                {
                    multibodyLinkCol = (btMultiBodyLinkCollider*)btMultiBodyLinkCollider::upcast(cti.m_colObj);
                    if (multibodyLinkCol)
                    {
                        const int ndof = multibodyLinkCol->m_multiBody->getNumDofs() + 6;
                        jacobianData.m_jacobians.resize(ndof);
                        jacobianData.m_deltaVelocitiesUnitImpulse.resize(ndof);
                        btScalar* jac = &jacobianData.m_jacobians[0];
                        
                        multibodyLinkCol->m_multiBody->fillContactJacobianMultiDof(multibodyLinkCol->m_link, c.m_node->m_x, cti.m_normal, jac, jacobianData.scratch_r, jacobianData.scratch_v, jacobianData.scratch_m);
                        deltaV = &jacobianData.m_deltaVelocitiesUnitImpulse[0];
                        multibodyLinkCol->m_multiBody->calcAccelerationDeltasMultiDof(&jacobianData.m_jacobians[0], deltaV, jacobianData.scratch_r, jacobianData.scratch_v);
                        
                        btScalar vel = 0.0;
                        for (int j = 0; j < ndof; ++j)
                        {
                            vel += multibodyLinkCol->m_multiBody->getVelocityVector()[j] * jac[j];
                        }
                        va = cti.m_normal * vel * m_dt;
                    }
                }
                
                const btVector3 vb = c.m_node->m_v * m_dt;
                const btVector3 vr = vb - va;
                const btScalar dn = btDot(vr, cti.m_normal);
                
                btScalar dp = btMin((btDot(c.m_node->m_x, cti.m_normal) + cti.m_offset), mrg);
//                dp += mrg;
                // c0 is the impulse matrix, c3 is 1 - the friction coefficient or 0, c4 is the contact hardness coefficient
                
                btScalar dvn = dn * c.m_c4;
                const btVector3 impulse = c.m_c0 * ((cti.m_normal * (dn * c.m_c4)));
                // TODO: only contact is considered here, add friction later
                if (dp < 0)
                {
                    bool two_way = false;
                    if (two_way)
                    {
                        c.m_node->m_x -= impulse * c.m_c2;
                        
                        if (cti.m_colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY)
                        {
                            if (rigidCol)
                                rigidCol->applyImpulse(impulse, c.m_c1);
                        }
                        else if (cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
                        {
                            if (multibodyLinkCol)
                            {
                                double multiplier = 0.5;
                                multibodyLinkCol->m_multiBody->applyDeltaVeeMultiDof(deltaV, -impulse.length() * multiplier);
                            }
                        }
                    }
                    else
                        c.m_node->m_x -= dp * cti.m_normal * c.m_c4;
                }
            }
        }
    }
}

void btDeformableBodySolver::solveConstraints(float solverdt)
{
    m_dt = solverdt;
    bool nodeUpdated = updateNodes();
    reinitialize(nodeUpdated);
    
    // apply explicit force
    m_objective->applyExplicitForce(m_residual);
    
    // add constraints to the solver
    setConstraints();
    
    backupVelocity();
    
    for (int i = 0; i < m_solveIterations; ++i)
    {
        m_objective->computeResidual(solverdt, m_residual);
        m_objective->initialGuess(m_dv, m_residual);
        m_objective->computeStep(m_dv, m_residual, solverdt);
        updateVelocity();
    }
    advect(solverdt);
    postStabilize();
}

void btDeformableBodySolver::reinitialize(bool nodeUpdated)
{
    if (nodeUpdated)
    {
        m_dv.resize(m_numNodes);
        m_residual.resize(m_numNodes);
    }
    
    for (int i = 0; i < m_dv.size(); ++i)
    {
        m_dv[i].setZero();
        m_residual[i].setZero();
    }
    m_objective->reinitialize(nodeUpdated);
}

void btDeformableBodySolver::setConstraints()
{
    m_objective->setConstraints();
}

void btDeformableBodySolver::setWorld(btDeformableRigidDynamicsWorld* world)
{
    m_world = world;
    m_objective->setWorld(world);
}

void btDeformableBodySolver::updateVelocity()
{
    // serial implementation
    int counter = 0;
    for (int i = 0; i < m_softBodySet.size(); ++i)
    {
        btSoftBody* psb = m_softBodySet[i];
        for (int j = 0; j < psb->m_nodes.size(); ++j)
        {
            psb->m_nodes[j].m_v = m_backupVelocity[counter]+m_dv[counter];
            ++counter;
        }
    }
}


void btDeformableBodySolver::advect(btScalar dt)
{
    for (int i = 0; i < m_softBodySet.size(); ++i)
    {
        btSoftBody* psb = m_softBodySet[i];
        for (int j = 0; j < psb->m_nodes.size(); ++j)
        {
            auto& node = psb->m_nodes[j];
            node.m_x  =  node.m_q + dt * node.m_v;
        }
    }
}

void btDeformableBodySolver::backupVelocity()
{
    // serial implementation
    int counter = 0;
    for (int i = 0; i < m_softBodySet.size(); ++i)
    {
        btSoftBody* psb = m_softBodySet[i];
        for (int j = 0; j < psb->m_nodes.size(); ++j)
        {
            m_backupVelocity[counter++] = psb->m_nodes[j].m_v;
        }
    }
}

bool btDeformableBodySolver::updateNodes()
{
    int numNodes = 0;
    for (int i = 0; i < m_softBodySet.size(); ++i)
        numNodes += m_softBodySet[i]->m_nodes.size();
    if (numNodes != m_numNodes)
    {
        m_numNodes = numNodes;
        m_backupVelocity.resize(numNodes);
        return true;
    }
    return false;
}


void btDeformableBodySolver::predictMotion(float solverdt)
{
    for (int i = 0; i < m_softBodySet.size(); ++i)
    {
        btSoftBody *psb = m_softBodySet[i];
        
        if (psb->isActive())
        {
            psb->predictMotion(solverdt);
        }
    }
}

void btDeformableBodySolver::updateSoftBodies()
{
    for (int i = 0; i < m_softBodySet.size(); i++)
    {
        btSoftBody *psb = (btSoftBody *)m_softBodySet[i];
        if (psb->isActive())
        {
            psb->integrateMotion(); // normal is updated here
        }
    }
}