summaryrefslogtreecommitdiff
path: root/src/BulletSoftBody/btContactProjection.cpp
blob: c7a947fbe27392121bf81fd4f1d76f0ded65506d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
//
//  btContactProjection.cpp
//  BulletSoftBody
//
//  Created by Xuchen Han on 7/4/19.
//

#include "btContactProjection.h"
#include "btDeformableRigidDynamicsWorld.h"
void btContactProjection::update(const TVStack& dv, const TVStack& backupVelocity)
{
    ///solve rigid body constraints
    m_world->btMultiBodyDynamicsWorld::solveConstraints(m_world->getSolverInfo());

    // loop through contacts to create contact constraints
    for (int i = 0; i < m_softBodies.size(); ++i)
    {
        btSoftBody* psb = m_softBodies[i];
        btMultiBodyJacobianData jacobianData;
        for (int i = 0, ni = psb->m_rcontacts.size(); i < ni; ++i)
        {
            const btSoftBody::RContact& c = psb->m_rcontacts[i];
            
            // skip anchor points
            if (c.m_node->m_im == 0)
                continue;
            
            const btSoftBody::sCti& cti = c.m_cti;
            if (cti.m_colObj->hasContactResponse())
            {
                btVector3 va(0, 0, 0);
                btRigidBody* rigidCol = 0;
                btMultiBodyLinkCollider* multibodyLinkCol = 0;
                btScalar* deltaV;
                
                // grab the velocity of the rigid body
                if (cti.m_colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY)
                {
                    rigidCol = (btRigidBody*)btRigidBody::upcast(cti.m_colObj);
                    va = rigidCol ? (rigidCol->getVelocityInLocalPoint(c.m_c1)) * m_dt : btVector3(0, 0, 0);
                }
                else if (cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
                {
                    multibodyLinkCol = (btMultiBodyLinkCollider*)btMultiBodyLinkCollider::upcast(cti.m_colObj);
                    if (multibodyLinkCol)
                    {
                        const int ndof = multibodyLinkCol->m_multiBody->getNumDofs() + 6;
                        jacobianData.m_jacobians.resize(ndof);
                        jacobianData.m_deltaVelocitiesUnitImpulse.resize(ndof);
                        btScalar* jac = &jacobianData.m_jacobians[0];
                        
                        multibodyLinkCol->m_multiBody->fillContactJacobianMultiDof(multibodyLinkCol->m_link, c.m_node->m_x, cti.m_normal, jac, jacobianData.scratch_r, jacobianData.scratch_v, jacobianData.scratch_m);
                        deltaV = &jacobianData.m_deltaVelocitiesUnitImpulse[0];
                        multibodyLinkCol->m_multiBody->calcAccelerationDeltasMultiDof(&jacobianData.m_jacobians[0], deltaV, jacobianData.scratch_r, jacobianData.scratch_v);
                        
                        btScalar vel = 0.0;
                        for (int j = 0; j < ndof; ++j)
                        {
                            vel += multibodyLinkCol->m_multiBody->getVelocityVector()[j] * jac[j];
                        }
                        va = cti.m_normal * vel * m_dt;
                    }
                }
                
                const btVector3 vb = c.m_node->m_v * m_dt;
                const btVector3 vr = vb - va;
                const btScalar dn = btDot(vr, cti.m_normal);
                if (1) // in the same CG solve, the set of constraits doesn't change
//                if (dn <= SIMD_EPSILON)
                {
                    // c0 is the impulse matrix, c3 is 1 - the friction coefficient or 0, c4 is the contact hardness coefficient
                    const btVector3 impulse = c.m_c0 *(cti.m_normal * dn);
                    // TODO: only contact is considered here, add friction later
                    
                    // dv = new_impulse + accumulated velocity change in previous CG iterations
                    // so we have the invariant node->m_v = backupVelocity + dv;
                    btVector3 dv = -impulse * c.m_c2/m_dt + c.m_node->m_v - backupVelocity[m_indices[c.m_node]];
                    btScalar dvn = dv.dot(cti.m_normal);
                    m_constrainedValues[m_indices[c.m_node]][0]=(dvn);
                    
                    if (cti.m_colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY)
                    {
                        if (rigidCol)
                            rigidCol->applyImpulse(impulse, c.m_c1);
                    }
                    else if (cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
                    {
                        if (multibodyLinkCol)
                        {
                            double multiplier = 0.5;
                            multibodyLinkCol->m_multiBody->applyDeltaVeeMultiDof(deltaV, -impulse.length() * multiplier);
                        }
                    }
                }
            }
        }
    }
}

void btContactProjection::setConstraintDirections()
{
    // set Dirichlet constraint
    size_t counter = 0;
    for (int i = 0; i < m_softBodies.size(); ++i)
    {
        const btSoftBody* psb = m_softBodies[i];
        for (int j = 0; j < psb->m_nodes.size(); ++j)
        {
            if (psb->m_nodes[j].m_im == 0)
            {
                m_constrainedDirections[counter].push_back(btVector3(1,0,0));
                m_constrainedDirections[counter].push_back(btVector3(0,1,0));
                m_constrainedDirections[counter].push_back(btVector3(0,0,1));
                m_constrainedValues[counter].push_back(0);
                m_constrainedValues[counter].push_back(0);
                m_constrainedValues[counter].push_back(0);
            }
            ++counter;
        }
    }

    for (int i = 0; i < m_softBodies.size(); ++i)
    {
        btSoftBody* psb = m_softBodies[i];
        btMultiBodyJacobianData jacobianData;
        
        int j = 0;
        while (j < psb->m_rcontacts.size())
        {
            const btSoftBody::RContact& c = psb->m_rcontacts[j];
            // skip anchor points
            if (c.m_node->m_im == 0)
            {
                psb->m_rcontacts.removeAtIndex(j);
                continue;
            }
            
            const btSoftBody::sCti& cti = c.m_cti;
            if (cti.m_colObj->hasContactResponse())
            {
                btVector3 va(0, 0, 0);
                btRigidBody* rigidCol = 0;
                btMultiBodyLinkCollider* multibodyLinkCol = 0;
                btScalar* deltaV;
                
                // grab the velocity of the rigid body
                if (cti.m_colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY)
                {
                    rigidCol = (btRigidBody*)btRigidBody::upcast(cti.m_colObj);
                    va = rigidCol ? (rigidCol->getVelocityInLocalPoint(c.m_c1)) * m_dt : btVector3(0, 0, 0);
                }
                else if (cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
                {
                    multibodyLinkCol = (btMultiBodyLinkCollider*)btMultiBodyLinkCollider::upcast(cti.m_colObj);
                    if (multibodyLinkCol)
                    {
                        const int ndof = multibodyLinkCol->m_multiBody->getNumDofs() + 6;
                        jacobianData.m_jacobians.resize(ndof);
                        jacobianData.m_deltaVelocitiesUnitImpulse.resize(ndof);
                        btScalar* jac = &jacobianData.m_jacobians[0];
                        
                        multibodyLinkCol->m_multiBody->fillContactJacobianMultiDof(multibodyLinkCol->m_link, c.m_node->m_x, cti.m_normal, jac, jacobianData.scratch_r, jacobianData.scratch_v, jacobianData.scratch_m);
                        deltaV = &jacobianData.m_deltaVelocitiesUnitImpulse[0];
                        multibodyLinkCol->m_multiBody->calcAccelerationDeltasMultiDof(&jacobianData.m_jacobians[0], deltaV, jacobianData.scratch_r, jacobianData.scratch_v);
                        
                        btScalar vel = 0.0;
                        for (int j = 0; j < ndof; ++j)
                        {
                            vel += multibodyLinkCol->m_multiBody->getVelocityVector()[j] * jac[j];
                        }
                        va = cti.m_normal * vel * m_dt;
                    }
                }
                
                const btVector3 vb = c.m_node->m_v * m_dt;
                const btVector3 vr = vb - va;
                const btScalar dn = btDot(vr, cti.m_normal);
                if (dn < SIMD_EPSILON)
                {
                    ++j;
                    m_constrainedDirections[m_indices[c.m_node]].push_back(cti.m_normal);
                    m_constrainedValues[m_indices[c.m_node]].resize(m_constrainedValues[m_indices[c.m_node]].size()+1);
                    continue;
                }
            }
            psb->m_rcontacts.removeAtIndex(j);
        }
    }
}