summaryrefslogtreecommitdiff
path: root/src/BulletSoftBody/btContactProjection.cpp
blob: e81cb2c502ba0b6c912b86dc07c51af0eb87e3b3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
//
//  btDeformableContactProjection.cpp
//  BulletSoftBody
//
//  Created by Xuchen Han on 7/4/19.
//

#include "btDeformableContactProjection.h"
#include "btDeformableRigidDynamicsWorld.h"
#include <algorithm>
static void findJacobian(const btMultiBodyLinkCollider* multibodyLinkCol,
                         btMultiBodyJacobianData& jacobianData,
                         const btVector3& contact_point,
                         const btVector3& dir)
{
    const int ndof = multibodyLinkCol->m_multiBody->getNumDofs() + 6;
    jacobianData.m_jacobians.resize(ndof);
    jacobianData.m_deltaVelocitiesUnitImpulse.resize(ndof);
    btScalar* jac = &jacobianData.m_jacobians[0];
    
    multibodyLinkCol->m_multiBody->fillContactJacobianMultiDof(multibodyLinkCol->m_link, contact_point, dir, jac, jacobianData.scratch_r, jacobianData.scratch_v, jacobianData.scratch_m);
    multibodyLinkCol->m_multiBody->calcAccelerationDeltasMultiDof(&jacobianData.m_jacobians[0], &jacobianData.m_deltaVelocitiesUnitImpulse[0], jacobianData.scratch_r, jacobianData.scratch_v);
}

static btVector3 generateUnitOrthogonalVector(const btVector3& u)
{
    btScalar ux = u.getX();
    btScalar uy = u.getY();
    btScalar uz = u.getZ();
    btScalar ax = std::abs(ux);
    btScalar ay = std::abs(uy);
    btScalar az = std::abs(uz);
    btVector3 v;
    if (ax <= ay && ax <= az)
        v = btVector3(0, -uz, uy);
    else if (ay <= ax && ay <= az)
        v = btVector3(-uz, 0, ux);
    else
        v = btVector3(-uy, ux, 0);
    v.normalize();
    return v;
}

void btDeformableContactProjection::update()
{
    ///solve rigid body constraints
    m_world->getSolverInfo().m_numIterations = 10;
    m_world->btMultiBodyDynamicsWorld::solveConstraints(m_world->getSolverInfo());

    // loop through constraints to set constrained values
    for (auto& it : m_constraints)
    {
        btAlignedObjectArray<DeformableFrictionConstraint>& frictions = m_frictions[it.first];
        btAlignedObjectArray<DeformableContactConstraint>& constraints = it.second;
        for (int i = 0; i < constraints.size(); ++i)
        {
            DeformableContactConstraint& constraint = constraints[i];
            DeformableFrictionConstraint& friction = frictions[i];
            for (int j = 0; j < constraint.m_contact.size(); ++j)
            {
                if (constraint.m_contact[j] == nullptr)
                {
                    // nothing needs to be done for dirichelet constraints
                    continue;
                }
                const btSoftBody::RContact* c = constraint.m_contact[j];
                const btSoftBody::sCti& cti = c->m_cti;
                
                // normal jacobian is precompute but tangent jacobian is not
                const btMultiBodyJacobianData& jacobianData_normal = constraint.m_normal_jacobian[j];
                const btMultiBodyJacobianData& jacobianData_complementary = friction.m_complementary_jacobian[j];
                
                if (cti.m_colObj->hasContactResponse())
                {
                    btVector3 va(0, 0, 0);
                    btRigidBody* rigidCol = 0;
                    btMultiBodyLinkCollider* multibodyLinkCol = 0;
                    const btScalar* deltaV_normal;
                    
                    // grab the velocity of the rigid body
                    if (cti.m_colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY)
                    {
                        rigidCol = (btRigidBody*)btRigidBody::upcast(cti.m_colObj);
                        va = rigidCol ? (rigidCol->getVelocityInLocalPoint(c->m_c1)) * m_dt : btVector3(0, 0, 0);
                    }
                    else if (cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
                    {
                        multibodyLinkCol = (btMultiBodyLinkCollider*)btMultiBodyLinkCollider::upcast(cti.m_colObj);
                        if (multibodyLinkCol)
                        {
                            const int ndof = multibodyLinkCol->m_multiBody->getNumDofs() + 6;
                            const btScalar* jac_normal = &jacobianData_normal.m_jacobians[0];
                            deltaV_normal = &jacobianData_normal.m_deltaVelocitiesUnitImpulse[0];
                            
                            // add in the normal component of the va
                            btScalar vel = 0.0;
                            for (int k = 0; k < ndof; ++k)
                            {
                                vel += multibodyLinkCol->m_multiBody->getVelocityVector()[k] * jac_normal[k];
                            }
                            va = cti.m_normal * vel * m_dt;
                            
                            // add in complementary direction of va
                            const btScalar* jac_complementary = &jacobianData_complementary.m_jacobians[0];
                            vel = 0.0;
                            for (int k = 0; k < ndof; ++k)
                            {
                                vel += multibodyLinkCol->m_multiBody->getVelocityVector()[k] * jac_complementary[k];
                            }
                            va += friction.m_complementaryDirection[j] * vel * m_dt;
                        }
                    }
                    
                    const btVector3 vb = c->m_node->m_v * m_dt;
                    const btVector3 vr = vb - va;
                    const btScalar dn = btDot(vr, cti.m_normal);
                    btVector3 impulse = c->m_c0 * vr;
                    const btVector3 impulse_normal = c->m_c0 * (cti.m_normal * dn);
                    const btVector3 impulse_tangent = impulse - impulse_normal;
                    
                    // start friction handling
                    // copy old data
                    friction.m_impulse_prev[j] = friction.m_impulse[j];
                    friction.m_dv_prev[j] = friction.m_dv[j];
                    friction.m_static_prev[j] = friction.m_static[j];
                    
                    // get the current tangent direction
                    btScalar local_tangent_norm = impulse_tangent.norm();
                    btVector3 local_tangent_dir = btVector3(0,0,0);
                    if (local_tangent_norm > SIMD_EPSILON)
                        local_tangent_dir = impulse_tangent.normalized();

                    // accumulated impulse on the rb in this and all prev cg iterations
                    constraint.m_accumulated_normal_impulse[j] += impulse_normal.dot(cti.m_normal);
                    const btScalar& accumulated_normal = constraint.m_accumulated_normal_impulse[j];
                    
                    // the total tangential impulse required to stop sliding
                    btVector3 tangent = friction.m_accumulated_tangent_impulse[j] + impulse_tangent;
                    btScalar tangent_norm = tangent.norm();
  
                    if (accumulated_normal < 0)
                    {
                        friction.m_direction[j] = -local_tangent_dir;
                        // do not allow switching from static friction to dynamic friction
                        // it causes cg to explode
                        if (-accumulated_normal*c->m_c3 < tangent_norm && friction.m_static_prev[j] == false && friction.m_released[j] == false)
                        {
                            friction.m_static[j] = false;
                            friction.m_impulse[j] = -accumulated_normal*c->m_c3;
                        }
                        else
                        {
                            friction.m_static[j] = true;
                            friction.m_impulse[j] = tangent_norm;
                        }
                    }
                    else
                    {
                        friction.m_released[j] = true;
                        friction.m_static[j] = false;
                        friction.m_impulse[j] = 0;
                        friction.m_direction[j] = btVector3(0,0,0);
                    }
                    friction.m_dv[j] = friction.m_impulse[j] * c->m_c2/m_dt;
                    friction.m_accumulated_tangent_impulse[j] = -friction.m_impulse[j] * friction.m_direction[j];
                    
                    // the incremental impulse applied to rb in the tangential direction
                    btVector3 incremental_tangent = (friction.m_impulse_prev[j] * friction.m_direction_prev[j])-(friction.m_impulse[j] * friction.m_direction[j]);
                    
                    // TODO cleanup
                    if (1) // in the same CG solve, the set of constraits doesn't change
                    {
                        // c0 is the impulse matrix, c3 is 1 - the friction coefficient or 0, c4 is the contact hardness coefficient
                        
                        // dv = new_impulse + accumulated velocity change in previous CG iterations
                        // so we have the invariant node->m_v = backupVelocity + dv;

                        btScalar dvn = -accumulated_normal * c->m_c2/m_dt;
                        
                        // the following is equivalent
                        /*
                            btVector3 dv = -impulse_normal * c->m_c2/m_dt + c->m_node->m_v - backupVelocity[m_indices[c->m_node]];
                            btScalar dvn = dv.dot(cti.m_normal);
                         */
                        
                        constraint.m_value[j] = dvn;
                        
                        // the incremental impulse:
                        // in the normal direction it's the normal component of "impulse"
                        // in the tangent direction it's the difference between the frictional impulse in the iteration and the previous iteration
                        impulse = impulse_normal + incremental_tangent;
                        if (cti.m_colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY)
                        {
                            if (rigidCol)
                                rigidCol->applyImpulse(impulse, c->m_c1);
                        }
                        else if (cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
                        {
                            
                            if (multibodyLinkCol)
                            {
                                double multiplier = 1;
                                multibodyLinkCol->m_multiBody->applyDeltaVeeMultiDof(deltaV_normal, -impulse_normal.length() * multiplier);
                                
                                if (incremental_tangent.norm() > SIMD_EPSILON)
                                {
                                    btMultiBodyJacobianData jacobian_tangent;
                                    btVector3 tangent = incremental_tangent.normalized();
                                    findJacobian(multibodyLinkCol, jacobian_tangent, c->m_node->m_x, tangent);
                                    const btScalar* deltaV_tangent = &jacobian_tangent.m_deltaVelocitiesUnitImpulse[0];
                                    multibodyLinkCol->m_multiBody->applyDeltaVeeMultiDof(deltaV_tangent, incremental_tangent.length() * multiplier);
                                }
                            }
                        }
                    }
                }
            }
        }
    }
}

void btDeformableContactProjection::setConstraints()
{
    // set Dirichlet constraint
    for (int i = 0; i < m_softBodies.size(); ++i)
    {
        btSoftBody* psb = m_softBodies[i];
        for (int j = 0; j < psb->m_nodes.size(); ++j)
        {
            if (psb->m_nodes[j].m_im == 0)
            {
                btAlignedObjectArray<DeformableContactConstraint> c;
                c.push_back(DeformableContactConstraint(btVector3(1,0,0)));
                c.push_back(DeformableContactConstraint(btVector3(0,1,0)));
                c.push_back(DeformableContactConstraint(btVector3(0,0,1)));
                m_constraints[&(psb->m_nodes[j])] = c;
                
                btAlignedObjectArray<DeformableFrictionConstraint> f;
                f.push_back(DeformableFrictionConstraint());
                f.push_back(DeformableFrictionConstraint());
                f.push_back(DeformableFrictionConstraint());
                m_frictions[&(psb->m_nodes[j])] = f;
            }
        }
    }

    for (int i = 0; i < m_softBodies.size(); ++i)
    {
        btSoftBody* psb = m_softBodies[i];
        btMultiBodyJacobianData jacobianData_normal;
        btMultiBodyJacobianData jacobianData_complementary;
        
        for (int j = 0; j < psb->m_rcontacts.size(); ++j)
        {
            const btSoftBody::RContact& c = psb->m_rcontacts[j];
            // skip anchor points
            if (c.m_node->m_im == 0)
            {
                continue;
            }
            
            const btSoftBody::sCti& cti = c.m_cti;
            if (cti.m_colObj->hasContactResponse())
            {
                btVector3 va(0, 0, 0);
                btRigidBody* rigidCol = 0;
                btMultiBodyLinkCollider* multibodyLinkCol = 0;
                
                // grab the velocity of the rigid body
                if (cti.m_colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY)
                {
                    rigidCol = (btRigidBody*)btRigidBody::upcast(cti.m_colObj);
                    va = rigidCol ? (rigidCol->getVelocityInLocalPoint(c.m_c1)) * m_dt : btVector3(0, 0, 0);
                }
                else if (cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
                {
                    multibodyLinkCol = (btMultiBodyLinkCollider*)btMultiBodyLinkCollider::upcast(cti.m_colObj);
                    if (multibodyLinkCol)
                    {
                        findJacobian(multibodyLinkCol, jacobianData_normal, c.m_node->m_x, cti.m_normal);
                        btScalar vel = 0.0;
                        const btScalar* jac = &jacobianData_normal.m_jacobians[0];
                        const int ndof = multibodyLinkCol->m_multiBody->getNumDofs() + 6;
                        for (int j = 0; j < ndof; ++j)
                        {
                            vel += multibodyLinkCol->m_multiBody->getVelocityVector()[j] * jac[j];
                            std::cout << multibodyLinkCol->m_multiBody->getVelocityVector()[j] << std::endl;
                            std::cout << jac[j] << std::endl;
                        }
                        va = cti.m_normal * vel * m_dt;
                    }
                }
                
                const btVector3 vb = c.m_node->m_v * m_dt;
                const btVector3 vr = vb - va;
                const btScalar dn = btDot(vr, cti.m_normal);
                if (dn < SIMD_EPSILON)
                {
                    // find complementary jacobian
                    btVector3 complementaryDirection;
                    if (cti.m_colObj->getInternalType() == btCollisionObject::CO_FEATHERSTONE_LINK)
                    {
                        multibodyLinkCol = (btMultiBodyLinkCollider*)btMultiBodyLinkCollider::upcast(cti.m_colObj);
                        if (multibodyLinkCol)
                        {
                            complementaryDirection = generateUnitOrthogonalVector(cti.m_normal);
                            findJacobian(multibodyLinkCol, jacobianData_complementary, c.m_node->m_x, complementaryDirection);
                        }
                    }
                    
                    if (m_constraints.find(c.m_node) == m_constraints.end())
                    {
                        btAlignedObjectArray<DeformableContactConstraint> constraints;
                        constraints.push_back(DeformableContactConstraint(c, jacobianData_normal));
                        m_constraints[c.m_node] = constraints;
                        btAlignedObjectArray<DeformableFrictionConstraint> frictions;
                        frictions.push_back(DeformableFrictionConstraint(complementaryDirection, jacobianData_complementary));
                        m_frictions[c.m_node] = frictions;
                    }
                    else
                    {
                        // group colinear constraints into one
                        const btScalar angle_epsilon = 0.015192247; // less than 10 degree
                        bool merged = false;
                        btAlignedObjectArray<DeformableContactConstraint>& constraints = m_constraints[c.m_node];
                        btAlignedObjectArray<DeformableFrictionConstraint>& frictions = m_frictions[c.m_node];
                        for (int j = 0; j < constraints.size(); ++j)
                        {
                            const btAlignedObjectArray<btVector3>& dirs = constraints[j].m_direction;
                            btScalar dot_prod = dirs[0].dot(cti.m_normal);
                            if (std::abs(std::abs(dot_prod) - 1) < angle_epsilon)
                            {
                                // group the constraints
                                constraints[j].append(c, jacobianData_normal);
                                // push in an empty friction
                                frictions[j].append();
                                frictions[j].addJacobian(complementaryDirection, jacobianData_complementary);
                                merged = true;
                                break;
                            }
                        }
                        const int dim = 3;
                        // hard coded no more than 3 constraint directions
                        if (!merged && constraints.size() < dim)
                        {
                            constraints.push_back(DeformableContactConstraint(c, jacobianData_normal));
                            frictions.push_back(DeformableFrictionConstraint(complementaryDirection, jacobianData_complementary));
                        }
                    }
                }
            }
        }
    }
}

void btDeformableContactProjection::enforceConstraint(TVStack& x)
{
    const int dim = 3;
    for (auto& it : m_constraints)
    {
        const btAlignedObjectArray<DeformableContactConstraint>& constraints = it.second;
        size_t i = m_indices[it.first];
        const btAlignedObjectArray<DeformableFrictionConstraint>& frictions = m_frictions[it.first];
        btAssert(constraints.size() <= dim);
        btAssert(constraints.size() > 0);
        if (constraints.size() == 1)
        {
            x[i] -= x[i].dot(constraints[0].m_direction[0]) * constraints[0].m_direction[0];
            for (int j = 0; j < constraints[0].m_direction.size(); ++j)
                x[i] += constraints[0].m_value[j] * constraints[0].m_direction[j];
        }
        else if (constraints.size() == 2)
        {
            btVector3 free_dir = btCross(constraints[0].m_direction[0], constraints[1].m_direction[0]);
            btAssert(free_dir.norm() > SIMD_EPSILON)
            free_dir.normalize();
            x[i] = x[i].dot(free_dir) * free_dir;
            for (int j = 0; j < constraints.size(); ++j)
            {
                for (int k = 0; k < constraints[j].m_direction.size(); ++k)
                {
                    x[i] += constraints[j].m_value[k] * constraints[j].m_direction[k];
                }
            }
            
        }
        else
        {
            x[i].setZero();
            for (int j = 0; j < constraints.size(); ++j)
            {
                for (int k = 0; k < constraints[j].m_direction.size(); ++k)
                {
                    x[i] += constraints[j].m_value[k] * constraints[j].m_direction[k];
                }
            }
        }
        
        // apply friction if the node is not constrained in all directions
        if (constraints.size() < 3)
        {
            for (int f = 0; f < frictions.size(); ++f)
            {
                const DeformableFrictionConstraint& friction= frictions[f];
                for (int j = 0; j < friction.m_direction.size(); ++j)
                {
                    // clear the old constraint
                    if (friction.m_static_prev[j] == true)
                    {
                        x[i] -= friction.m_direction_prev[j] * friction.m_dv_prev[j];
                    }
                    // add the new constraint
                    if (friction.m_static[j] == true)
                    {
                        x[i] += friction.m_direction[j] * friction.m_dv[j];
                    }
                }
            }
        }
    }
}

void btDeformableContactProjection::project(TVStack& x)
{
    const int dim = 3;
    for (auto& it : m_constraints)
    {
        const btAlignedObjectArray<DeformableContactConstraint>& constraints = it.second;
        size_t i = m_indices[it.first];
        btAlignedObjectArray<DeformableFrictionConstraint>& frictions = m_frictions[it.first];
        btAssert(constraints.size() <= dim);
        btAssert(constraints.size() > 0);
        if (constraints.size() == 1)
        {
            x[i] -= x[i].dot(constraints[0].m_direction[0]) * constraints[0].m_direction[0];
        }
        else if (constraints.size() == 2)
        {
            btVector3 free_dir = btCross(constraints[0].m_direction[0], constraints[1].m_direction[0]);
            btAssert(free_dir.norm() > SIMD_EPSILON)
            free_dir.normalize();
            x[i] = x[i].dot(free_dir) * free_dir;
        }
        else
            x[i].setZero();
        
        // apply friction if the node is not constrained in all directions
        if (constraints.size() < 3)
        {
            bool has_static_constraint = false;
            for (int f = 0; f < frictions.size(); ++f)
            {
                DeformableFrictionConstraint& friction= frictions[f];
                for (int j = 0; j < friction.m_static.size(); ++j)
                    has_static_constraint = has_static_constraint || friction.m_static[j];
            }
            
            for (int f = 0; f < frictions.size(); ++f)
            {
                DeformableFrictionConstraint& friction= frictions[f];
                for (int j = 0; j < friction.m_direction.size(); ++j)
                {
                    // clear the old friction force
                    if (friction.m_static_prev[j] == false)
                    {
                        x[i] -= friction.m_direction_prev[j] * friction.m_impulse_prev[j];
                    }
                    
                    // only add to the rhs if there is no static friction constraint on the node
                    if (friction.m_static[j] == false && !has_static_constraint)
                    {
                        x[i] += friction.m_direction[j] * friction.m_impulse[j];
                    }
                }
            }
        }
    }
}

void btDeformableContactProjection::reinitialize(bool nodeUpdated)
{
    btCGProjection::reinitialize(nodeUpdated);
    m_constraints.clear();
    m_frictions.clear();
}