summaryrefslogtreecommitdiff
path: root/src/BulletSoftBody/BulletReducedDeformableBody/btReducedDeformableBodySolver.cpp
blob: 1418cc2476454183d6cfff99fb0b9ab14ef7eaa6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
#include "btReducedDeformableBodySolver.h"
#include "btReducedDeformableBody.h"

btReducedDeformableBodySolver::btReducedDeformableBodySolver()
{
  m_ascendOrder = true;
  m_reducedSolver = true;
  m_dampingAlpha = 0;
  m_dampingBeta = 0;
  m_gravity = btVector3(0, 0, 0);
}

void btReducedDeformableBodySolver::setGravity(const btVector3& gravity)
{
  m_gravity = gravity;
}

void btReducedDeformableBodySolver::reinitialize(const btAlignedObjectArray<btSoftBody*>& bodies, btScalar dt)
{
  m_softBodies.copyFromArray(bodies);
	bool nodeUpdated = updateNodes();

	if (nodeUpdated)
	{
		m_dv.resize(m_numNodes, btVector3(0, 0, 0));
		m_ddv.resize(m_numNodes, btVector3(0, 0, 0));
		m_residual.resize(m_numNodes, btVector3(0, 0, 0));
		m_backupVelocity.resize(m_numNodes, btVector3(0, 0, 0));
	}

	// need to setZero here as resize only set value for newly allocated items
	for (int i = 0; i < m_numNodes; ++i)
	{
		m_dv[i].setZero();
		m_ddv[i].setZero();
		m_residual[i].setZero();
	}

	if (dt > 0)
	{
		m_dt = dt;
	}
	m_objective->reinitialize(nodeUpdated, dt);

  int N = bodies.size();
	if (nodeUpdated)
	{
		m_staticConstraints.resize(N);
		m_nodeRigidConstraints.resize(N);
		// m_faceRigidConstraints.resize(N);
	}
	for (int i = 0; i < N; ++i)
	{
		m_staticConstraints[i].clear();
		m_nodeRigidConstraints[i].clear();
		// m_faceRigidConstraints[i].clear();
	}

  for (int i = 0; i < m_softBodies.size(); ++i)
  {
    btReducedDeformableBody* rsb = static_cast<btReducedDeformableBody*>(m_softBodies[i]);
    rsb->m_contactNodesList.clear();
  }

  // set node index offsets
  int sum = 0;
  for (int i = 0; i < m_softBodies.size(); ++i)
  {
    btReducedDeformableBody* rsb = static_cast<btReducedDeformableBody*>(m_softBodies[i]);
    rsb->m_nodeIndexOffset = sum;
    sum += rsb->m_nodes.size();
  }

	btDeformableBodySolver::updateSoftBodies();
}

void btReducedDeformableBodySolver::predictMotion(btScalar solverdt)
{
  applyExplicitForce(solverdt);

  // predict new mesh location
  predictReduceDeformableMotion(solverdt);

  //TODO: check if there is anything missed from btDeformableBodySolver::predictDeformableMotion
}

void btReducedDeformableBodySolver::predictReduceDeformableMotion(btScalar solverdt)
{
  for (int i = 0; i < m_softBodies.size(); ++i)
  {
    btReducedDeformableBody* rsb = static_cast<btReducedDeformableBody*>(m_softBodies[i]);
    if (!rsb->isActive())
    {
      continue;
    }

    // clear contacts variables
		rsb->m_nodeRigidContacts.resize(0);
		rsb->m_faceRigidContacts.resize(0);
		rsb->m_faceNodeContacts.resize(0);
    
    // calculate inverse mass matrix for all nodes
    for (int j = 0; j < rsb->m_nodes.size(); ++j)
    {
      if (rsb->m_nodes[j].m_im > 0)
      {
        rsb->m_nodes[j].m_effectiveMass_inv = rsb->m_nodes[j].m_effectiveMass.inverse();
      }
    }

    // rigid motion: t, R at time^*
    rsb->predictIntegratedTransform(solverdt, rsb->getInterpolationWorldTransform());

    // update reduced dofs at time^*
    // rsb->updateReducedDofs(solverdt);

    // update local moment arm at time^*
    // rsb->updateLocalMomentArm();
    // rsb->updateExternalForceProjectMatrix(true);

    // predict full space velocity at time^* (needed for constraints)
    rsb->mapToFullVelocity(rsb->getInterpolationWorldTransform());

    // update full space nodal position at time^*
    rsb->mapToFullPosition(rsb->getInterpolationWorldTransform());

    // update bounding box
    rsb->updateBounds();

    // update tree
    rsb->updateNodeTree(true, true);
    if (!rsb->m_fdbvt.empty())
    {
      rsb->updateFaceTree(true, true);
    }
  }
}

void btReducedDeformableBodySolver::applyExplicitForce(btScalar solverdt)
{
  for (int i = 0; i < m_softBodies.size(); ++i)
  {
    btReducedDeformableBody* rsb = static_cast<btReducedDeformableBody*>(m_softBodies[i]);

    // apply gravity to the rigid frame, get m_linearVelocity at time^*
    rsb->applyRigidGravity(m_gravity, solverdt);

    if (!rsb->isReducedModesOFF())
    {
      // add internal force (elastic force & damping force)
      rsb->applyReducedElasticForce(rsb->m_reducedDofsBuffer);
      rsb->applyReducedDampingForce(rsb->m_reducedVelocityBuffer);

      // get reduced velocity at time^* 
      rsb->updateReducedVelocity(solverdt);
    }

    // apply damping (no need at this point)
    // rsb->applyDamping(solverdt);
  }
}

void btReducedDeformableBodySolver::applyTransforms(btScalar timeStep)
{
  for (int i = 0; i < m_softBodies.size(); ++i)
  {
    btReducedDeformableBody* rsb = static_cast<btReducedDeformableBody*>(m_softBodies[i]);

    // rigid motion
    rsb->proceedToTransform(timeStep, true);

    if (!rsb->isReducedModesOFF())
    {
      // update reduced dofs for time^n+1
      rsb->updateReducedDofs(timeStep);

      // update local moment arm for time^n+1
      rsb->updateLocalMomentArm();
      rsb->updateExternalForceProjectMatrix(true);
    }

    // update mesh nodal positions for time^n+1
    rsb->mapToFullPosition(rsb->getRigidTransform());

    // update mesh nodal velocity
    rsb->mapToFullVelocity(rsb->getRigidTransform());

    // end of time step clean up and update
    rsb->endOfTimeStepZeroing();

    // update the rendering mesh
    rsb->interpolateRenderMesh();
  }
}

void btReducedDeformableBodySolver::setConstraints(const btContactSolverInfo& infoGlobal)
{
  for (int i = 0; i < m_softBodies.size(); ++i)
  {
    btReducedDeformableBody* rsb = static_cast<btReducedDeformableBody*>(m_softBodies[i]);
    if (!rsb->isActive())
		{
			continue;
		}

    // set fixed constraints
    for (int j = 0; j < rsb->m_fixedNodes.size(); ++j)
		{
      int i_node = rsb->m_fixedNodes[j];
			if (rsb->m_nodes[i_node].m_im == 0)
			{
        for (int k = 0; k < 3; ++k)
        {
          btVector3 dir(0, 0, 0);
          dir[k] = 1;
          btReducedDeformableStaticConstraint static_constraint(rsb, &rsb->m_nodes[i_node], rsb->getRelativePos(i_node), rsb->m_x0[i_node], dir, infoGlobal, m_dt);
          m_staticConstraints[i].push_back(static_constraint);
        }
			}
		}
    btAssert(rsb->m_fixedNodes.size() * 3 == m_staticConstraints[i].size());

    // set Deformable Node vs. Rigid constraint
		for (int j = 0; j < rsb->m_nodeRigidContacts.size(); ++j)
		{
			const btSoftBody::DeformableNodeRigidContact& contact = rsb->m_nodeRigidContacts[j];
			// skip fixed points
			if (contact.m_node->m_im == 0)
			{
				continue;
			}
			btReducedDeformableNodeRigidContactConstraint constraint(rsb, contact, infoGlobal, m_dt);
			m_nodeRigidConstraints[i].push_back(constraint);
      rsb->m_contactNodesList.push_back(contact.m_node->index - rsb->m_nodeIndexOffset);
		}
    // std::cout << "contact node list size: " << rsb->m_contactNodesList.size() << "\n";
    // std::cout << "#contact nodes: " << m_nodeRigidConstraints[i].size() << "\n";

  }
}

btScalar btReducedDeformableBodySolver::solveContactConstraints(btCollisionObject** deformableBodies, int numDeformableBodies, const btContactSolverInfo& infoGlobal)
{
  btScalar residualSquare = 0;

  for (int i = 0; i < m_softBodies.size(); ++i)
  {
    btAlignedObjectArray<int> m_orderNonContactConstraintPool;
    btAlignedObjectArray<int> m_orderContactConstraintPool;

    btReducedDeformableBody* rsb = static_cast<btReducedDeformableBody*>(m_softBodies[i]);

    // shuffle the order of applying constraint
    m_orderNonContactConstraintPool.resize(m_staticConstraints[i].size());
    m_orderContactConstraintPool.resize(m_nodeRigidConstraints[i].size());
    if (infoGlobal.m_solverMode & SOLVER_RANDMIZE_ORDER)
    {
      // fixed constraint order
      for (int j = 0; j < m_staticConstraints[i].size(); ++j)
      {
        m_orderNonContactConstraintPool[j] = m_ascendOrder ? j : m_staticConstraints[i].size() - 1 - j;
      }
      // contact constraint order
      for (int j = 0; j < m_nodeRigidConstraints[i].size(); ++j)
      {
        m_orderContactConstraintPool[j] = m_ascendOrder ? j : m_nodeRigidConstraints[i].size() - 1 - j;
      }

      m_ascendOrder = m_ascendOrder ? false : true;
    }
    else
    {
      for (int j = 0; j < m_staticConstraints[i].size(); ++j)
      {
        m_orderNonContactConstraintPool[j] = j;
      }
      // contact constraint order
      for (int j = 0; j < m_nodeRigidConstraints[i].size(); ++j)
      {
        m_orderContactConstraintPool[j] = j;
      }
    }

    // handle fixed constraint
    for (int k = 0; k < m_staticConstraints[i].size(); ++k)
    {
      btReducedDeformableStaticConstraint& constraint = m_staticConstraints[i][m_orderNonContactConstraintPool[k]];
      btScalar localResidualSquare = constraint.solveConstraint(infoGlobal);
      residualSquare = btMax(residualSquare, localResidualSquare);
    }

    // handle contact constraint

    // node vs rigid contact
    // std::cout << "!!#contact_nodes: " << m_nodeRigidConstraints[i].size() << '\n';
    for (int k = 0; k < m_nodeRigidConstraints[i].size(); ++k)
    {
      btReducedDeformableNodeRigidContactConstraint& constraint = m_nodeRigidConstraints[i][m_orderContactConstraintPool[k]];
      btScalar localResidualSquare = constraint.solveConstraint(infoGlobal);
      residualSquare = btMax(residualSquare, localResidualSquare);
    }

    // face vs rigid contact
    // for (int k = 0; k < m_faceRigidConstraints[i].size(); ++k)
    // {
    // 	btReducedDeformableFaceRigidContactConstraint& constraint = m_faceRigidConstraints[i][k];
    // 	btScalar localResidualSquare = constraint.solveConstraint(infoGlobal);
    // 	residualSquare = btMax(residualSquare, localResidualSquare);
    // }
  }

  
	return residualSquare;
}

void btReducedDeformableBodySolver::deformableBodyInternalWriteBack()
{
  // reduced deformable update
  for (int i = 0; i < m_softBodies.size(); ++i)
  {
    btReducedDeformableBody* rsb = static_cast<btReducedDeformableBody*>(m_softBodies[i]);
    rsb->applyInternalVelocityChanges();
  }
  m_ascendOrder = true;
}