summaryrefslogtreecommitdiff
path: root/src/BulletDynamics/ConstraintSolver/btHingeConstraint.cpp
blob: aa6f69000d25afcbf7b3a5eb322819414a7f0b32 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  http://continuousphysics.com/Bullet/

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#include "btHingeConstraint.h"
#include "BulletDynamics/Dynamics/btRigidBody.h"
#include "LinearMath/btTransformUtil.h"
#include "LinearMath/btMinMax.h"
#include <new>
#include "btSolverBody.h"

//#define HINGE_USE_OBSOLETE_SOLVER false
#define HINGE_USE_OBSOLETE_SOLVER false

#define HINGE_USE_FRAME_OFFSET true

#ifndef __SPU__

btHingeConstraint::btHingeConstraint(btRigidBody& rbA, btRigidBody& rbB, const btVector3& pivotInA, const btVector3& pivotInB,
									 const btVector3& axisInA, const btVector3& axisInB, bool useReferenceFrameA)
	: btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA, rbB),
#ifdef _BT_USE_CENTER_LIMIT_
	  m_limit(),
#endif
	  m_angularOnly(false),
	  m_enableAngularMotor(false),
	  m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER),
	  m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET),
	  m_useReferenceFrameA(useReferenceFrameA),
	  m_flags(0),
	  m_normalCFM(0),
	  m_normalERP(0),
	  m_stopCFM(0),
	  m_stopERP(0)
{
	m_rbAFrame.getOrigin() = pivotInA;

	// since no frame is given, assume this to be zero angle and just pick rb transform axis
	btVector3 rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(0);

	btVector3 rbAxisA2;
	btScalar projection = axisInA.dot(rbAxisA1);
	if (projection >= 1.0f - SIMD_EPSILON)
	{
		rbAxisA1 = -rbA.getCenterOfMassTransform().getBasis().getColumn(2);
		rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1);
	}
	else if (projection <= -1.0f + SIMD_EPSILON)
	{
		rbAxisA1 = rbA.getCenterOfMassTransform().getBasis().getColumn(2);
		rbAxisA2 = rbA.getCenterOfMassTransform().getBasis().getColumn(1);
	}
	else
	{
		rbAxisA2 = axisInA.cross(rbAxisA1);
		rbAxisA1 = rbAxisA2.cross(axisInA);
	}

	m_rbAFrame.getBasis().setValue(rbAxisA1.getX(), rbAxisA2.getX(), axisInA.getX(),
								   rbAxisA1.getY(), rbAxisA2.getY(), axisInA.getY(),
								   rbAxisA1.getZ(), rbAxisA2.getZ(), axisInA.getZ());

	btQuaternion rotationArc = shortestArcQuat(axisInA, axisInB);
	btVector3 rbAxisB1 = quatRotate(rotationArc, rbAxisA1);
	btVector3 rbAxisB2 = axisInB.cross(rbAxisB1);

	m_rbBFrame.getOrigin() = pivotInB;
	m_rbBFrame.getBasis().setValue(rbAxisB1.getX(), rbAxisB2.getX(), axisInB.getX(),
								   rbAxisB1.getY(), rbAxisB2.getY(), axisInB.getY(),
								   rbAxisB1.getZ(), rbAxisB2.getZ(), axisInB.getZ());

#ifndef _BT_USE_CENTER_LIMIT_
	//start with free
	m_lowerLimit = btScalar(1.0f);
	m_upperLimit = btScalar(-1.0f);
	m_biasFactor = 0.3f;
	m_relaxationFactor = 1.0f;
	m_limitSoftness = 0.9f;
	m_solveLimit = false;
#endif
	m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f);
}

btHingeConstraint::btHingeConstraint(btRigidBody& rbA, const btVector3& pivotInA, const btVector3& axisInA, bool useReferenceFrameA)
	: btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA),
#ifdef _BT_USE_CENTER_LIMIT_
	  m_limit(),
#endif
	  m_angularOnly(false),
	  m_enableAngularMotor(false),
	  m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER),
	  m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET),
	  m_useReferenceFrameA(useReferenceFrameA),
	  m_flags(0),
	  m_normalCFM(0),
	  m_normalERP(0),
	  m_stopCFM(0),
	  m_stopERP(0)
{
	// since no frame is given, assume this to be zero angle and just pick rb transform axis
	// fixed axis in worldspace
	btVector3 rbAxisA1, rbAxisA2;
	btPlaneSpace1(axisInA, rbAxisA1, rbAxisA2);

	m_rbAFrame.getOrigin() = pivotInA;
	m_rbAFrame.getBasis().setValue(rbAxisA1.getX(), rbAxisA2.getX(), axisInA.getX(),
								   rbAxisA1.getY(), rbAxisA2.getY(), axisInA.getY(),
								   rbAxisA1.getZ(), rbAxisA2.getZ(), axisInA.getZ());

	btVector3 axisInB = rbA.getCenterOfMassTransform().getBasis() * axisInA;

	btQuaternion rotationArc = shortestArcQuat(axisInA, axisInB);
	btVector3 rbAxisB1 = quatRotate(rotationArc, rbAxisA1);
	btVector3 rbAxisB2 = axisInB.cross(rbAxisB1);

	m_rbBFrame.getOrigin() = rbA.getCenterOfMassTransform()(pivotInA);
	m_rbBFrame.getBasis().setValue(rbAxisB1.getX(), rbAxisB2.getX(), axisInB.getX(),
								   rbAxisB1.getY(), rbAxisB2.getY(), axisInB.getY(),
								   rbAxisB1.getZ(), rbAxisB2.getZ(), axisInB.getZ());

#ifndef _BT_USE_CENTER_LIMIT_
	//start with free
	m_lowerLimit = btScalar(1.0f);
	m_upperLimit = btScalar(-1.0f);
	m_biasFactor = 0.3f;
	m_relaxationFactor = 1.0f;
	m_limitSoftness = 0.9f;
	m_solveLimit = false;
#endif
	m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f);
}

btHingeConstraint::btHingeConstraint(btRigidBody& rbA, btRigidBody& rbB,
									 const btTransform& rbAFrame, const btTransform& rbBFrame, bool useReferenceFrameA)
	: btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA, rbB), m_rbAFrame(rbAFrame), m_rbBFrame(rbBFrame),
#ifdef _BT_USE_CENTER_LIMIT_
	  m_limit(),
#endif
	  m_angularOnly(false),
	  m_enableAngularMotor(false),
	  m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER),
	  m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET),
	  m_useReferenceFrameA(useReferenceFrameA),
	  m_flags(0),
	  m_normalCFM(0),
	  m_normalERP(0),
	  m_stopCFM(0),
	  m_stopERP(0)
{
#ifndef _BT_USE_CENTER_LIMIT_
	//start with free
	m_lowerLimit = btScalar(1.0f);
	m_upperLimit = btScalar(-1.0f);
	m_biasFactor = 0.3f;
	m_relaxationFactor = 1.0f;
	m_limitSoftness = 0.9f;
	m_solveLimit = false;
#endif
	m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f);
}

btHingeConstraint::btHingeConstraint(btRigidBody& rbA, const btTransform& rbAFrame, bool useReferenceFrameA)
	: btTypedConstraint(HINGE_CONSTRAINT_TYPE, rbA), m_rbAFrame(rbAFrame), m_rbBFrame(rbAFrame),
#ifdef _BT_USE_CENTER_LIMIT_
	  m_limit(),
#endif
	  m_angularOnly(false),
	  m_enableAngularMotor(false),
	  m_useSolveConstraintObsolete(HINGE_USE_OBSOLETE_SOLVER),
	  m_useOffsetForConstraintFrame(HINGE_USE_FRAME_OFFSET),
	  m_useReferenceFrameA(useReferenceFrameA),
	  m_flags(0),
	  m_normalCFM(0),
	  m_normalERP(0),
	  m_stopCFM(0),
	  m_stopERP(0)
{
	///not providing rigidbody B means implicitly using worldspace for body B

	m_rbBFrame.getOrigin() = m_rbA.getCenterOfMassTransform()(m_rbAFrame.getOrigin());
#ifndef _BT_USE_CENTER_LIMIT_
	//start with free
	m_lowerLimit = btScalar(1.0f);
	m_upperLimit = btScalar(-1.0f);
	m_biasFactor = 0.3f;
	m_relaxationFactor = 1.0f;
	m_limitSoftness = 0.9f;
	m_solveLimit = false;
#endif
	m_referenceSign = m_useReferenceFrameA ? btScalar(-1.f) : btScalar(1.f);
}

void btHingeConstraint::buildJacobian()
{
	if (m_useSolveConstraintObsolete)
	{
		m_appliedImpulse = btScalar(0.);
		m_accMotorImpulse = btScalar(0.);

		if (!m_angularOnly)
		{
			btVector3 pivotAInW = m_rbA.getCenterOfMassTransform() * m_rbAFrame.getOrigin();
			btVector3 pivotBInW = m_rbB.getCenterOfMassTransform() * m_rbBFrame.getOrigin();
			btVector3 relPos = pivotBInW - pivotAInW;

			btVector3 normal[3];
			if (relPos.length2() > SIMD_EPSILON)
			{
				normal[0] = relPos.normalized();
			}
			else
			{
				normal[0].setValue(btScalar(1.0), 0, 0);
			}

			btPlaneSpace1(normal[0], normal[1], normal[2]);

			for (int i = 0; i < 3; i++)
			{
				new (&m_jac[i]) btJacobianEntry(
					m_rbA.getCenterOfMassTransform().getBasis().transpose(),
					m_rbB.getCenterOfMassTransform().getBasis().transpose(),
					pivotAInW - m_rbA.getCenterOfMassPosition(),
					pivotBInW - m_rbB.getCenterOfMassPosition(),
					normal[i],
					m_rbA.getInvInertiaDiagLocal(),
					m_rbA.getInvMass(),
					m_rbB.getInvInertiaDiagLocal(),
					m_rbB.getInvMass());
			}
		}

		//calculate two perpendicular jointAxis, orthogonal to hingeAxis
		//these two jointAxis require equal angular velocities for both bodies

		//this is unused for now, it's a todo
		btVector3 jointAxis0local;
		btVector3 jointAxis1local;

		btPlaneSpace1(m_rbAFrame.getBasis().getColumn(2), jointAxis0local, jointAxis1local);

		btVector3 jointAxis0 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis0local;
		btVector3 jointAxis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * jointAxis1local;
		btVector3 hingeAxisWorld = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2);

		new (&m_jacAng[0]) btJacobianEntry(jointAxis0,
										   m_rbA.getCenterOfMassTransform().getBasis().transpose(),
										   m_rbB.getCenterOfMassTransform().getBasis().transpose(),
										   m_rbA.getInvInertiaDiagLocal(),
										   m_rbB.getInvInertiaDiagLocal());

		new (&m_jacAng[1]) btJacobianEntry(jointAxis1,
										   m_rbA.getCenterOfMassTransform().getBasis().transpose(),
										   m_rbB.getCenterOfMassTransform().getBasis().transpose(),
										   m_rbA.getInvInertiaDiagLocal(),
										   m_rbB.getInvInertiaDiagLocal());

		new (&m_jacAng[2]) btJacobianEntry(hingeAxisWorld,
										   m_rbA.getCenterOfMassTransform().getBasis().transpose(),
										   m_rbB.getCenterOfMassTransform().getBasis().transpose(),
										   m_rbA.getInvInertiaDiagLocal(),
										   m_rbB.getInvInertiaDiagLocal());

		// clear accumulator
		m_accLimitImpulse = btScalar(0.);

		// test angular limit
		testLimit(m_rbA.getCenterOfMassTransform(), m_rbB.getCenterOfMassTransform());

		//Compute K = J*W*J' for hinge axis
		btVector3 axisA = getRigidBodyA().getCenterOfMassTransform().getBasis() * m_rbAFrame.getBasis().getColumn(2);
		m_kHinge = 1.0f / (getRigidBodyA().computeAngularImpulseDenominator(axisA) +
						   getRigidBodyB().computeAngularImpulseDenominator(axisA));
	}
}

#endif  //__SPU__

static inline btScalar btNormalizeAnglePositive(btScalar angle)
{
	return btFmod(btFmod(angle, btScalar(2.0 * SIMD_PI)) + btScalar(2.0 * SIMD_PI), btScalar(2.0 * SIMD_PI));
}

static btScalar btShortestAngularDistance(btScalar accAngle, btScalar curAngle)
{
	btScalar result = btNormalizeAngle(btNormalizeAnglePositive(btNormalizeAnglePositive(curAngle) -
																btNormalizeAnglePositive(accAngle)));
	return result;
}

static btScalar btShortestAngleUpdate(btScalar accAngle, btScalar curAngle)
{
	btScalar tol(0.3);
	btScalar result = btShortestAngularDistance(accAngle, curAngle);

	if (btFabs(result) > tol)
		return curAngle;
	else
		return accAngle + result;

	return curAngle;
}

btScalar btHingeAccumulatedAngleConstraint::getAccumulatedHingeAngle()
{
	btScalar hingeAngle = getHingeAngle();
	m_accumulatedAngle = btShortestAngleUpdate(m_accumulatedAngle, hingeAngle);
	return m_accumulatedAngle;
}
void btHingeAccumulatedAngleConstraint::setAccumulatedHingeAngle(btScalar accAngle)
{
	m_accumulatedAngle = accAngle;
}

void btHingeAccumulatedAngleConstraint::getInfo1(btConstraintInfo1* info)
{
	//update m_accumulatedAngle
	btScalar curHingeAngle = getHingeAngle();
	m_accumulatedAngle = btShortestAngleUpdate(m_accumulatedAngle, curHingeAngle);

	btHingeConstraint::getInfo1(info);
}

void btHingeConstraint::getInfo1(btConstraintInfo1* info)
{
	if (m_useSolveConstraintObsolete)
	{
		info->m_numConstraintRows = 0;
		info->nub = 0;
	}
	else
	{
		info->m_numConstraintRows = 5;  // Fixed 3 linear + 2 angular
		info->nub = 1;
		//always add the row, to avoid computation (data is not available yet)
		//prepare constraint
		testLimit(m_rbA.getCenterOfMassTransform(), m_rbB.getCenterOfMassTransform());
		if (getSolveLimit() || getEnableAngularMotor())
		{
			info->m_numConstraintRows++;  // limit 3rd anguar as well
			info->nub--;
		}
	}
}

void btHingeConstraint::getInfo1NonVirtual(btConstraintInfo1* info)
{
	if (m_useSolveConstraintObsolete)
	{
		info->m_numConstraintRows = 0;
		info->nub = 0;
	}
	else
	{
		//always add the 'limit' row, to avoid computation (data is not available yet)
		info->m_numConstraintRows = 6;  // Fixed 3 linear + 2 angular
		info->nub = 0;
	}
}

void btHingeConstraint::getInfo2(btConstraintInfo2* info)
{
	if (m_useOffsetForConstraintFrame)
	{
		getInfo2InternalUsingFrameOffset(info, m_rbA.getCenterOfMassTransform(), m_rbB.getCenterOfMassTransform(), m_rbA.getAngularVelocity(), m_rbB.getAngularVelocity());
	}
	else
	{
		getInfo2Internal(info, m_rbA.getCenterOfMassTransform(), m_rbB.getCenterOfMassTransform(), m_rbA.getAngularVelocity(), m_rbB.getAngularVelocity());
	}
}

void btHingeConstraint::getInfo2NonVirtual(btConstraintInfo2* info, const btTransform& transA, const btTransform& transB, const btVector3& angVelA, const btVector3& angVelB)
{
	///the regular (virtual) implementation getInfo2 already performs 'testLimit' during getInfo1, so we need to do it now
	testLimit(transA, transB);

	getInfo2Internal(info, transA, transB, angVelA, angVelB);
}

void btHingeConstraint::getInfo2Internal(btConstraintInfo2* info, const btTransform& transA, const btTransform& transB, const btVector3& angVelA, const btVector3& angVelB)
{
	btAssert(!m_useSolveConstraintObsolete);
	int i, skip = info->rowskip;
	// transforms in world space
	btTransform trA = transA * m_rbAFrame;
	btTransform trB = transB * m_rbBFrame;
	// pivot point
	btVector3 pivotAInW = trA.getOrigin();
	btVector3 pivotBInW = trB.getOrigin();
#if 0
	if (0)
	{
		for (i=0;i<6;i++)
		{
			info->m_J1linearAxis[i*skip]=0;
			info->m_J1linearAxis[i*skip+1]=0;
			info->m_J1linearAxis[i*skip+2]=0;

			info->m_J1angularAxis[i*skip]=0;
			info->m_J1angularAxis[i*skip+1]=0;
			info->m_J1angularAxis[i*skip+2]=0;

			info->m_J2linearAxis[i*skip]=0;
			info->m_J2linearAxis[i*skip+1]=0;
			info->m_J2linearAxis[i*skip+2]=0;

			info->m_J2angularAxis[i*skip]=0;
			info->m_J2angularAxis[i*skip+1]=0;
			info->m_J2angularAxis[i*skip+2]=0;

			info->m_constraintError[i*skip]=0.f;
		}
	}
#endif  //#if 0
	// linear (all fixed)

	if (!m_angularOnly)
	{
		info->m_J1linearAxis[0] = 1;
		info->m_J1linearAxis[skip + 1] = 1;
		info->m_J1linearAxis[2 * skip + 2] = 1;

		info->m_J2linearAxis[0] = -1;
		info->m_J2linearAxis[skip + 1] = -1;
		info->m_J2linearAxis[2 * skip + 2] = -1;
	}

	btVector3 a1 = pivotAInW - transA.getOrigin();
	{
		btVector3* angular0 = (btVector3*)(info->m_J1angularAxis);
		btVector3* angular1 = (btVector3*)(info->m_J1angularAxis + skip);
		btVector3* angular2 = (btVector3*)(info->m_J1angularAxis + 2 * skip);
		btVector3 a1neg = -a1;
		a1neg.getSkewSymmetricMatrix(angular0, angular1, angular2);
	}
	btVector3 a2 = pivotBInW - transB.getOrigin();
	{
		btVector3* angular0 = (btVector3*)(info->m_J2angularAxis);
		btVector3* angular1 = (btVector3*)(info->m_J2angularAxis + skip);
		btVector3* angular2 = (btVector3*)(info->m_J2angularAxis + 2 * skip);
		a2.getSkewSymmetricMatrix(angular0, angular1, angular2);
	}
	// linear RHS
	btScalar normalErp = (m_flags & BT_HINGE_FLAGS_ERP_NORM) ? m_normalERP : info->erp;

	btScalar k = info->fps * normalErp;
	if (!m_angularOnly)
	{
		for (i = 0; i < 3; i++)
		{
			info->m_constraintError[i * skip] = k * (pivotBInW[i] - pivotAInW[i]);
		}
	}
	// make rotations around X and Y equal
	// the hinge axis should be the only unconstrained
	// rotational axis, the angular velocity of the two bodies perpendicular to
	// the hinge axis should be equal. thus the constraint equations are
	//    p*w1 - p*w2 = 0
	//    q*w1 - q*w2 = 0
	// where p and q are unit vectors normal to the hinge axis, and w1 and w2
	// are the angular velocity vectors of the two bodies.
	// get hinge axis (Z)
	btVector3 ax1 = trA.getBasis().getColumn(2);
	// get 2 orthos to hinge axis (X, Y)
	btVector3 p = trA.getBasis().getColumn(0);
	btVector3 q = trA.getBasis().getColumn(1);
	// set the two hinge angular rows
	int s3 = 3 * info->rowskip;
	int s4 = 4 * info->rowskip;

	info->m_J1angularAxis[s3 + 0] = p[0];
	info->m_J1angularAxis[s3 + 1] = p[1];
	info->m_J1angularAxis[s3 + 2] = p[2];
	info->m_J1angularAxis[s4 + 0] = q[0];
	info->m_J1angularAxis[s4 + 1] = q[1];
	info->m_J1angularAxis[s4 + 2] = q[2];

	info->m_J2angularAxis[s3 + 0] = -p[0];
	info->m_J2angularAxis[s3 + 1] = -p[1];
	info->m_J2angularAxis[s3 + 2] = -p[2];
	info->m_J2angularAxis[s4 + 0] = -q[0];
	info->m_J2angularAxis[s4 + 1] = -q[1];
	info->m_J2angularAxis[s4 + 2] = -q[2];
	// compute the right hand side of the constraint equation. set relative
	// body velocities along p and q to bring the hinge back into alignment.
	// if ax1,ax2 are the unit length hinge axes as computed from body1 and
	// body2, we need to rotate both bodies along the axis u = (ax1 x ax2).
	// if `theta' is the angle between ax1 and ax2, we need an angular velocity
	// along u to cover angle erp*theta in one step :
	//   |angular_velocity| = angle/time = erp*theta / stepsize
	//                      = (erp*fps) * theta
	//    angular_velocity  = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2|
	//                      = (erp*fps) * theta * (ax1 x ax2) / sin(theta)
	// ...as ax1 and ax2 are unit length. if theta is smallish,
	// theta ~= sin(theta), so
	//    angular_velocity  = (erp*fps) * (ax1 x ax2)
	// ax1 x ax2 is in the plane space of ax1, so we project the angular
	// velocity to p and q to find the right hand side.
	btVector3 ax2 = trB.getBasis().getColumn(2);
	btVector3 u = ax1.cross(ax2);
	info->m_constraintError[s3] = k * u.dot(p);
	info->m_constraintError[s4] = k * u.dot(q);
	// check angular limits
	int nrow = 4;  // last filled row
	int srow;
	btScalar limit_err = btScalar(0.0);
	int limit = 0;
	if (getSolveLimit())
	{
#ifdef _BT_USE_CENTER_LIMIT_
		limit_err = m_limit.getCorrection() * m_referenceSign;
#else
		limit_err = m_correction * m_referenceSign;
#endif
		limit = (limit_err > btScalar(0.0)) ? 1 : 2;
	}
	// if the hinge has joint limits or motor, add in the extra row
	bool powered = getEnableAngularMotor();
	if (limit || powered)
	{
		nrow++;
		srow = nrow * info->rowskip;
		info->m_J1angularAxis[srow + 0] = ax1[0];
		info->m_J1angularAxis[srow + 1] = ax1[1];
		info->m_J1angularAxis[srow + 2] = ax1[2];

		info->m_J2angularAxis[srow + 0] = -ax1[0];
		info->m_J2angularAxis[srow + 1] = -ax1[1];
		info->m_J2angularAxis[srow + 2] = -ax1[2];

		btScalar lostop = getLowerLimit();
		btScalar histop = getUpperLimit();
		if (limit && (lostop == histop))
		{  // the joint motor is ineffective
			powered = false;
		}
		info->m_constraintError[srow] = btScalar(0.0f);
		btScalar currERP = (m_flags & BT_HINGE_FLAGS_ERP_STOP) ? m_stopERP : normalErp;
		if (powered)
		{
			if (m_flags & BT_HINGE_FLAGS_CFM_NORM)
			{
				info->cfm[srow] = m_normalCFM;
			}
			btScalar mot_fact = getMotorFactor(m_hingeAngle, lostop, histop, m_motorTargetVelocity, info->fps * currERP);
			info->m_constraintError[srow] += mot_fact * m_motorTargetVelocity * m_referenceSign;
			info->m_lowerLimit[srow] = -m_maxMotorImpulse;
			info->m_upperLimit[srow] = m_maxMotorImpulse;
		}
		if (limit)
		{
			k = info->fps * currERP;
			info->m_constraintError[srow] += k * limit_err;
			if (m_flags & BT_HINGE_FLAGS_CFM_STOP)
			{
				info->cfm[srow] = m_stopCFM;
			}
			if (lostop == histop)
			{
				// limited low and high simultaneously
				info->m_lowerLimit[srow] = -SIMD_INFINITY;
				info->m_upperLimit[srow] = SIMD_INFINITY;
			}
			else if (limit == 1)
			{  // low limit
				info->m_lowerLimit[srow] = 0;
				info->m_upperLimit[srow] = SIMD_INFINITY;
			}
			else
			{  // high limit
				info->m_lowerLimit[srow] = -SIMD_INFINITY;
				info->m_upperLimit[srow] = 0;
			}
			// bounce (we'll use slider parameter abs(1.0 - m_dampingLimAng) for that)
#ifdef _BT_USE_CENTER_LIMIT_
			btScalar bounce = m_limit.getRelaxationFactor();
#else
			btScalar bounce = m_relaxationFactor;
#endif
			if (bounce > btScalar(0.0))
			{
				btScalar vel = angVelA.dot(ax1);
				vel -= angVelB.dot(ax1);
				// only apply bounce if the velocity is incoming, and if the
				// resulting c[] exceeds what we already have.
				if (limit == 1)
				{  // low limit
					if (vel < 0)
					{
						btScalar newc = -bounce * vel;
						if (newc > info->m_constraintError[srow])
						{
							info->m_constraintError[srow] = newc;
						}
					}
				}
				else
				{  // high limit - all those computations are reversed
					if (vel > 0)
					{
						btScalar newc = -bounce * vel;
						if (newc < info->m_constraintError[srow])
						{
							info->m_constraintError[srow] = newc;
						}
					}
				}
			}
#ifdef _BT_USE_CENTER_LIMIT_
			info->m_constraintError[srow] *= m_limit.getBiasFactor();
#else
			info->m_constraintError[srow] *= m_biasFactor;
#endif
		}  // if(limit)
	}      // if angular limit or powered
}

void btHingeConstraint::setFrames(const btTransform& frameA, const btTransform& frameB)
{
	m_rbAFrame = frameA;
	m_rbBFrame = frameB;
	buildJacobian();
}

void btHingeConstraint::updateRHS(btScalar timeStep)
{
	(void)timeStep;
}

btScalar btHingeConstraint::getHingeAngle()
{
	return getHingeAngle(m_rbA.getCenterOfMassTransform(), m_rbB.getCenterOfMassTransform());
}

btScalar btHingeConstraint::getHingeAngle(const btTransform& transA, const btTransform& transB)
{
	const btVector3 refAxis0 = transA.getBasis() * m_rbAFrame.getBasis().getColumn(0);
	const btVector3 refAxis1 = transA.getBasis() * m_rbAFrame.getBasis().getColumn(1);
	const btVector3 swingAxis = transB.getBasis() * m_rbBFrame.getBasis().getColumn(1);
	//	btScalar angle = btAtan2Fast(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1));
	btScalar angle = btAtan2(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1));
	return m_referenceSign * angle;
}

void btHingeConstraint::testLimit(const btTransform& transA, const btTransform& transB)
{
	// Compute limit information
	m_hingeAngle = getHingeAngle(transA, transB);
#ifdef _BT_USE_CENTER_LIMIT_
	m_limit.test(m_hingeAngle);
#else
	m_correction = btScalar(0.);
	m_limitSign = btScalar(0.);
	m_solveLimit = false;
	if (m_lowerLimit <= m_upperLimit)
	{
		m_hingeAngle = btAdjustAngleToLimits(m_hingeAngle, m_lowerLimit, m_upperLimit);
		if (m_hingeAngle <= m_lowerLimit)
		{
			m_correction = (m_lowerLimit - m_hingeAngle);
			m_limitSign = 1.0f;
			m_solveLimit = true;
		}
		else if (m_hingeAngle >= m_upperLimit)
		{
			m_correction = m_upperLimit - m_hingeAngle;
			m_limitSign = -1.0f;
			m_solveLimit = true;
		}
	}
#endif
	return;
}

static btVector3 vHinge(0, 0, btScalar(1));

void btHingeConstraint::setMotorTarget(const btQuaternion& qAinB, btScalar dt)
{
	// convert target from body to constraint space
	btQuaternion qConstraint = m_rbBFrame.getRotation().inverse() * qAinB * m_rbAFrame.getRotation();
	qConstraint.normalize();

	// extract "pure" hinge component
	btVector3 vNoHinge = quatRotate(qConstraint, vHinge);
	vNoHinge.normalize();
	btQuaternion qNoHinge = shortestArcQuat(vHinge, vNoHinge);
	btQuaternion qHinge = qNoHinge.inverse() * qConstraint;
	qHinge.normalize();

	// compute angular target, clamped to limits
	btScalar targetAngle = qHinge.getAngle();
	if (targetAngle > SIMD_PI)  // long way around. flip quat and recalculate.
	{
		qHinge = -(qHinge);
		targetAngle = qHinge.getAngle();
	}
	if (qHinge.getZ() < 0)
		targetAngle = -targetAngle;

	setMotorTarget(targetAngle, dt);
}

void btHingeConstraint::setMotorTarget(btScalar targetAngle, btScalar dt)
{
#ifdef _BT_USE_CENTER_LIMIT_
	m_limit.fit(targetAngle);
#else
	if (m_lowerLimit < m_upperLimit)
	{
		if (targetAngle < m_lowerLimit)
			targetAngle = m_lowerLimit;
		else if (targetAngle > m_upperLimit)
			targetAngle = m_upperLimit;
	}
#endif
	// compute angular velocity
	btScalar curAngle = getHingeAngle(m_rbA.getCenterOfMassTransform(), m_rbB.getCenterOfMassTransform());
	btScalar dAngle = targetAngle - curAngle;
	m_motorTargetVelocity = dAngle / dt;
}

void btHingeConstraint::getInfo2InternalUsingFrameOffset(btConstraintInfo2* info, const btTransform& transA, const btTransform& transB, const btVector3& angVelA, const btVector3& angVelB)
{
	btAssert(!m_useSolveConstraintObsolete);
	int i, s = info->rowskip;
	// transforms in world space
	btTransform trA = transA * m_rbAFrame;
	btTransform trB = transB * m_rbBFrame;
	// pivot point
//	btVector3 pivotAInW = trA.getOrigin();
//	btVector3 pivotBInW = trB.getOrigin();
#if 1
	// difference between frames in WCS
	btVector3 ofs = trB.getOrigin() - trA.getOrigin();
	// now get weight factors depending on masses
	btScalar miA = getRigidBodyA().getInvMass();
	btScalar miB = getRigidBodyB().getInvMass();
	bool hasStaticBody = (miA < SIMD_EPSILON) || (miB < SIMD_EPSILON);
	btScalar miS = miA + miB;
	btScalar factA, factB;
	if (miS > btScalar(0.f))
	{
		factA = miB / miS;
	}
	else
	{
		factA = btScalar(0.5f);
	}
	factB = btScalar(1.0f) - factA;
	// get the desired direction of hinge axis
	// as weighted sum of Z-orthos of frameA and frameB in WCS
	btVector3 ax1A = trA.getBasis().getColumn(2);
	btVector3 ax1B = trB.getBasis().getColumn(2);
	btVector3 ax1 = ax1A * factA + ax1B * factB;
	if (ax1.length2()<SIMD_EPSILON)
	{
		factA=0.f;
		factB=1.f;
		ax1 = ax1A * factA + ax1B * factB;
	}
	ax1.normalize();
	// fill first 3 rows
	// we want: velA + wA x relA == velB + wB x relB
	btTransform bodyA_trans = transA;
	btTransform bodyB_trans = transB;
	int s0 = 0;
	int s1 = s;
	int s2 = s * 2;
	int nrow = 2;  // last filled row
	btVector3 tmpA, tmpB, relA, relB, p, q;
	// get vector from bodyB to frameB in WCS
	relB = trB.getOrigin() - bodyB_trans.getOrigin();
	// get its projection to hinge axis
	btVector3 projB = ax1 * relB.dot(ax1);
	// get vector directed from bodyB to hinge axis (and orthogonal to it)
	btVector3 orthoB = relB - projB;
	// same for bodyA
	relA = trA.getOrigin() - bodyA_trans.getOrigin();
	btVector3 projA = ax1 * relA.dot(ax1);
	btVector3 orthoA = relA - projA;
	btVector3 totalDist = projA - projB;
	// get offset vectors relA and relB
	relA = orthoA + totalDist * factA;
	relB = orthoB - totalDist * factB;
	// now choose average ortho to hinge axis
	p = orthoB * factA + orthoA * factB;
	btScalar len2 = p.length2();
	if (len2 > SIMD_EPSILON)
	{
		p /= btSqrt(len2);
	}
	else
	{
		p = trA.getBasis().getColumn(1);
	}
	// make one more ortho
	q = ax1.cross(p);
	// fill three rows
	tmpA = relA.cross(p);
	tmpB = relB.cross(p);
	for (i = 0; i < 3; i++) info->m_J1angularAxis[s0 + i] = tmpA[i];
	for (i = 0; i < 3; i++) info->m_J2angularAxis[s0 + i] = -tmpB[i];
	tmpA = relA.cross(q);
	tmpB = relB.cross(q);
	if (hasStaticBody && getSolveLimit())
	{  // to make constraint between static and dynamic objects more rigid
		// remove wA (or wB) from equation if angular limit is hit
		tmpB *= factB;
		tmpA *= factA;
	}
	for (i = 0; i < 3; i++) info->m_J1angularAxis[s1 + i] = tmpA[i];
	for (i = 0; i < 3; i++) info->m_J2angularAxis[s1 + i] = -tmpB[i];
	tmpA = relA.cross(ax1);
	tmpB = relB.cross(ax1);
	if (hasStaticBody)
	{  // to make constraint between static and dynamic objects more rigid
		// remove wA (or wB) from equation
		tmpB *= factB;
		tmpA *= factA;
	}
	for (i = 0; i < 3; i++) info->m_J1angularAxis[s2 + i] = tmpA[i];
	for (i = 0; i < 3; i++) info->m_J2angularAxis[s2 + i] = -tmpB[i];

	btScalar normalErp = (m_flags & BT_HINGE_FLAGS_ERP_NORM) ? m_normalERP : info->erp;
	btScalar k = info->fps * normalErp;

	if (!m_angularOnly)
	{
		for (i = 0; i < 3; i++) info->m_J1linearAxis[s0 + i] = p[i];
		for (i = 0; i < 3; i++) info->m_J1linearAxis[s1 + i] = q[i];
		for (i = 0; i < 3; i++) info->m_J1linearAxis[s2 + i] = ax1[i];

		for (i = 0; i < 3; i++) info->m_J2linearAxis[s0 + i] = -p[i];
		for (i = 0; i < 3; i++) info->m_J2linearAxis[s1 + i] = -q[i];
		for (i = 0; i < 3; i++) info->m_J2linearAxis[s2 + i] = -ax1[i];

		// compute three elements of right hand side

		btScalar rhs = k * p.dot(ofs);
		info->m_constraintError[s0] = rhs;
		rhs = k * q.dot(ofs);
		info->m_constraintError[s1] = rhs;
		rhs = k * ax1.dot(ofs);
		info->m_constraintError[s2] = rhs;
	}
	// the hinge axis should be the only unconstrained
	// rotational axis, the angular velocity of the two bodies perpendicular to
	// the hinge axis should be equal. thus the constraint equations are
	//    p*w1 - p*w2 = 0
	//    q*w1 - q*w2 = 0
	// where p and q are unit vectors normal to the hinge axis, and w1 and w2
	// are the angular velocity vectors of the two bodies.
	int s3 = 3 * s;
	int s4 = 4 * s;
	info->m_J1angularAxis[s3 + 0] = p[0];
	info->m_J1angularAxis[s3 + 1] = p[1];
	info->m_J1angularAxis[s3 + 2] = p[2];
	info->m_J1angularAxis[s4 + 0] = q[0];
	info->m_J1angularAxis[s4 + 1] = q[1];
	info->m_J1angularAxis[s4 + 2] = q[2];

	info->m_J2angularAxis[s3 + 0] = -p[0];
	info->m_J2angularAxis[s3 + 1] = -p[1];
	info->m_J2angularAxis[s3 + 2] = -p[2];
	info->m_J2angularAxis[s4 + 0] = -q[0];
	info->m_J2angularAxis[s4 + 1] = -q[1];
	info->m_J2angularAxis[s4 + 2] = -q[2];
	// compute the right hand side of the constraint equation. set relative
	// body velocities along p and q to bring the hinge back into alignment.
	// if ax1A,ax1B are the unit length hinge axes as computed from bodyA and
	// bodyB, we need to rotate both bodies along the axis u = (ax1 x ax2).
	// if "theta" is the angle between ax1 and ax2, we need an angular velocity
	// along u to cover angle erp*theta in one step :
	//   |angular_velocity| = angle/time = erp*theta / stepsize
	//                      = (erp*fps) * theta
	//    angular_velocity  = |angular_velocity| * (ax1 x ax2) / |ax1 x ax2|
	//                      = (erp*fps) * theta * (ax1 x ax2) / sin(theta)
	// ...as ax1 and ax2 are unit length. if theta is smallish,
	// theta ~= sin(theta), so
	//    angular_velocity  = (erp*fps) * (ax1 x ax2)
	// ax1 x ax2 is in the plane space of ax1, so we project the angular
	// velocity to p and q to find the right hand side.
	k = info->fps * normalErp;  //??

	btVector3 u = ax1A.cross(ax1B);
	info->m_constraintError[s3] = k * u.dot(p);
	info->m_constraintError[s4] = k * u.dot(q);
#endif
	// check angular limits
	nrow = 4;  // last filled row
	int srow;
	btScalar limit_err = btScalar(0.0);
	int limit = 0;
	if (getSolveLimit())
	{
#ifdef _BT_USE_CENTER_LIMIT_
		limit_err = m_limit.getCorrection() * m_referenceSign;
#else
		limit_err = m_correction * m_referenceSign;
#endif
		limit = (limit_err > btScalar(0.0)) ? 1 : 2;
	}
	// if the hinge has joint limits or motor, add in the extra row
	bool powered = getEnableAngularMotor();
	if (limit || powered)
	{
		nrow++;
		srow = nrow * info->rowskip;
		info->m_J1angularAxis[srow + 0] = ax1[0];
		info->m_J1angularAxis[srow + 1] = ax1[1];
		info->m_J1angularAxis[srow + 2] = ax1[2];

		info->m_J2angularAxis[srow + 0] = -ax1[0];
		info->m_J2angularAxis[srow + 1] = -ax1[1];
		info->m_J2angularAxis[srow + 2] = -ax1[2];

		btScalar lostop = getLowerLimit();
		btScalar histop = getUpperLimit();
		if (limit && (lostop == histop))
		{  // the joint motor is ineffective
			powered = false;
		}
		info->m_constraintError[srow] = btScalar(0.0f);
		btScalar currERP = (m_flags & BT_HINGE_FLAGS_ERP_STOP) ? m_stopERP : normalErp;
		if (powered)
		{
			if (m_flags & BT_HINGE_FLAGS_CFM_NORM)
			{
				info->cfm[srow] = m_normalCFM;
			}
			btScalar mot_fact = getMotorFactor(m_hingeAngle, lostop, histop, m_motorTargetVelocity, info->fps * currERP);
			info->m_constraintError[srow] += mot_fact * m_motorTargetVelocity * m_referenceSign;
			info->m_lowerLimit[srow] = -m_maxMotorImpulse;
			info->m_upperLimit[srow] = m_maxMotorImpulse;
		}
		if (limit)
		{
			k = info->fps * currERP;
			info->m_constraintError[srow] += k * limit_err;
			if (m_flags & BT_HINGE_FLAGS_CFM_STOP)
			{
				info->cfm[srow] = m_stopCFM;
			}
			if (lostop == histop)
			{
				// limited low and high simultaneously
				info->m_lowerLimit[srow] = -SIMD_INFINITY;
				info->m_upperLimit[srow] = SIMD_INFINITY;
			}
			else if (limit == 1)
			{  // low limit
				info->m_lowerLimit[srow] = 0;
				info->m_upperLimit[srow] = SIMD_INFINITY;
			}
			else
			{  // high limit
				info->m_lowerLimit[srow] = -SIMD_INFINITY;
				info->m_upperLimit[srow] = 0;
			}
			// bounce (we'll use slider parameter abs(1.0 - m_dampingLimAng) for that)
#ifdef _BT_USE_CENTER_LIMIT_
			btScalar bounce = m_limit.getRelaxationFactor();
#else
			btScalar bounce = m_relaxationFactor;
#endif
			if (bounce > btScalar(0.0))
			{
				btScalar vel = angVelA.dot(ax1);
				vel -= angVelB.dot(ax1);
				// only apply bounce if the velocity is incoming, and if the
				// resulting c[] exceeds what we already have.
				if (limit == 1)
				{  // low limit
					if (vel < 0)
					{
						btScalar newc = -bounce * vel;
						if (newc > info->m_constraintError[srow])
						{
							info->m_constraintError[srow] = newc;
						}
					}
				}
				else
				{  // high limit - all those computations are reversed
					if (vel > 0)
					{
						btScalar newc = -bounce * vel;
						if (newc < info->m_constraintError[srow])
						{
							info->m_constraintError[srow] = newc;
						}
					}
				}
			}
#ifdef _BT_USE_CENTER_LIMIT_
			info->m_constraintError[srow] *= m_limit.getBiasFactor();
#else
			info->m_constraintError[srow] *= m_biasFactor;
#endif
		}  // if(limit)
	}      // if angular limit or powered
}

///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
///If no axis is provided, it uses the default axis for this constraint.
void btHingeConstraint::setParam(int num, btScalar value, int axis)
{
	if ((axis == -1) || (axis == 5))
	{
		switch (num)
		{
			case BT_CONSTRAINT_STOP_ERP:
				m_stopERP = value;
				m_flags |= BT_HINGE_FLAGS_ERP_STOP;
				break;
			case BT_CONSTRAINT_STOP_CFM:
				m_stopCFM = value;
				m_flags |= BT_HINGE_FLAGS_CFM_STOP;
				break;
			case BT_CONSTRAINT_CFM:
				m_normalCFM = value;
				m_flags |= BT_HINGE_FLAGS_CFM_NORM;
				break;
			case BT_CONSTRAINT_ERP:
				m_normalERP = value;
				m_flags |= BT_HINGE_FLAGS_ERP_NORM;
				break;
			default:
				btAssertConstrParams(0);
		}
	}
	else
	{
		btAssertConstrParams(0);
	}
}

///return the local value of parameter
btScalar btHingeConstraint::getParam(int num, int axis) const
{
	btScalar retVal = 0;
	if ((axis == -1) || (axis == 5))
	{
		switch (num)
		{
			case BT_CONSTRAINT_STOP_ERP:
				btAssertConstrParams(m_flags & BT_HINGE_FLAGS_ERP_STOP);
				retVal = m_stopERP;
				break;
			case BT_CONSTRAINT_STOP_CFM:
				btAssertConstrParams(m_flags & BT_HINGE_FLAGS_CFM_STOP);
				retVal = m_stopCFM;
				break;
			case BT_CONSTRAINT_CFM:
				btAssertConstrParams(m_flags & BT_HINGE_FLAGS_CFM_NORM);
				retVal = m_normalCFM;
				break;
			case BT_CONSTRAINT_ERP:
				btAssertConstrParams(m_flags & BT_HINGE_FLAGS_ERP_NORM);
				retVal = m_normalERP;
				break;
			default:
				btAssertConstrParams(0);
		}
	}
	else
	{
		btAssertConstrParams(0);
	}
	return retVal;
}