summaryrefslogtreecommitdiff
path: root/src/BulletCollision/CollisionDispatch/btCollisionDispatcher.cpp
blob: e24757cc4e1c9364464ceab153abe753eac68de8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
/*
Bullet Continuous Collision Detection and Physics Library
Copyright (c) 2003-2006 Erwin Coumans  https://bulletphysics.org

This software is provided 'as-is', without any express or implied warranty.
In no event will the authors be held liable for any damages arising from the use of this software.
Permission is granted to anyone to use this software for any purpose, 
including commercial applications, and to alter it and redistribute it freely, 
subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/

#include "btCollisionDispatcher.h"
#include "LinearMath/btQuickprof.h"

#include "BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h"

#include "BulletCollision/CollisionShapes/btCollisionShape.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/BroadphaseCollision/btOverlappingPairCache.h"
#include "LinearMath/btPoolAllocator.h"
#include "BulletCollision/CollisionDispatch/btCollisionConfiguration.h"
#include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h"

#ifdef BT_DEBUG
#include <stdio.h>
#endif

btCollisionDispatcher::btCollisionDispatcher(btCollisionConfiguration* collisionConfiguration) : m_dispatcherFlags(btCollisionDispatcher::CD_USE_RELATIVE_CONTACT_BREAKING_THRESHOLD),
																								 m_collisionConfiguration(collisionConfiguration)
{
	int i;

	setNearCallback(defaultNearCallback);

	m_collisionAlgorithmPoolAllocator = collisionConfiguration->getCollisionAlgorithmPool();

	m_persistentManifoldPoolAllocator = collisionConfiguration->getPersistentManifoldPool();

	for (i = 0; i < MAX_BROADPHASE_COLLISION_TYPES; i++)
	{
		for (int j = 0; j < MAX_BROADPHASE_COLLISION_TYPES; j++)
		{
			m_doubleDispatchContactPoints[i][j] = m_collisionConfiguration->getCollisionAlgorithmCreateFunc(i, j);
			btAssert(m_doubleDispatchContactPoints[i][j]);
			m_doubleDispatchClosestPoints[i][j] = m_collisionConfiguration->getClosestPointsAlgorithmCreateFunc(i, j);
		}
	}
}

void btCollisionDispatcher::registerCollisionCreateFunc(int proxyType0, int proxyType1, btCollisionAlgorithmCreateFunc* createFunc)
{
	m_doubleDispatchContactPoints[proxyType0][proxyType1] = createFunc;
}

void btCollisionDispatcher::registerClosestPointsCreateFunc(int proxyType0, int proxyType1, btCollisionAlgorithmCreateFunc* createFunc)
{
	m_doubleDispatchClosestPoints[proxyType0][proxyType1] = createFunc;
}

btCollisionDispatcher::~btCollisionDispatcher()
{
}

btPersistentManifold* btCollisionDispatcher::getNewManifold(const btCollisionObject* body0, const btCollisionObject* body1)
{
	//btAssert(gNumManifold < 65535);

	//optional relative contact breaking threshold, turned on by default (use setDispatcherFlags to switch off feature for improved performance)

	btScalar contactBreakingThreshold = (m_dispatcherFlags & btCollisionDispatcher::CD_USE_RELATIVE_CONTACT_BREAKING_THRESHOLD) ? btMin(body0->getCollisionShape()->getContactBreakingThreshold(gContactBreakingThreshold), body1->getCollisionShape()->getContactBreakingThreshold(gContactBreakingThreshold))
																																: gContactBreakingThreshold;

	btScalar contactProcessingThreshold = btMin(body0->getContactProcessingThreshold(), body1->getContactProcessingThreshold());

	void* mem = m_persistentManifoldPoolAllocator->allocate(sizeof(btPersistentManifold));
	if (NULL == mem)
	{
		//we got a pool memory overflow, by default we fallback to dynamically allocate memory. If we require a contiguous contact pool then assert.
		if ((m_dispatcherFlags & CD_DISABLE_CONTACTPOOL_DYNAMIC_ALLOCATION) == 0)
		{
			mem = btAlignedAlloc(sizeof(btPersistentManifold), 16);
		}
		else
		{
			btAssert(0);
			//make sure to increase the m_defaultMaxPersistentManifoldPoolSize in the btDefaultCollisionConstructionInfo/btDefaultCollisionConfiguration
			return 0;
		}
	}
	btPersistentManifold* manifold = new (mem) btPersistentManifold(body0, body1, 0, contactBreakingThreshold, contactProcessingThreshold);
	manifold->m_index1a = m_manifoldsPtr.size();
	m_manifoldsPtr.push_back(manifold);

	return manifold;
}

void btCollisionDispatcher::clearManifold(btPersistentManifold* manifold)
{
	manifold->clearManifold();
}

void btCollisionDispatcher::releaseManifold(btPersistentManifold* manifold)
{
	//printf("releaseManifold: gNumManifold %d\n",gNumManifold);
	clearManifold(manifold);

	int findIndex = manifold->m_index1a;
	btAssert(findIndex < m_manifoldsPtr.size());
	m_manifoldsPtr.swap(findIndex, m_manifoldsPtr.size() - 1);
	m_manifoldsPtr[findIndex]->m_index1a = findIndex;
	m_manifoldsPtr.pop_back();

	manifold->~btPersistentManifold();
	if (m_persistentManifoldPoolAllocator->validPtr(manifold))
	{
		m_persistentManifoldPoolAllocator->freeMemory(manifold);
	}
	else
	{
		btAlignedFree(manifold);
	}
}

btCollisionAlgorithm* btCollisionDispatcher::findAlgorithm(const btCollisionObjectWrapper* body0Wrap, const btCollisionObjectWrapper* body1Wrap, btPersistentManifold* sharedManifold, ebtDispatcherQueryType algoType)
{
	btCollisionAlgorithmConstructionInfo ci;

	ci.m_dispatcher1 = this;
	ci.m_manifold = sharedManifold;
	btCollisionAlgorithm* algo = 0;
	if (algoType == BT_CONTACT_POINT_ALGORITHMS)
	{
		algo = m_doubleDispatchContactPoints[body0Wrap->getCollisionShape()->getShapeType()][body1Wrap->getCollisionShape()->getShapeType()]->CreateCollisionAlgorithm(ci, body0Wrap, body1Wrap);
	}
	else
	{
		algo = m_doubleDispatchClosestPoints[body0Wrap->getCollisionShape()->getShapeType()][body1Wrap->getCollisionShape()->getShapeType()]->CreateCollisionAlgorithm(ci, body0Wrap, body1Wrap);
	}

	return algo;
}

bool btCollisionDispatcher::needsResponse(const btCollisionObject* body0, const btCollisionObject* body1)
{
	//here you can do filtering
	bool hasResponse =
		(body0->hasContactResponse() && body1->hasContactResponse());
	//no response between two static/kinematic bodies:
	hasResponse = hasResponse &&
				  ((!body0->isStaticOrKinematicObject()) || (!body1->isStaticOrKinematicObject()));
	return hasResponse;
}

bool btCollisionDispatcher::needsCollision(const btCollisionObject* body0, const btCollisionObject* body1)
{
	btAssert(body0);
	btAssert(body1);

	bool needsCollision = true;

#ifdef BT_DEBUG
	if (!(m_dispatcherFlags & btCollisionDispatcher::CD_STATIC_STATIC_REPORTED))
	{
		//broadphase filtering already deals with this
		if (body0->isStaticOrKinematicObject() && body1->isStaticOrKinematicObject())
		{
			m_dispatcherFlags |= btCollisionDispatcher::CD_STATIC_STATIC_REPORTED;
			printf("warning btCollisionDispatcher::needsCollision: static-static collision!\n");
		}
	}
#endif  //BT_DEBUG

	if ((!body0->isActive()) && (!body1->isActive()))
		needsCollision = false;
	else if ((!body0->checkCollideWith(body1)) || (!body1->checkCollideWith(body0)))
		needsCollision = false;

	return needsCollision;
}

///interface for iterating all overlapping collision pairs, no matter how those pairs are stored (array, set, map etc)
///this is useful for the collision dispatcher.
class btCollisionPairCallback : public btOverlapCallback
{
	const btDispatcherInfo& m_dispatchInfo;
	btCollisionDispatcher* m_dispatcher;

public:
	btCollisionPairCallback(const btDispatcherInfo& dispatchInfo, btCollisionDispatcher* dispatcher)
		: m_dispatchInfo(dispatchInfo),
		  m_dispatcher(dispatcher)
	{
	}

	/*btCollisionPairCallback& operator=(btCollisionPairCallback& other)
	{
		m_dispatchInfo = other.m_dispatchInfo;
		m_dispatcher = other.m_dispatcher;
		return *this;
	}
	*/

	virtual ~btCollisionPairCallback() {}

	virtual bool processOverlap(btBroadphasePair& pair)
	{
		(*m_dispatcher->getNearCallback())(pair, *m_dispatcher, m_dispatchInfo);
		return false;
	}
};

void btCollisionDispatcher::dispatchAllCollisionPairs(btOverlappingPairCache* pairCache, const btDispatcherInfo& dispatchInfo, btDispatcher* dispatcher)
{
	//m_blockedForChanges = true;

	btCollisionPairCallback collisionCallback(dispatchInfo, this);

	{
		BT_PROFILE("processAllOverlappingPairs");
		pairCache->processAllOverlappingPairs(&collisionCallback, dispatcher, dispatchInfo);
	}

	//m_blockedForChanges = false;
}

//by default, Bullet will use this near callback
void btCollisionDispatcher::defaultNearCallback(btBroadphasePair& collisionPair, btCollisionDispatcher& dispatcher, const btDispatcherInfo& dispatchInfo)
{
	btCollisionObject* colObj0 = (btCollisionObject*)collisionPair.m_pProxy0->m_clientObject;
	btCollisionObject* colObj1 = (btCollisionObject*)collisionPair.m_pProxy1->m_clientObject;

	if (dispatcher.needsCollision(colObj0, colObj1))
	{
		btCollisionObjectWrapper obj0Wrap(0, colObj0->getCollisionShape(), colObj0, colObj0->getWorldTransform(), -1, -1);
		btCollisionObjectWrapper obj1Wrap(0, colObj1->getCollisionShape(), colObj1, colObj1->getWorldTransform(), -1, -1);

		//dispatcher will keep algorithms persistent in the collision pair
		if (!collisionPair.m_algorithm)
		{
			collisionPair.m_algorithm = dispatcher.findAlgorithm(&obj0Wrap, &obj1Wrap, 0, BT_CONTACT_POINT_ALGORITHMS);
		}

		if (collisionPair.m_algorithm)
		{
			btManifoldResult contactPointResult(&obj0Wrap, &obj1Wrap);

			if (dispatchInfo.m_dispatchFunc == btDispatcherInfo::DISPATCH_DISCRETE)
			{
				//discrete collision detection query

				collisionPair.m_algorithm->processCollision(&obj0Wrap, &obj1Wrap, dispatchInfo, &contactPointResult);
			}
			else
			{
				//continuous collision detection query, time of impact (toi)
				btScalar toi = collisionPair.m_algorithm->calculateTimeOfImpact(colObj0, colObj1, dispatchInfo, &contactPointResult);
				if (dispatchInfo.m_timeOfImpact > toi)
					dispatchInfo.m_timeOfImpact = toi;
			}
		}
	}
}

void* btCollisionDispatcher::allocateCollisionAlgorithm(int size)
{
	void* mem = m_collisionAlgorithmPoolAllocator->allocate(size);
	if (NULL == mem)
	{
		//warn user for overflow?
		return btAlignedAlloc(static_cast<size_t>(size), 16);
	}
	return mem;
}

void btCollisionDispatcher::freeCollisionAlgorithm(void* ptr)
{
	if (m_collisionAlgorithmPoolAllocator->validPtr(ptr))
	{
		m_collisionAlgorithmPoolAllocator->freeMemory(ptr);
	}
	else
	{
		btAlignedFree(ptr);
	}
}