summaryrefslogtreecommitdiff
path: root/examples/pybullet/gym/pybullet_envs/bullet/kukaCamGymEnv.py
blob: 235bfa42d558f6a9339a9ecf00b44d14069f9102 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import os, inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(os.path.dirname(currentdir))
os.sys.path.insert(0, parentdir)

import math
import gym
from gym import spaces
from gym.utils import seeding
import numpy as np
import time
import pybullet as p
from . import kuka
import random
import pybullet_data
from pkg_resources import parse_version

maxSteps = 1000

RENDER_HEIGHT = 720
RENDER_WIDTH = 960


class KukaCamGymEnv(gym.Env):
  metadata = {'render.modes': ['human', 'rgb_array'], 'video.frames_per_second': 50}

  def __init__(self,
               urdfRoot=pybullet_data.getDataPath(),
               actionRepeat=1,
               isEnableSelfCollision=True,
               renders=False,
               isDiscrete=False):
    self._timeStep = 1. / 240.
    self._urdfRoot = urdfRoot
    self._actionRepeat = actionRepeat
    self._isEnableSelfCollision = isEnableSelfCollision
    self._observation = []
    self._envStepCounter = 0
    self._renders = renders
    self._width = 341
    self._height = 256
    self._isDiscrete = isDiscrete
    self.terminated = 0
    self._p = p
    if self._renders:
      cid = p.connect(p.SHARED_MEMORY)
      if (cid < 0):
        p.connect(p.GUI)
      p.resetDebugVisualizerCamera(1.3, 180, -41, [0.52, -0.2, -0.33])
    else:
      p.connect(p.DIRECT)
    #timinglog = p.startStateLogging(p.STATE_LOGGING_PROFILE_TIMINGS, "kukaTimings.json")
    self.seed()
    self.reset()
    observationDim = len(self.getExtendedObservation())
    #print("observationDim")
    #print(observationDim)

    observation_high = np.array([np.finfo(np.float32).max] * observationDim)
    if (self._isDiscrete):
      self.action_space = spaces.Discrete(7)
    else:
      action_dim = 3
      self._action_bound = 1
      action_high = np.array([self._action_bound] * action_dim)
      self.action_space = spaces.Box(-action_high, action_high, dtype=np.float32)
    self.observation_space = spaces.Box(low=0,
                                        high=255,
                                        shape=(self._height, self._width, 4),
                                        dtype=np.uint8)
    self.viewer = None

  def reset(self):
    self.terminated = 0
    p.resetSimulation()
    p.setPhysicsEngineParameter(numSolverIterations=150)
    p.setTimeStep(self._timeStep)
    p.loadURDF(os.path.join(self._urdfRoot, "plane.urdf"), [0, 0, -1])

    p.loadURDF(os.path.join(self._urdfRoot, "table/table.urdf"), 0.5000000, 0.00000, -.820000,
               0.000000, 0.000000, 0.0, 1.0)

    xpos = 0.5 + 0.2 * random.random()
    ypos = 0 + 0.25 * random.random()
    ang = 3.1415925438 * random.random()
    orn = p.getQuaternionFromEuler([0, 0, ang])
    self.blockUid = p.loadURDF(os.path.join(self._urdfRoot, "block.urdf"), xpos, ypos, -0.1,
                               orn[0], orn[1], orn[2], orn[3])

    p.setGravity(0, 0, -10)
    self._kuka = kuka.Kuka(urdfRootPath=self._urdfRoot, timeStep=self._timeStep)
    self._envStepCounter = 0
    p.stepSimulation()
    self._observation = self.getExtendedObservation()
    return np.array(self._observation)

  def __del__(self):
    p.disconnect()

  def seed(self, seed=None):
    self.np_random, seed = seeding.np_random(seed)
    return [seed]

  def getExtendedObservation(self):

    #camEyePos = [0.03,0.236,0.54]
    #distance = 1.06
    #pitch=-56
    #yaw = 258
    #roll=0
    #upAxisIndex = 2
    #camInfo = p.getDebugVisualizerCamera()
    #print("width,height")
    #print(camInfo[0])
    #print(camInfo[1])
    #print("viewMatrix")
    #print(camInfo[2])
    #print("projectionMatrix")
    #print(camInfo[3])
    #viewMat = camInfo[2]
    #viewMat = p.computeViewMatrixFromYawPitchRoll(camEyePos,distance,yaw, pitch,roll,upAxisIndex)
    viewMat = [
        -0.5120397806167603, 0.7171027660369873, -0.47284144163131714, 0.0, -0.8589617609977722,
        -0.42747554183006287, 0.28186774253845215, 0.0, 0.0, 0.5504802465438843,
        0.8348482847213745, 0.0, 0.1925382763147354, -0.24935829639434814, -0.4401884973049164, 1.0
    ]
    #projMatrix = camInfo[3]#[0.7499999403953552, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, -1.0000200271606445, -1.0, 0.0, 0.0, -0.02000020071864128, 0.0]
    projMatrix = [
        0.75, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, -1.0000200271606445, -1.0, 0.0, 0.0,
        -0.02000020071864128, 0.0
    ]

    img_arr = p.getCameraImage(width=self._width,
                               height=self._height,
                               viewMatrix=viewMat,
                               projectionMatrix=projMatrix)
    rgb = img_arr[2]
    np_img_arr = np.reshape(rgb, (self._height, self._width, 4))
    self._observation = np_img_arr
    return self._observation

  def step(self, action):
    if (self._isDiscrete):
      dv = 0.01
      dx = [0, -dv, dv, 0, 0, 0, 0][action]
      dy = [0, 0, 0, -dv, dv, 0, 0][action]
      da = [0, 0, 0, 0, 0, -0.1, 0.1][action]
      f = 0.3
      realAction = [dx, dy, -0.002, da, f]
    else:
      dv = 0.01
      dx = action[0] * dv
      dy = action[1] * dv
      da = action[2] * 0.1
      f = 0.3
      realAction = [dx, dy, -0.002, da, f]

    return self.step2(realAction)

  def step2(self, action):
    for i in range(self._actionRepeat):
      self._kuka.applyAction(action)
      p.stepSimulation()
      if self._termination():
        break
      #self._observation = self.getExtendedObservation()
      self._envStepCounter += 1

    self._observation = self.getExtendedObservation()
    if self._renders:
      time.sleep(self._timeStep)

    #print("self._envStepCounter")
    #print(self._envStepCounter)

    done = self._termination()
    reward = self._reward()
    #print("len=%r" % len(self._observation))

    return np.array(self._observation), reward, done, {}

  def render(self, mode='human', close=False):
    if mode != "rgb_array":
      return np.array([])
    base_pos, orn = self._p.getBasePositionAndOrientation(self._racecar.racecarUniqueId)
    view_matrix = self._p.computeViewMatrixFromYawPitchRoll(cameraTargetPosition=base_pos,
                                                            distance=self._cam_dist,
                                                            yaw=self._cam_yaw,
                                                            pitch=self._cam_pitch,
                                                            roll=0,
                                                            upAxisIndex=2)
    proj_matrix = self._p.computeProjectionMatrixFOV(fov=60,
                                                     aspect=float(RENDER_WIDTH) / RENDER_HEIGHT,
                                                     nearVal=0.1,
                                                     farVal=100.0)
    (_, _, px, _, _) = self._p.getCameraImage(width=RENDER_WIDTH,
                                              height=RENDER_HEIGHT,
                                              viewMatrix=view_matrix,
                                              projectionMatrix=proj_matrix,
                                              renderer=pybullet.ER_BULLET_HARDWARE_OPENGL)
    rgb_array = np.array(px)
    rgb_array = rgb_array[:, :, :3]
    return rgb_array

  def _termination(self):
    #print (self._kuka.endEffectorPos[2])
    state = p.getLinkState(self._kuka.kukaUid, self._kuka.kukaEndEffectorIndex)
    actualEndEffectorPos = state[0]

    #print("self._envStepCounter")
    #print(self._envStepCounter)
    if (self.terminated or self._envStepCounter > maxSteps):
      self._observation = self.getExtendedObservation()
      return True
    maxDist = 0.005
    closestPoints = p.getClosestPoints(self._kuka.trayUid, self._kuka.kukaUid, maxDist)

    if (len(closestPoints)):  #(actualEndEffectorPos[2] <= -0.43):
      self.terminated = 1

      #print("closing gripper, attempting grasp")
      #start grasp and terminate
      fingerAngle = 0.3
      for i in range(100):
        graspAction = [0, 0, 0.0001, 0, fingerAngle]
        self._kuka.applyAction(graspAction)
        p.stepSimulation()
        fingerAngle = fingerAngle - (0.3 / 100.)
        if (fingerAngle < 0):
          fingerAngle = 0

      for i in range(1000):
        graspAction = [0, 0, 0.001, 0, fingerAngle]
        self._kuka.applyAction(graspAction)
        p.stepSimulation()
        blockPos, blockOrn = p.getBasePositionAndOrientation(self.blockUid)
        if (blockPos[2] > 0.23):
          #print("BLOCKPOS!")
          #print(blockPos[2])
          break
        state = p.getLinkState(self._kuka.kukaUid, self._kuka.kukaEndEffectorIndex)
        actualEndEffectorPos = state[0]
        if (actualEndEffectorPos[2] > 0.5):
          break

      self._observation = self.getExtendedObservation()
      return True
    return False

  def _reward(self):

    #rewards is height of target object
    blockPos, blockOrn = p.getBasePositionAndOrientation(self.blockUid)
    closestPoints = p.getClosestPoints(self.blockUid, self._kuka.kukaUid, 1000, -1,
                                       self._kuka.kukaEndEffectorIndex)

    reward = -1000
    numPt = len(closestPoints)
    #print(numPt)
    if (numPt > 0):
      #print("reward:")
      reward = -closestPoints[0][8] * 10
    if (blockPos[2] > 0.2):
      #print("grasped a block!!!")
      #print("self._envStepCounter")
      #print(self._envStepCounter)
      reward = reward + 1000

    #print("reward")
    #print(reward)
    return reward

  if parse_version(gym.__version__) < parse_version('0.9.6'):
    _render = render
    _reset = reset
    _seed = seed
    _step = step