summaryrefslogtreecommitdiff
path: root/bfd/doc/syms.texi
diff options
context:
space:
mode:
Diffstat (limited to 'bfd/doc/syms.texi')
-rw-r--r--bfd/doc/syms.texi479
1 files changed, 479 insertions, 0 deletions
diff --git a/bfd/doc/syms.texi b/bfd/doc/syms.texi
new file mode 100644
index 0000000000..d5dc6599f2
--- /dev/null
+++ b/bfd/doc/syms.texi
@@ -0,0 +1,479 @@
+@section Symbols
+BFD tries to maintain as much symbol information as it can when
+it moves information from file to file. BFD passes information
+to applications though the @code{asymbol} structure. When the
+application requests the symbol table, BFD reads the table in
+the native form and translates parts of it into the internal
+format. To maintain more than the information passed to
+applications, some targets keep some information ``behind the
+scenes'' in a structure only the particular back end knows
+about. For example, the coff back end keeps the original
+symbol table structure as well as the canonical structure when
+a BFD is read in. On output, the coff back end can reconstruct
+the output symbol table so that no information is lost, even
+information unique to coff which BFD doesn't know or
+understand. If a coff symbol table were read, but were written
+through an a.out back end, all the coff specific information
+would be lost. The symbol table of a BFD
+is not necessarily read in until a canonicalize request is
+made. Then the BFD back end fills in a table provided by the
+application with pointers to the canonical information. To
+output symbols, the application provides BFD with a table of
+pointers to pointers to @code{asymbol}s. This allows applications
+like the linker to output a symbol as it was read, since the ``behind
+the scenes'' information will be still available.
+@menu
+* Reading Symbols::
+* Writing Symbols::
+* Mini Symbols::
+* typedef asymbol::
+* symbol handling functions::
+@end menu
+
+@node Reading Symbols, Writing Symbols, Symbols, Symbols
+@subsection Reading symbols
+There are two stages to reading a symbol table from a BFD:
+allocating storage, and the actual reading process. This is an
+excerpt from an application which reads the symbol table:
+
+@example
+ long storage_needed;
+ asymbol **symbol_table;
+ long number_of_symbols;
+ long i;
+
+ storage_needed = bfd_get_symtab_upper_bound (abfd);
+
+ if (storage_needed < 0)
+ FAIL
+
+ if (storage_needed == 0)
+ return;
+
+ symbol_table = xmalloc (storage_needed);
+ ...
+ number_of_symbols =
+ bfd_canonicalize_symtab (abfd, symbol_table);
+
+ if (number_of_symbols < 0)
+ FAIL
+
+ for (i = 0; i < number_of_symbols; i++)
+ process_symbol (symbol_table[i]);
+@end example
+
+All storage for the symbols themselves is in an objalloc
+connected to the BFD; it is freed when the BFD is closed.
+
+@node Writing Symbols, Mini Symbols, Reading Symbols, Symbols
+@subsection Writing symbols
+Writing of a symbol table is automatic when a BFD open for
+writing is closed. The application attaches a vector of
+pointers to pointers to symbols to the BFD being written, and
+fills in the symbol count. The close and cleanup code reads
+through the table provided and performs all the necessary
+operations. The BFD output code must always be provided with an
+``owned'' symbol: one which has come from another BFD, or one
+which has been created using @code{bfd_make_empty_symbol}. Here is an
+example showing the creation of a symbol table with only one element:
+
+@example
+ #include "bfd.h"
+ int main (void)
+ @{
+ bfd *abfd;
+ asymbol *ptrs[2];
+ asymbol *new;
+
+ abfd = bfd_openw ("foo","a.out-sunos-big");
+ bfd_set_format (abfd, bfd_object);
+ new = bfd_make_empty_symbol (abfd);
+ new->name = "dummy_symbol";
+ new->section = bfd_make_section_old_way (abfd, ".text");
+ new->flags = BSF_GLOBAL;
+ new->value = 0x12345;
+
+ ptrs[0] = new;
+ ptrs[1] = 0;
+
+ bfd_set_symtab (abfd, ptrs, 1);
+ bfd_close (abfd);
+ return 0;
+ @}
+
+ ./makesym
+ nm foo
+ 00012345 A dummy_symbol
+@end example
+
+Many formats cannot represent arbitrary symbol information; for
+instance, the @code{a.out} object format does not allow an
+arbitrary number of sections. A symbol pointing to a section
+which is not one of @code{.text}, @code{.data} or @code{.bss} cannot
+be described.
+
+@node Mini Symbols, typedef asymbol, Writing Symbols, Symbols
+@subsection Mini Symbols
+Mini symbols provide read-only access to the symbol table.
+They use less memory space, but require more time to access.
+They can be useful for tools like nm or objdump, which may
+have to handle symbol tables of extremely large executables.
+
+The @code{bfd_read_minisymbols} function will read the symbols
+into memory in an internal form. It will return a @code{void *}
+pointer to a block of memory, a symbol count, and the size of
+each symbol. The pointer is allocated using @code{malloc}, and
+should be freed by the caller when it is no longer needed.
+
+The function @code{bfd_minisymbol_to_symbol} will take a pointer
+to a minisymbol, and a pointer to a structure returned by
+@code{bfd_make_empty_symbol}, and return a @code{asymbol} structure.
+The return value may or may not be the same as the value from
+@code{bfd_make_empty_symbol} which was passed in.
+
+
+@node typedef asymbol, symbol handling functions, Mini Symbols, Symbols
+@subsection typedef asymbol
+An @code{asymbol} has the form:
+
+
+@example
+
+typedef struct bfd_symbol
+@{
+ /* A pointer to the BFD which owns the symbol. This information
+ is necessary so that a back end can work out what additional
+ information (invisible to the application writer) is carried
+ with the symbol.
+
+ This field is *almost* redundant, since you can use section->owner
+ instead, except that some symbols point to the global sections
+ bfd_@{abs,com,und@}_section. This could be fixed by making
+ these globals be per-bfd (or per-target-flavor). FIXME. */
+ struct bfd *the_bfd; /* Use bfd_asymbol_bfd(sym) to access this field. */
+
+ /* The text of the symbol. The name is left alone, and not copied; the
+ application may not alter it. */
+ const char *name;
+
+ /* The value of the symbol. This really should be a union of a
+ numeric value with a pointer, since some flags indicate that
+ a pointer to another symbol is stored here. */
+ symvalue value;
+
+ /* Attributes of a symbol. */
+#define BSF_NO_FLAGS 0x00
+
+ /* The symbol has local scope; @code{static} in @code{C}. The value
+ is the offset into the section of the data. */
+#define BSF_LOCAL (1 << 0)
+
+ /* The symbol has global scope; initialized data in @code{C}. The
+ value is the offset into the section of the data. */
+#define BSF_GLOBAL (1 << 1)
+
+ /* The symbol has global scope and is exported. The value is
+ the offset into the section of the data. */
+#define BSF_EXPORT BSF_GLOBAL /* No real difference. */
+
+ /* A normal C symbol would be one of:
+ @code{BSF_LOCAL}, @code{BSF_COMMON}, @code{BSF_UNDEFINED} or
+ @code{BSF_GLOBAL}. */
+
+ /* The symbol is a debugging record. The value has an arbitrary
+ meaning, unless BSF_DEBUGGING_RELOC is also set. */
+#define BSF_DEBUGGING (1 << 2)
+
+ /* The symbol denotes a function entry point. Used in ELF,
+ perhaps others someday. */
+#define BSF_FUNCTION (1 << 3)
+
+ /* Used by the linker. */
+#define BSF_KEEP (1 << 5)
+#define BSF_KEEP_G (1 << 6)
+
+ /* A weak global symbol, overridable without warnings by
+ a regular global symbol of the same name. */
+#define BSF_WEAK (1 << 7)
+
+ /* This symbol was created to point to a section, e.g. ELF's
+ STT_SECTION symbols. */
+#define BSF_SECTION_SYM (1 << 8)
+
+ /* The symbol used to be a common symbol, but now it is
+ allocated. */
+#define BSF_OLD_COMMON (1 << 9)
+
+ /* In some files the type of a symbol sometimes alters its
+ location in an output file - ie in coff a @code{ISFCN} symbol
+ which is also @code{C_EXT} symbol appears where it was
+ declared and not at the end of a section. This bit is set
+ by the target BFD part to convey this information. */
+#define BSF_NOT_AT_END (1 << 10)
+
+ /* Signal that the symbol is the label of constructor section. */
+#define BSF_CONSTRUCTOR (1 << 11)
+
+ /* Signal that the symbol is a warning symbol. The name is a
+ warning. The name of the next symbol is the one to warn about;
+ if a reference is made to a symbol with the same name as the next
+ symbol, a warning is issued by the linker. */
+#define BSF_WARNING (1 << 12)
+
+ /* Signal that the symbol is indirect. This symbol is an indirect
+ pointer to the symbol with the same name as the next symbol. */
+#define BSF_INDIRECT (1 << 13)
+
+ /* BSF_FILE marks symbols that contain a file name. This is used
+ for ELF STT_FILE symbols. */
+#define BSF_FILE (1 << 14)
+
+ /* Symbol is from dynamic linking information. */
+#define BSF_DYNAMIC (1 << 15)
+
+ /* The symbol denotes a data object. Used in ELF, and perhaps
+ others someday. */
+#define BSF_OBJECT (1 << 16)
+
+ /* This symbol is a debugging symbol. The value is the offset
+ into the section of the data. BSF_DEBUGGING should be set
+ as well. */
+#define BSF_DEBUGGING_RELOC (1 << 17)
+
+ /* This symbol is thread local. Used in ELF. */
+#define BSF_THREAD_LOCAL (1 << 18)
+
+ /* This symbol represents a complex relocation expression,
+ with the expression tree serialized in the symbol name. */
+#define BSF_RELC (1 << 19)
+
+ /* This symbol represents a signed complex relocation expression,
+ with the expression tree serialized in the symbol name. */
+#define BSF_SRELC (1 << 20)
+
+ /* This symbol was created by bfd_get_synthetic_symtab. */
+#define BSF_SYNTHETIC (1 << 21)
+
+ /* This symbol is an indirect code object. Unrelated to BSF_INDIRECT.
+ The dynamic linker will compute the value of this symbol by
+ calling the function that it points to. BSF_FUNCTION must
+ also be also set. */
+#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)
+ /* This symbol is a globally unique data object. The dynamic linker
+ will make sure that in the entire process there is just one symbol
+ with this name and type in use. BSF_OBJECT must also be set. */
+#define BSF_GNU_UNIQUE (1 << 23)
+
+ flagword flags;
+
+ /* A pointer to the section to which this symbol is
+ relative. This will always be non NULL, there are special
+ sections for undefined and absolute symbols. */
+ struct bfd_section *section;
+
+ /* Back end special data. */
+ union
+ @{
+ void *p;
+ bfd_vma i;
+ @}
+ udata;
+@}
+asymbol;
+
+@end example
+
+@node symbol handling functions, , typedef asymbol, Symbols
+@subsection Symbol handling functions
+
+
+@findex bfd_get_symtab_upper_bound
+@subsubsection @code{bfd_get_symtab_upper_bound}
+@strong{Description}@*
+Return the number of bytes required to store a vector of pointers
+to @code{asymbols} for all the symbols in the BFD @var{abfd},
+including a terminal NULL pointer. If there are no symbols in
+the BFD, then return 0. If an error occurs, return -1.
+@example
+#define bfd_get_symtab_upper_bound(abfd) \
+ BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
+
+@end example
+
+@findex bfd_is_local_label
+@subsubsection @code{bfd_is_local_label}
+@strong{Synopsis}
+@example
+bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
+@end example
+@strong{Description}@*
+Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
+a compiler generated local label, else return FALSE.
+
+@findex bfd_is_local_label_name
+@subsubsection @code{bfd_is_local_label_name}
+@strong{Synopsis}
+@example
+bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
+@end example
+@strong{Description}@*
+Return TRUE if a symbol with the name @var{name} in the BFD
+@var{abfd} is a compiler generated local label, else return
+FALSE. This just checks whether the name has the form of a
+local label.
+@example
+#define bfd_is_local_label_name(abfd, name) \
+ BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
+
+@end example
+
+@findex bfd_is_target_special_symbol
+@subsubsection @code{bfd_is_target_special_symbol}
+@strong{Synopsis}
+@example
+bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
+@end example
+@strong{Description}@*
+Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
+special to the particular target represented by the BFD. Such symbols
+should normally not be mentioned to the user.
+@example
+#define bfd_is_target_special_symbol(abfd, sym) \
+ BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
+
+@end example
+
+@findex bfd_canonicalize_symtab
+@subsubsection @code{bfd_canonicalize_symtab}
+@strong{Description}@*
+Read the symbols from the BFD @var{abfd}, and fills in
+the vector @var{location} with pointers to the symbols and
+a trailing NULL.
+Return the actual number of symbol pointers, not
+including the NULL.
+@example
+#define bfd_canonicalize_symtab(abfd, location) \
+ BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
+
+@end example
+
+@findex bfd_set_symtab
+@subsubsection @code{bfd_set_symtab}
+@strong{Synopsis}
+@example
+bfd_boolean bfd_set_symtab
+ (bfd *abfd, asymbol **location, unsigned int count);
+@end example
+@strong{Description}@*
+Arrange that when the output BFD @var{abfd} is closed,
+the table @var{location} of @var{count} pointers to symbols
+will be written.
+
+@findex bfd_print_symbol_vandf
+@subsubsection @code{bfd_print_symbol_vandf}
+@strong{Synopsis}
+@example
+void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
+@end example
+@strong{Description}@*
+Print the value and flags of the @var{symbol} supplied to the
+stream @var{file}.
+
+@findex bfd_make_empty_symbol
+@subsubsection @code{bfd_make_empty_symbol}
+@strong{Description}@*
+Create a new @code{asymbol} structure for the BFD @var{abfd}
+and return a pointer to it.
+
+This routine is necessary because each back end has private
+information surrounding the @code{asymbol}. Building your own
+@code{asymbol} and pointing to it will not create the private
+information, and will cause problems later on.
+@example
+#define bfd_make_empty_symbol(abfd) \
+ BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
+
+@end example
+
+@findex _bfd_generic_make_empty_symbol
+@subsubsection @code{_bfd_generic_make_empty_symbol}
+@strong{Synopsis}
+@example
+asymbol *_bfd_generic_make_empty_symbol (bfd *);
+@end example
+@strong{Description}@*
+Create a new @code{asymbol} structure for the BFD @var{abfd}
+and return a pointer to it. Used by core file routines,
+binary back-end and anywhere else where no private info
+is needed.
+
+@findex bfd_make_debug_symbol
+@subsubsection @code{bfd_make_debug_symbol}
+@strong{Description}@*
+Create a new @code{asymbol} structure for the BFD @var{abfd},
+to be used as a debugging symbol. Further details of its use have
+yet to be worked out.
+@example
+#define bfd_make_debug_symbol(abfd,ptr,size) \
+ BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
+
+@end example
+
+@findex bfd_decode_symclass
+@subsubsection @code{bfd_decode_symclass}
+@strong{Description}@*
+Return a character corresponding to the symbol
+class of @var{symbol}, or '?' for an unknown class.
+
+@strong{Synopsis}
+@example
+int bfd_decode_symclass (asymbol *symbol);
+@end example
+@findex bfd_is_undefined_symclass
+@subsubsection @code{bfd_is_undefined_symclass}
+@strong{Description}@*
+Returns non-zero if the class symbol returned by
+bfd_decode_symclass represents an undefined symbol.
+Returns zero otherwise.
+
+@strong{Synopsis}
+@example
+bfd_boolean bfd_is_undefined_symclass (int symclass);
+@end example
+@findex bfd_symbol_info
+@subsubsection @code{bfd_symbol_info}
+@strong{Description}@*
+Fill in the basic info about symbol that nm needs.
+Additional info may be added by the back-ends after
+calling this function.
+
+@strong{Synopsis}
+@example
+void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
+@end example
+@findex bfd_copy_private_symbol_data
+@subsubsection @code{bfd_copy_private_symbol_data}
+@strong{Synopsis}
+@example
+bfd_boolean bfd_copy_private_symbol_data
+ (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
+@end example
+@strong{Description}@*
+Copy private symbol information from @var{isym} in the BFD
+@var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
+Return @code{TRUE} on success, @code{FALSE} on error. Possible error
+returns are:
+
+@itemize @bullet
+
+@item
+@code{bfd_error_no_memory} -
+Not enough memory exists to create private data for @var{osec}.
+@end itemize
+@example
+#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
+ BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
+ (ibfd, isymbol, obfd, osymbol))
+
+@end example
+