summaryrefslogtreecommitdiff
path: root/sim/common/sim-config.h
blob: 908e82a6d06e3fa3ae53b82bd8c462898547ed39 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
/* The common simulator framework for GDB, the GNU Debugger.

   Copyright 2002-2017 Free Software Foundation, Inc.

   Contributed by Andrew Cagney and Red Hat.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */


#ifndef SIM_CONFIG_H
#define SIM_CONFIG_H


/* Host dependant:

   The CPP below defines information about the compilation host.  In
   particular it defines the macro's:

   HOST_BYTE_ORDER	The byte order of the host. Could be BFD_ENDIAN_LITTLE
			or BFD_ENDIAN_BIG.

 */

#ifdef WORDS_BIGENDIAN
# define HOST_BYTE_ORDER BFD_ENDIAN_BIG
#else
# define HOST_BYTE_ORDER BFD_ENDIAN_LITTLE
#endif


/* Until devices and tree properties are sorted out, tell sim-config.c
   not to call the tree_find_foo fns.  */
#define WITH_TREE_PROPERTIES 0


/* Endianness of the target.

   Possible values are BFD_ENDIAN_UNKNOWN, BFD_ENDIAN_LITTLE, or BFD_ENDIAN_BIG.  */

#ifndef WITH_TARGET_BYTE_ORDER
#define WITH_TARGET_BYTE_ORDER		BFD_ENDIAN_UNKNOWN
#endif

#ifndef WITH_DEFAULT_TARGET_BYTE_ORDER
#define WITH_DEFAULT_TARGET_BYTE_ORDER	BFD_ENDIAN_UNKNOWN
#endif

extern enum bfd_endian current_target_byte_order;
#define CURRENT_TARGET_BYTE_ORDER \
  (WITH_TARGET_BYTE_ORDER != BFD_ENDIAN_UNKNOWN \
   ? WITH_TARGET_BYTE_ORDER : current_target_byte_order)



/* XOR endian.

   In addition to the above, the simulator can support the horrible
   XOR endian mode (as found in the PowerPC and MIPS ISA).  See
   sim-core for more information.

   If WITH_XOR_ENDIAN is non-zero, it specifies the number of bytes
   potentially involved in the XOR munge. A typical value is 8. */

#ifndef WITH_XOR_ENDIAN
#define WITH_XOR_ENDIAN		0
#endif



/* SMP support:

   Sets a limit on the number of processors that can be simulated.  If
   WITH_SMP is set to zero (0), the simulator is restricted to
   suporting only one processor (and as a consequence leaves the SMP
   code out of the build process).

   The actual number of processors is taken from the device
   /options/smp@<nr-cpu> */

#if defined (WITH_SMP) && (WITH_SMP > 0)
#define MAX_NR_PROCESSORS		WITH_SMP
#endif

#ifndef MAX_NR_PROCESSORS
#define MAX_NR_PROCESSORS		1
#endif


/* Size of target word, address and OpenFirmware Cell:

   The target word size is determined by the natural size of its
   reginsters.

   On most hosts, the address and cell are the same size as a target
   word.  */

#ifndef WITH_TARGET_WORD_BITSIZE
#define WITH_TARGET_WORD_BITSIZE        32
#endif

#ifndef WITH_TARGET_ADDRESS_BITSIZE
#define WITH_TARGET_ADDRESS_BITSIZE	WITH_TARGET_WORD_BITSIZE
#endif

#ifndef WITH_TARGET_CELL_BITSIZE
#define WITH_TARGET_CELL_BITSIZE	WITH_TARGET_WORD_BITSIZE
#endif

#ifndef WITH_TARGET_FLOATING_POINT_BITSIZE
#define WITH_TARGET_FLOATING_POINT_BITSIZE 64
#endif



/* Most significant bit of target:

   Set this according to your target's bit numbering convention.  For
   the PowerPC it is zero, for many other targets it is 31 or 63.

   For targets that can both have either 32 or 64 bit words and number
   MSB as 31, 63.  Define this to be (WITH_TARGET_WORD_BITSIZE - 1) */

#ifndef WITH_TARGET_WORD_MSB
#define WITH_TARGET_WORD_MSB            0
#endif



/* Program environment:

   Three environments are available - UEA (user), VEA (virtual) and
   OEA (perating).  The former two are environment that users would
   expect to see (VEA includes things like coherency and the time
   base) while OEA is what an operating system expects to see.  By
   setting these to specific values, the build process is able to
   eliminate non relevent environment code.

   STATE_ENVIRONMENT(sd) specifies which of vea or oea is required for
   the current runtime.

   ALL_ENVIRONMENT is used during configuration as a value for
   WITH_ENVIRONMENT to indicate the choice is runtime selectable.
   The default is then USER_ENVIRONMENT [since allowing the user to choose
   the default at configure time seems like featuritis and since people using
   OPERATING_ENVIRONMENT have more to worry about than selecting the
   default].
   ALL_ENVIRONMENT is also used to set STATE_ENVIRONMENT to the
   "uninitialized" state.  */

enum sim_environment {
  ALL_ENVIRONMENT,
  USER_ENVIRONMENT,
  VIRTUAL_ENVIRONMENT,
  OPERATING_ENVIRONMENT
};

/* To be prepended to simulator calls with absolute file paths and
   chdir:ed at startup.  */
extern char *simulator_sysroot;

/* Callback & Modulo Memory.

   Core includes a builtin memory type (raw_memory) that is
   implemented using an array.  raw_memory does not require any
   additional functions etc.

   Callback memory is where the core calls a core device for the data
   it requires.  Callback memory can be layered using priorities.

   Modulo memory is a variation on raw_memory where ADDRESS & (MODULO
   - 1) is used as the index into the memory array.

   The OEA model uses callback memory for devices.

   The VEA model uses callback memory to capture `page faults'.

   BTW, while raw_memory could have been implemented as a callback,
   profiling has shown that there is a biger win (at least for the
   x86) in eliminating a function call for the most common
   (raw_memory) case. */


/* Alignment:

   A processor architecture may or may not handle miss aligned
   transfers.

   As alternatives: both little and big endian modes take an exception
   (STRICT_ALIGNMENT); big and little endian models handle mis aligned
   transfers (NONSTRICT_ALIGNMENT); or the address is forced into
   alignment using a mask (FORCED_ALIGNMENT).

   Mixed alignment should be specified when the simulator needs to be
   able to change the alignment requirements on the fly (eg for
   bi-endian support). */

enum sim_alignments {
  MIXED_ALIGNMENT,
  NONSTRICT_ALIGNMENT,
  STRICT_ALIGNMENT,
  FORCED_ALIGNMENT,
};

extern enum sim_alignments current_alignment;

#if !defined (WITH_ALIGNMENT)
#define WITH_ALIGNMENT 0
#endif

#if !defined (WITH_DEFAULT_ALIGNMENT)
#define WITH_DEFAULT_ALIGNMENT 0 /* fatal */
#endif




#define CURRENT_ALIGNMENT (WITH_ALIGNMENT \
			   ? WITH_ALIGNMENT \
			   : current_alignment)



/* Floating point suport:

   Should the processor trap for all floating point instructions (as
   if the hardware wasn't implemented) or implement the floating point
   instructions directly. */

#if defined (WITH_FLOATING_POINT)

#define SOFT_FLOATING_POINT		1
#define HARD_FLOATING_POINT		2

extern int current_floating_point;
#define CURRENT_FLOATING_POINT (WITH_FLOATING_POINT \
				? WITH_FLOATING_POINT \
				: current_floating_point)

#endif


/* Whether to check instructions for reserved bits being set */

/* #define WITH_RESERVED_BITS		1 */



/* include monitoring code */

#define MONITOR_INSTRUCTION_ISSUE	1
#define MONITOR_LOAD_STORE_UNIT		2
/* do not define WITH_MON by default */
#define DEFAULT_WITH_MON		(MONITOR_LOAD_STORE_UNIT \
					 | MONITOR_INSTRUCTION_ISSUE)


/* Current CPU model (models are in the generated models.h include file)  */
#ifndef WITH_MODEL
#define WITH_MODEL			0
#endif

#define CURRENT_MODEL (WITH_MODEL	\
		       ? WITH_MODEL	\
		       : current_model)

#define MODEL_ISSUE_IGNORE		(-1)
#define MODEL_ISSUE_PROCESS		1

#ifndef WITH_MODEL_ISSUE
#define WITH_MODEL_ISSUE		0
#endif

extern int current_model_issue;
#define CURRENT_MODEL_ISSUE (WITH_MODEL_ISSUE	\
			     ? WITH_MODEL_ISSUE	\
			     : current_model_issue)



/* Whether or not input/output just uses stdio, or uses printf_filtered for
   output, and polling input for input.  */

#define DONT_USE_STDIO			2
#define DO_USE_STDIO			1

extern int current_stdio;
#define CURRENT_STDIO (WITH_STDIO	\
		       ? WITH_STDIO     \
		       : current_stdio)



/* Set the default state configuration, before parsing argv.  */

extern void sim_config_default (SIM_DESC sd);

/* Complete and verify the simulator configuration.  */

extern SIM_RC sim_config (SIM_DESC sd);

/* Print the simulator configuration.  */

extern void print_sim_config (SIM_DESC sd);


#endif