summaryrefslogtreecommitdiff
path: root/libiberty/hashtab.c
blob: 89bfe085be985ee41fa0f47d73bbf83c96d1962b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
/* An expandable hash tables datatype.  
   Copyright (C) 1999, 2000, 2001 Free Software Foundation, Inc.
   Contributed by Vladimir Makarov (vmakarov@cygnus.com).

This file is part of the libiberty library.
Libiberty is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

Libiberty is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Library General Public License for more details.

You should have received a copy of the GNU Library General Public
License along with libiberty; see the file COPYING.LIB.  If
not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.  */

/* This package implements basic hash table functionality.  It is possible
   to search for an entry, create an entry and destroy an entry.

   Elements in the table are generic pointers.

   The size of the table is not fixed; if the occupancy of the table
   grows too high the hash table will be expanded.

   The abstract data implementation is based on generalized Algorithm D
   from Knuth's book "The art of computer programming".  Hash table is
   expanded by creation of new hash table and transferring elements from
   the old table to the new table. */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <sys/types.h>

#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif

#ifdef HAVE_STRING_H
#include <string.h>
#endif

#include <stdio.h>

#include "libiberty.h"
#include "hashtab.h"

/* This macro defines reserved value for empty table entry. */

#define EMPTY_ENTRY    ((PTR) 0)

/* This macro defines reserved value for table entry which contained
   a deleted element. */

#define DELETED_ENTRY  ((PTR) 1)

static unsigned long higher_prime_number PARAMS ((unsigned long));
static hashval_t hash_pointer PARAMS ((const void *));
static int eq_pointer PARAMS ((const void *, const void *));
static int htab_expand PARAMS ((htab_t));
static PTR *find_empty_slot_for_expand  PARAMS ((htab_t, hashval_t));

/* At some point, we could make these be NULL, and modify the
   hash-table routines to handle NULL specially; that would avoid
   function-call overhead for the common case of hashing pointers.  */
htab_hash htab_hash_pointer = hash_pointer;
htab_eq htab_eq_pointer = eq_pointer;

/* The following function returns a nearest prime number which is
   greater than N, and near a power of two. */

static unsigned long
higher_prime_number (n)
     unsigned long n;
{
  /* These are primes that are near, but slightly smaller than, a
     power of two.  */
  static unsigned long primes[] = {
    (unsigned long) 2,
    (unsigned long) 7,
    (unsigned long) 13,
    (unsigned long) 31,
    (unsigned long) 61,
    (unsigned long) 127,
    (unsigned long) 251,
    (unsigned long) 509,
    (unsigned long) 1021,
    (unsigned long) 2039,
    (unsigned long) 4093,
    (unsigned long) 8191,
    (unsigned long) 16381,
    (unsigned long) 32749,
    (unsigned long) 65521,
    (unsigned long) 131071,
    (unsigned long) 262139,
    (unsigned long) 524287,
    (unsigned long) 1048573,
    (unsigned long) 2097143,
    (unsigned long) 4194301,
    (unsigned long) 8388593,
    (unsigned long) 16777213,
    (unsigned long) 33554393,
    (unsigned long) 67108859,
    (unsigned long) 134217689,
    (unsigned long) 268435399,
    (unsigned long) 536870909,
    (unsigned long) 1073741789,
    (unsigned long) 2147483647,
					/* 4294967291L */
    ((unsigned long) 2147483647) + ((unsigned long) 2147483644),
  };

  unsigned long* low = &primes[0];
  unsigned long* high = &primes[sizeof(primes) / sizeof(primes[0])];

  while (low != high)
    {
      unsigned long* mid = low + (high - low) / 2;
      if (n > *mid)
	low = mid + 1;
      else
	high = mid;
    }

  /* If we've run out of primes, abort.  */
  if (n > *low)
    {
      fprintf (stderr, "Cannot find prime bigger than %lu\n", n);
      abort ();
    }

  return *low;
}

/* Returns a hash code for P.  */

static hashval_t
hash_pointer (p)
     const PTR p;
{
  return (hashval_t) ((long)p >> 3);
}

/* Returns non-zero if P1 and P2 are equal.  */

static int
eq_pointer (p1, p2)
     const PTR p1;
     const PTR p2;
{
  return p1 == p2;
}

/* This function creates table with length slightly longer than given
   source length.  Created hash table is initiated as empty (all the
   hash table entries are EMPTY_ENTRY).  The function returns the
   created hash table.  Memory allocation must not fail.  */

htab_t
htab_create (size, hash_f, eq_f, del_f)
     size_t size;
     htab_hash hash_f;
     htab_eq eq_f;
     htab_del del_f;
{
  htab_t result;

  size = higher_prime_number (size);
  result = (htab_t) xcalloc (1, sizeof (struct htab));
  result->entries = (PTR *) xcalloc (size, sizeof (PTR));
  result->size = size;
  result->hash_f = hash_f;
  result->eq_f = eq_f;
  result->del_f = del_f;
  result->return_allocation_failure = 0;
  return result;
}

/* This function creates table with length slightly longer than given
   source length.  The created hash table is initiated as empty (all the
   hash table entries are EMPTY_ENTRY).  The function returns the created
   hash table.  Memory allocation may fail; it may return NULL.  */

htab_t
htab_try_create (size, hash_f, eq_f, del_f)
     size_t size;
     htab_hash hash_f;
     htab_eq eq_f;
     htab_del del_f;
{
  htab_t result;

  size = higher_prime_number (size);
  result = (htab_t) calloc (1, sizeof (struct htab));
  if (result == NULL)
    return NULL;

  result->entries = (PTR *) calloc (size, sizeof (PTR));
  if (result->entries == NULL)
    {
      free (result);
      return NULL;
    }

  result->size = size;
  result->hash_f = hash_f;
  result->eq_f = eq_f;
  result->del_f = del_f;
  result->return_allocation_failure = 1;
  return result;
}

/* This function frees all memory allocated for given hash table.
   Naturally the hash table must already exist. */

void
htab_delete (htab)
     htab_t htab;
{
  int i;

  if (htab->del_f)
    for (i = htab->size - 1; i >= 0; i--)
      if (htab->entries[i] != EMPTY_ENTRY
	  && htab->entries[i] != DELETED_ENTRY)
	(*htab->del_f) (htab->entries[i]);

  free (htab->entries);
  free (htab);
}

/* This function clears all entries in the given hash table.  */

void
htab_empty (htab)
     htab_t htab;
{
  int i;

  if (htab->del_f)
    for (i = htab->size - 1; i >= 0; i--)
      if (htab->entries[i] != EMPTY_ENTRY
	  && htab->entries[i] != DELETED_ENTRY)
	(*htab->del_f) (htab->entries[i]);

  memset (htab->entries, 0, htab->size * sizeof (PTR));
}

/* Similar to htab_find_slot, but without several unwanted side effects:
    - Does not call htab->eq_f when it finds an existing entry.
    - Does not change the count of elements/searches/collisions in the
      hash table.
   This function also assumes there are no deleted entries in the table.
   HASH is the hash value for the element to be inserted.  */

static PTR *
find_empty_slot_for_expand (htab, hash)
     htab_t htab;
     hashval_t hash;
{
  size_t size = htab->size;
  hashval_t hash2 = 1 + hash % (size - 2);
  unsigned int index = hash % size;

  for (;;)
    {
      PTR *slot = htab->entries + index;

      if (*slot == EMPTY_ENTRY)
	return slot;
      else if (*slot == DELETED_ENTRY)
	abort ();

      index += hash2;
      if (index >= size)
	index -= size;
    }
}

/* The following function changes size of memory allocated for the
   entries and repeatedly inserts the table elements.  The occupancy
   of the table after the call will be about 50%.  Naturally the hash
   table must already exist.  Remember also that the place of the
   table entries is changed.  If memory allocation failures are allowed,
   this function will return zero, indicating that the table could not be
   expanded.  If all goes well, it will return a non-zero value.  */

static int
htab_expand (htab)
     htab_t htab;
{
  PTR *oentries;
  PTR *olimit;
  PTR *p;

  oentries = htab->entries;
  olimit = oentries + htab->size;

  htab->size = higher_prime_number (htab->size * 2);

  if (htab->return_allocation_failure)
    {
      PTR *nentries = (PTR *) calloc (htab->size, sizeof (PTR *));
      if (nentries == NULL)
	return 0;
      htab->entries = nentries;
    }
  else
    htab->entries = (PTR *) xcalloc (htab->size, sizeof (PTR *));

  htab->n_elements -= htab->n_deleted;
  htab->n_deleted = 0;

  p = oentries;
  do
    {
      PTR x = *p;

      if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
	{
	  PTR *q = find_empty_slot_for_expand (htab, (*htab->hash_f) (x));

	  *q = x;
	}

      p++;
    }
  while (p < olimit);

  free (oentries);
  return 1;
}

/* This function searches for a hash table entry equal to the given
   element.  It cannot be used to insert or delete an element.  */

PTR
htab_find_with_hash (htab, element, hash)
     htab_t htab;
     const PTR element;
     hashval_t hash;
{
  unsigned int index;
  hashval_t hash2;
  size_t size;
  PTR entry;

  htab->searches++;
  size = htab->size;
  index = hash % size;

  entry = htab->entries[index];
  if (entry == EMPTY_ENTRY
      || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
    return entry;

  hash2 = 1 + hash % (size - 2);

  for (;;)
    {
      htab->collisions++;
      index += hash2;
      if (index >= size)
	index -= size;

      entry = htab->entries[index];
      if (entry == EMPTY_ENTRY
	  || (entry != DELETED_ENTRY && (*htab->eq_f) (entry, element)))
	return entry;
    }
}

/* Like htab_find_slot_with_hash, but compute the hash value from the
   element.  */

PTR
htab_find (htab, element)
     htab_t htab;
     const PTR element;
{
  return htab_find_with_hash (htab, element, (*htab->hash_f) (element));
}

/* This function searches for a hash table slot containing an entry
   equal to the given element.  To delete an entry, call this with
   INSERT = 0, then call htab_clear_slot on the slot returned (possibly
   after doing some checks).  To insert an entry, call this with
   INSERT = 1, then write the value you want into the returned slot.
   When inserting an entry, NULL may be returned if memory allocation
   fails.  */

PTR *
htab_find_slot_with_hash (htab, element, hash, insert)
     htab_t htab;
     const PTR element;
     hashval_t hash;
     enum insert_option insert;
{
  PTR *first_deleted_slot;
  unsigned int index;
  hashval_t hash2;
  size_t size;

  if (insert == INSERT && htab->size * 3 <= htab->n_elements * 4
      && htab_expand (htab) == 0)
    return NULL;

  size = htab->size;
  hash2 = 1 + hash % (size - 2);
  index = hash % size;

  htab->searches++;
  first_deleted_slot = NULL;

  for (;;)
    {
      PTR entry = htab->entries[index];
      if (entry == EMPTY_ENTRY)
	{
	  if (insert == NO_INSERT)
	    return NULL;

	  htab->n_elements++;

	  if (first_deleted_slot)
	    {
	      *first_deleted_slot = EMPTY_ENTRY;
	      return first_deleted_slot;
	    }

	  return &htab->entries[index];
	}

      if (entry == DELETED_ENTRY)
	{
	  if (!first_deleted_slot)
	    first_deleted_slot = &htab->entries[index];
	}
      else  if ((*htab->eq_f) (entry, element))
	return &htab->entries[index];
      
      htab->collisions++;
      index += hash2;
      if (index >= size)
	index -= size;
    }
}

/* Like htab_find_slot_with_hash, but compute the hash value from the
   element.  */

PTR *
htab_find_slot (htab, element, insert)
     htab_t htab;
     const PTR element;
     enum insert_option insert;
{
  return htab_find_slot_with_hash (htab, element, (*htab->hash_f) (element),
				   insert);
}

/* This function deletes an element with the given value from hash
   table.  If there is no matching element in the hash table, this
   function does nothing.  */

void
htab_remove_elt (htab, element)
     htab_t htab;
     PTR element;
{
  PTR *slot;

  slot = htab_find_slot (htab, element, NO_INSERT);
  if (*slot == EMPTY_ENTRY)
    return;

  if (htab->del_f)
    (*htab->del_f) (*slot);

  *slot = DELETED_ENTRY;
  htab->n_deleted++;
}

/* This function clears a specified slot in a hash table.  It is
   useful when you've already done the lookup and don't want to do it
   again.  */

void
htab_clear_slot (htab, slot)
     htab_t htab;
     PTR *slot;
{
  if (slot < htab->entries || slot >= htab->entries + htab->size
      || *slot == EMPTY_ENTRY || *slot == DELETED_ENTRY)
    abort ();

  if (htab->del_f)
    (*htab->del_f) (*slot);

  *slot = DELETED_ENTRY;
  htab->n_deleted++;
}

/* This function scans over the entire hash table calling
   CALLBACK for each live entry.  If CALLBACK returns false,
   the iteration stops.  INFO is passed as CALLBACK's second
   argument.  */

void
htab_traverse (htab, callback, info)
     htab_t htab;
     htab_trav callback;
     PTR info;
{
  PTR *slot = htab->entries;
  PTR *limit = slot + htab->size;

  do
    {
      PTR x = *slot;

      if (x != EMPTY_ENTRY && x != DELETED_ENTRY)
	if (!(*callback) (slot, info))
	  break;
    }
  while (++slot < limit);
}

/* Return the current size of given hash table. */

size_t
htab_size (htab)
     htab_t htab;
{
  return htab->size;
}

/* Return the current number of elements in given hash table. */

size_t
htab_elements (htab)
     htab_t htab;
{
  return htab->n_elements - htab->n_deleted;
}

/* Return the fraction of fixed collisions during all work with given
   hash table. */

double
htab_collisions (htab)
     htab_t htab;
{
  if (htab->searches == 0)
    return 0.0;

  return (double) htab->collisions / (double) htab->searches;
}

/* Hash P as a null-terminated string.

   Copied from gcc/hashtable.c.  Zack had the following to say with respect
   to applicability, though note that unlike hashtable.c, this hash table
   implementation re-hashes rather than chain buckets.

   http://gcc.gnu.org/ml/gcc-patches/2001-08/msg01021.html
   From: Zack Weinberg <zackw@panix.com>
   Date: Fri, 17 Aug 2001 02:15:56 -0400

   I got it by extracting all the identifiers from all the source code
   I had lying around in mid-1999, and testing many recurrences of
   the form "H_n = H_{n-1} * K + c_n * L + M" where K, L, M were either
   prime numbers or the appropriate identity.  This was the best one.
   I don't remember exactly what constituted "best", except I was
   looking at bucket-length distributions mostly.
   
   So it should be very good at hashing identifiers, but might not be
   as good at arbitrary strings.
   
   I'll add that it thoroughly trounces the hash functions recommended
   for this use at http://burtleburtle.net/bob/hash/index.html, both
   on speed and bucket distribution.  I haven't tried it against the
   function they just started using for Perl's hashes.  */

hashval_t
htab_hash_string (p)
     const PTR p;
{
  const unsigned char *str = (const unsigned char *) p;
  hashval_t r = 0;
  unsigned char c;

  while ((c = *str++) != 0)
    r = r * 67 + c - 113;

  return r;
}