summaryrefslogtreecommitdiff
path: root/gold/target-reloc.h
blob: 34c13e8173d8192ac0255236f0e163a92df4c8c4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
// target-reloc.h -- target specific relocation support  -*- C++ -*-

// Copyright 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
// Written by Ian Lance Taylor <iant@google.com>.

// This file is part of gold.

// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
// MA 02110-1301, USA.

#ifndef GOLD_TARGET_RELOC_H
#define GOLD_TARGET_RELOC_H

#include "elfcpp.h"
#include "symtab.h"
#include "object.h"
#include "reloc.h"
#include "reloc-types.h"

namespace gold
{

// This function implements the generic part of reloc scanning.  The
// template parameter Scan must be a class type which provides two
// functions: local() and global().  Those functions implement the
// machine specific part of scanning.  We do it this way to
// avoidmaking a function call for each relocation, and to avoid
// repeating the generic code for each target.

template<int size, bool big_endian, typename Target_type, int sh_type,
	 typename Scan>
inline void
scan_relocs(
    Symbol_table* symtab,
    Layout* layout,
    Target_type* target,
    Sized_relobj<size, big_endian>* object,
    unsigned int data_shndx,
    const unsigned char* prelocs,
    size_t reloc_count,
    Output_section* output_section,
    bool needs_special_offset_handling,
    size_t local_count,
    const unsigned char* plocal_syms)
{
  typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
  const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
  Scan scan;

  for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
    {
      Reltype reloc(prelocs);

      if (needs_special_offset_handling
	  && !output_section->is_input_address_mapped(object, data_shndx,
						      reloc.get_r_offset()))
	continue;

      typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
      unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
      unsigned int r_type = elfcpp::elf_r_type<size>(r_info);

      if (r_sym < local_count)
	{
	  gold_assert(plocal_syms != NULL);
	  typename elfcpp::Sym<size, big_endian> lsym(plocal_syms
						      + r_sym * sym_size);
	  unsigned int shndx = lsym.get_st_shndx();
	  bool is_ordinary;
	  shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
	  if (is_ordinary
	      && shndx != elfcpp::SHN_UNDEF
	      && !object->is_section_included(shndx)
              && !symtab->is_section_folded(object, shndx))
	    {
	      // RELOC is a relocation against a local symbol in a
	      // section we are discarding.  We can ignore this
	      // relocation.  It will eventually become a reloc
	      // against the value zero.
	      //
	      // FIXME: We should issue a warning if this is an
	      // allocated section; is this the best place to do it?
	      // 
	      // FIXME: The old GNU linker would in some cases look
	      // for the linkonce section which caused this section to
	      // be discarded, and, if the other section was the same
	      // size, change the reloc to refer to the other section.
	      // That seems risky and weird to me, and I don't know of
	      // any case where it is actually required.

	      continue;
	    }
	  scan.local(symtab, layout, target, object, data_shndx,
		     output_section, reloc, r_type, lsym);
	}
      else
	{
	  Symbol* gsym = object->global_symbol(r_sym);
	  gold_assert(gsym != NULL);
	  if (gsym->is_forwarder())
	    gsym = symtab->resolve_forwards(gsym);

	  scan.global(symtab, layout, target, object, data_shndx,
		      output_section, reloc, r_type, gsym);
	}
    }
}

// Behavior for relocations to discarded comdat sections.

enum Comdat_behavior
{
  CB_UNDETERMINED,   // Not yet determined -- need to look at section name.
  CB_PRETEND,        // Attempt to map to the corresponding kept section.
  CB_IGNORE,         // Ignore the relocation.
  CB_WARNING         // Print a warning.
};

// Decide what the linker should do for relocations that refer to discarded
// comdat sections.  This decision is based on the name of the section being
// relocated.

inline Comdat_behavior
get_comdat_behavior(const char* name)
{
  if (Layout::is_debug_info_section(name))
    return CB_PRETEND;
  if (strcmp(name, ".eh_frame") == 0
      || strcmp(name, ".gcc_except_table") == 0)
    return CB_IGNORE;
  return CB_WARNING;
}

// Give an error for a symbol with non-default visibility which is not
// defined locally.

inline void
visibility_error(const Symbol* sym)
{
  const char* v;
  switch (sym->visibility())
    {
    case elfcpp::STV_INTERNAL:
      v = _("internal");
      break;
    case elfcpp::STV_HIDDEN:
      v = _("hidden");
      break;
    case elfcpp::STV_PROTECTED:
      v = _("protected");
      break;
    default:
      gold_unreachable();
    }
  gold_error(_("%s symbol '%s' is not defined locally"),
	     v, sym->name());
}

// This function implements the generic part of relocation processing.
// The template parameter Relocate must be a class type which provides
// a single function, relocate(), which implements the machine
// specific part of a relocation.

// SIZE is the ELF size: 32 or 64.  BIG_ENDIAN is the endianness of
// the data.  SH_TYPE is the section type: SHT_REL or SHT_RELA.
// RELOCATE implements operator() to do a relocation.

// PRELOCS points to the relocation data.  RELOC_COUNT is the number
// of relocs.  OUTPUT_SECTION is the output section.
// NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
// mapped to output offsets.

// VIEW is the section data, VIEW_ADDRESS is its memory address, and
// VIEW_SIZE is the size.  These refer to the input section, unless
// NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
// the output section.

// RELOC_SYMBOL_CHANGES is used for -fsplit-stack support.  If it is
// not NULL, it is a vector indexed by relocation index.  If that
// entry is not NULL, it points to a global symbol which used as the
// symbol for the relocation, ignoring the symbol index in the
// relocation.

template<int size, bool big_endian, typename Target_type, int sh_type,
	 typename Relocate>
inline void
relocate_section(
    const Relocate_info<size, big_endian>* relinfo,
    Target_type* target,
    const unsigned char* prelocs,
    size_t reloc_count,
    Output_section* output_section,
    bool needs_special_offset_handling,
    unsigned char* view,
    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
    section_size_type view_size,
    const Reloc_symbol_changes* reloc_symbol_changes)
{
  typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
  const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
  Relocate relocate;

  Sized_relobj<size, big_endian>* object = relinfo->object;
  unsigned int local_count = object->local_symbol_count();

  Comdat_behavior comdat_behavior = CB_UNDETERMINED;

  for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
    {
      Reltype reloc(prelocs);

      section_offset_type offset =
	convert_to_section_size_type(reloc.get_r_offset());

      if (needs_special_offset_handling)
	{
	  offset = output_section->output_offset(relinfo->object,
						 relinfo->data_shndx,
						 offset);
	  if (offset == -1)
	    continue;
	}

      typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
      unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
      unsigned int r_type = elfcpp::elf_r_type<size>(r_info);

      const Sized_symbol<size>* sym;

      Symbol_value<size> symval;
      const Symbol_value<size> *psymval;
      bool is_defined_in_discarded_section;
      unsigned int shndx;
      if (r_sym < local_count
	  && (reloc_symbol_changes == NULL
	      || (*reloc_symbol_changes)[i] == NULL))
	{
	  sym = NULL;
	  psymval = object->local_symbol(r_sym);

          // If the local symbol belongs to a section we are discarding,
          // and that section is a debug section, try to find the
          // corresponding kept section and map this symbol to its
          // counterpart in the kept section.  The symbol must not 
          // correspond to a section we are folding.
	  bool is_ordinary;
	  shndx = psymval->input_shndx(&is_ordinary);
	  is_defined_in_discarded_section =
	    (is_ordinary
	     && shndx != elfcpp::SHN_UNDEF
	     && !object->is_section_included(shndx)
	     && !relinfo->symtab->is_section_folded(object, shndx));
	}
      else
	{
	  const Symbol* gsym;
	  if (reloc_symbol_changes != NULL
	      && (*reloc_symbol_changes)[i] != NULL)
	    gsym = (*reloc_symbol_changes)[i];
	  else
	    {
	      gsym = object->global_symbol(r_sym);
	      gold_assert(gsym != NULL);
	      if (gsym->is_forwarder())
		gsym = relinfo->symtab->resolve_forwards(gsym);
	    }

	  sym = static_cast<const Sized_symbol<size>*>(gsym);
	  if (sym->has_symtab_index() && sym->symtab_index() != -1U)
	    symval.set_output_symtab_index(sym->symtab_index());
	  else
	    symval.set_no_output_symtab_entry();
	  symval.set_output_value(sym->value());
	  psymval = &symval;

	  is_defined_in_discarded_section =
	    (gsym->is_defined_in_discarded_section()
	     && gsym->is_undefined());
	  shndx = 0;
	}

      Symbol_value<size> symval2;
      if (is_defined_in_discarded_section)
	{
	  if (comdat_behavior == CB_UNDETERMINED)
	    {
	      std::string name = object->section_name(relinfo->data_shndx);
	      comdat_behavior = get_comdat_behavior(name.c_str());
	    }
	  if (comdat_behavior == CB_PRETEND)
	    {
	      // FIXME: This case does not work for global symbols.
	      // We have no place to store the original section index.
	      // Fortunately this does not matter for comdat sections,
	      // only for sections explicitly discarded by a linker
	      // script.
	      bool found;
	      typename elfcpp::Elf_types<size>::Elf_Addr value =
		object->map_to_kept_section(shndx, &found);
	      if (found)
		symval2.set_output_value(value + psymval->input_value());
	      else
		symval2.set_output_value(0);
	    }
	  else
	    {
	      if (comdat_behavior == CB_WARNING)
		gold_warning_at_location(relinfo, i, offset,
					 _("relocation refers to discarded "
					   "section"));
	      symval2.set_output_value(0);
	    }
	  symval2.set_no_output_symtab_entry();
	  psymval = &symval2;
	}

      if (!relocate.relocate(relinfo, target, output_section, i, reloc,
			     r_type, sym, psymval, view + offset,
			     view_address + offset, view_size))
	continue;

      if (offset < 0 || static_cast<section_size_type>(offset) >= view_size)
	{
	  gold_error_at_location(relinfo, i, offset,
				 _("reloc has bad offset %zu"),
				 static_cast<size_t>(offset));
	  continue;
	}

      if (sym != NULL
	  && sym->is_undefined()
	  && sym->binding() != elfcpp::STB_WEAK
	  && !is_defined_in_discarded_section
          && !target->is_defined_by_abi(sym)
	  && (!parameters->options().shared()       // -shared
              || parameters->options().defs()))     // -z defs
	gold_undefined_symbol_at_location(sym, relinfo, i, offset);
      else if (sym != NULL
	       && sym->visibility() != elfcpp::STV_DEFAULT
	       && (sym->is_undefined() || sym->is_from_dynobj()))
	visibility_error(sym);

      if (sym != NULL && sym->has_warning())
	relinfo->symtab->issue_warning(sym, relinfo, i, offset);
    }
}

// This class may be used as a typical class for the
// Scan_relocatable_reloc parameter to scan_relocatable_relocs.  The
// template parameter Classify_reloc must be a class type which
// provides a function get_size_for_reloc which returns the number of
// bytes to which a reloc applies.  This class is intended to capture
// the most typical target behaviour, while still permitting targets
// to define their own independent class for Scan_relocatable_reloc.

template<int sh_type, typename Classify_reloc>
class Default_scan_relocatable_relocs
{
 public:
  // Return the strategy to use for a local symbol which is not a
  // section symbol, given the relocation type.
  inline Relocatable_relocs::Reloc_strategy
  local_non_section_strategy(unsigned int r_type, Relobj*, unsigned int r_sym)
  {
    // We assume that relocation type 0 is NONE.  Targets which are
    // different must override.
    if (r_type == 0 && r_sym == 0)
      return Relocatable_relocs::RELOC_DISCARD;
    return Relocatable_relocs::RELOC_COPY;
  }

  // Return the strategy to use for a local symbol which is a section
  // symbol, given the relocation type.
  inline Relocatable_relocs::Reloc_strategy
  local_section_strategy(unsigned int r_type, Relobj* object)
  {
    if (sh_type == elfcpp::SHT_RELA)
      return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
    else
      {
	Classify_reloc classify;
	switch (classify.get_size_for_reloc(r_type, object))
	  {
	  case 0:
	    return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0;
	  case 1:
	    return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1;
	  case 2:
	    return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2;
	  case 4:
	    return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4;
	  case 8:
	    return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8;
	  default:
	    gold_unreachable();
	  }
      }
  }

  // Return the strategy to use for a global symbol, given the
  // relocation type, the object, and the symbol index.
  inline Relocatable_relocs::Reloc_strategy
  global_strategy(unsigned int, Relobj*, unsigned int)
  { return Relocatable_relocs::RELOC_COPY; }
};

// Scan relocs during a relocatable link.  This is a default
// definition which should work for most targets.
// Scan_relocatable_reloc must name a class type which provides three
// functions which return a Relocatable_relocs::Reloc_strategy code:
// global_strategy, local_non_section_strategy, and
// local_section_strategy.  Most targets should be able to use
// Default_scan_relocatable_relocs as this class.

template<int size, bool big_endian, int sh_type,
	 typename Scan_relocatable_reloc>
void
scan_relocatable_relocs(
    Symbol_table*,
    Layout*,
    Sized_relobj<size, big_endian>* object,
    unsigned int data_shndx,
    const unsigned char* prelocs,
    size_t reloc_count,
    Output_section* output_section,
    bool needs_special_offset_handling,
    size_t local_symbol_count,
    const unsigned char* plocal_syms,
    Relocatable_relocs* rr)
{
  typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
  const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
  const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
  Scan_relocatable_reloc scan;

  for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
    {
      Reltype reloc(prelocs);

      Relocatable_relocs::Reloc_strategy strategy;

      if (needs_special_offset_handling
	  && !output_section->is_input_address_mapped(object, data_shndx,
						      reloc.get_r_offset()))
	strategy = Relocatable_relocs::RELOC_DISCARD;
      else
	{
	  typename elfcpp::Elf_types<size>::Elf_WXword r_info =
	    reloc.get_r_info();
	  const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
	  const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);

	  if (r_sym >= local_symbol_count)
	    strategy = scan.global_strategy(r_type, object, r_sym);
	  else
	    {
	      gold_assert(plocal_syms != NULL);
	      typename elfcpp::Sym<size, big_endian> lsym(plocal_syms
							  + r_sym * sym_size);
	      unsigned int shndx = lsym.get_st_shndx();
	      bool is_ordinary;
	      shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
	      if (is_ordinary
		  && shndx != elfcpp::SHN_UNDEF
		  && !object->is_section_included(shndx))
		{
		  // RELOC is a relocation against a local symbol
		  // defined in a section we are discarding.  Discard
		  // the reloc.  FIXME: Should we issue a warning?
		  strategy = Relocatable_relocs::RELOC_DISCARD;
		}
	      else if (lsym.get_st_type() != elfcpp::STT_SECTION)
		strategy = scan.local_non_section_strategy(r_type, object,
							   r_sym);
	      else
		{
		  strategy = scan.local_section_strategy(r_type, object);
		  if (strategy != Relocatable_relocs::RELOC_DISCARD)
                    object->output_section(shndx)->set_needs_symtab_index();
		}

	      if (strategy == Relocatable_relocs::RELOC_COPY)
		object->set_must_have_output_symtab_entry(r_sym);
	    }
	}

      rr->set_next_reloc_strategy(strategy);
    }
}

// Relocate relocs during a relocatable link.  This is a default
// definition which should work for most targets.

template<int size, bool big_endian, int sh_type>
void
relocate_for_relocatable(
    const Relocate_info<size, big_endian>* relinfo,
    const unsigned char* prelocs,
    size_t reloc_count,
    Output_section* output_section,
    typename elfcpp::Elf_types<size>::Elf_Addr offset_in_output_section,
    const Relocatable_relocs* rr,
    unsigned char* view,
    typename elfcpp::Elf_types<size>::Elf_Addr view_address,
    section_size_type view_size,
    unsigned char* reloc_view,
    section_size_type reloc_view_size)
{
  typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
  typedef typename Reloc_types<sh_type, size, big_endian>::Reloc Reltype;
  typedef typename Reloc_types<sh_type, size, big_endian>::Reloc_write
    Reltype_write;
  const int reloc_size = Reloc_types<sh_type, size, big_endian>::reloc_size;
  const Address invalid_address = static_cast<Address>(0) - 1;

  Sized_relobj<size, big_endian>* const object = relinfo->object;
  const unsigned int local_count = object->local_symbol_count();

  unsigned char* pwrite = reloc_view;

  for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
    {
      Relocatable_relocs::Reloc_strategy strategy = rr->strategy(i);
      if (strategy == Relocatable_relocs::RELOC_DISCARD)
	continue;

      if (strategy == Relocatable_relocs::RELOC_SPECIAL)
	{
	  // Target wants to handle this relocation.
	  Sized_target<size, big_endian>* target =
	    parameters->sized_target<size, big_endian>();
	  target->relocate_special_relocatable(relinfo, sh_type, prelocs,
					       i, output_section,
					       offset_in_output_section,
					       view, view_address,
					       view_size, pwrite);
	  pwrite += reloc_size;
	  continue;
	}
      Reltype reloc(prelocs);
      Reltype_write reloc_write(pwrite);

      typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
      const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
      const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);

      // Get the new symbol index.

      unsigned int new_symndx;
      if (r_sym < local_count)
	{
	  switch (strategy)
	    {
	    case Relocatable_relocs::RELOC_COPY:
	      if (r_sym == 0)
		new_symndx = 0;
	      else
		{
		  new_symndx = object->symtab_index(r_sym);
		  gold_assert(new_symndx != -1U);
		}
	      break;

	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0:
	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1:
	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2:
	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4:
	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8:
	      {
		// We are adjusting a section symbol.  We need to find
		// the symbol table index of the section symbol for
		// the output section corresponding to input section
		// in which this symbol is defined.
		gold_assert(r_sym < local_count);
		bool is_ordinary;
		unsigned int shndx =
		  object->local_symbol_input_shndx(r_sym, &is_ordinary);
		gold_assert(is_ordinary);
		Output_section* os = object->output_section(shndx);
		gold_assert(os != NULL);
		gold_assert(os->needs_symtab_index());
		new_symndx = os->symtab_index();
	      }
	      break;

	    default:
	      gold_unreachable();
	    }
	}
      else
	{
	  const Symbol* gsym = object->global_symbol(r_sym);
	  gold_assert(gsym != NULL);
	  if (gsym->is_forwarder())
	    gsym = relinfo->symtab->resolve_forwards(gsym);

	  gold_assert(gsym->has_symtab_index());
	  new_symndx = gsym->symtab_index();
	}

      // Get the new offset--the location in the output section where
      // this relocation should be applied.

      Address offset = reloc.get_r_offset();
      Address new_offset;
      if (offset_in_output_section != invalid_address)
	new_offset = offset + offset_in_output_section;
      else
	{
          section_offset_type sot_offset =
              convert_types<section_offset_type, Address>(offset);
	  section_offset_type new_sot_offset =
              output_section->output_offset(object, relinfo->data_shndx,
                                            sot_offset);
	  gold_assert(new_sot_offset != -1);
          new_offset = new_sot_offset;
	}

      // In an object file, r_offset is an offset within the section.
      // In an executable or dynamic object, generated by
      // --emit-relocs, r_offset is an absolute address.
      if (!parameters->options().relocatable())
	{
	  new_offset += view_address;
	  if (offset_in_output_section != invalid_address)
	    new_offset -= offset_in_output_section;
	}

      reloc_write.put_r_offset(new_offset);
      reloc_write.put_r_info(elfcpp::elf_r_info<size>(new_symndx, r_type));

      // Handle the reloc addend based on the strategy.

      if (strategy == Relocatable_relocs::RELOC_COPY)
	{
	  if (sh_type == elfcpp::SHT_RELA)
	    Reloc_types<sh_type, size, big_endian>::
	      copy_reloc_addend(&reloc_write,
				&reloc);
	}
      else
	{
	  // The relocation uses a section symbol in the input file.
	  // We are adjusting it to use a section symbol in the output
	  // file.  The input section symbol refers to some address in
	  // the input section.  We need the relocation in the output
	  // file to refer to that same address.  This adjustment to
	  // the addend is the same calculation we use for a simple
	  // absolute relocation for the input section symbol.

	  const Symbol_value<size>* psymval = object->local_symbol(r_sym);

	  unsigned char* padd = view + offset;
	  switch (strategy)
	    {
	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA:
	      {
		typename elfcpp::Elf_types<size>::Elf_Swxword addend;
		addend = Reloc_types<sh_type, size, big_endian>::
			   get_reloc_addend(&reloc);
		addend = psymval->value(object, addend);
		Reloc_types<sh_type, size, big_endian>::
		  set_reloc_addend(&reloc_write, addend);
	      }
	      break;

	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_0:
	      break;

	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_1:
	      Relocate_functions<size, big_endian>::rel8(padd, object,
							 psymval);
	      break;

	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_2:
	      Relocate_functions<size, big_endian>::rel16(padd, object,
							  psymval);
	      break;

	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_4:
	      Relocate_functions<size, big_endian>::rel32(padd, object,
							  psymval);
	      break;

	    case Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_8:
	      Relocate_functions<size, big_endian>::rel64(padd, object,
							  psymval);
	      break;

	    default:
	      gold_unreachable();
	    }
	}

      pwrite += reloc_size;
    }

  gold_assert(static_cast<section_size_type>(pwrite - reloc_view)
	      == reloc_view_size);
}

} // End namespace gold.

#endif // !defined(GOLD_TARGET_RELOC_H)