summaryrefslogtreecommitdiff
path: root/gdb/testsuite/gdb.base/structs.exp
blob: addc2050d56468c2bf17babcc02d37c17e66111e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
# This testcase is part of GDB, the GNU debugger.

# Copyright 1996-2014 Free Software Foundation, Inc.

# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.


# Some targets can't call functions, so don't even bother with this
# test.

if [target_info exists gdb,cannot_call_functions] {
    setup_xfail "*-*-*"
    fail "This target can not call functions"
    continue
}

standard_testfile .c

# Regex matching any value of `char' type like: a = 65 'A'
set anychar_re {-?[0-9]{1,3} '(.|\\([0-7]{3}|[a-z]|\\|'))'}

# Create and source the file that provides information about the
# compiler used to compile the test case.

if [get_compiler_info] {
    return -1
}

# Compile a variant of structs.c using TYPES to specify the type of
# the first N struct elements (the remaining elements take the type of
# the last TYPES field).  Run the compmiled program up to "main".
# Also updates the global "testfile" to reflect the most recent build.

set first 1
proc start_structs_test { types } {
    global testfile
    global srcfile
    global binfile
    global subdir
    global srcdir
    global gdb_prompt
    global anychar_re
    global first

    # Create the additional flags
    set flags "debug"
    set testfile "structs"
    set n 0
    for {set n 0} {$n<[llength ${types}]} {incr n} {
	set m [I2A ${n}]
	set t [lindex ${types} $n]
	lappend flags "additional_flags=-Dt${m}=${t}"
	append testfile "-" "$t"
    }

    set binfile [standard_output_file ${testfile}]
    if  { [gdb_compile "${srcdir}/${subdir}/${srcfile}" "${binfile}" executable "${flags}"] != "" } {
	# built the second test case since we can't use prototypes
	warning "Prototypes not supported, rebuilding with -DNO_PROTOTYPES"
	if  { [gdb_compile "${srcdir}/${subdir}/${srcfile}" "${binfile}" executable "${flags} additional_flags=-DNO_PROTOTYPES"] != "" } {
	    untested structs.exp
	    return -1
	}
    }

    # Start with a fresh gdb.
    gdb_exit
    gdb_start
    gdb_reinitialize_dir $srcdir/$subdir
    gdb_load ${binfile}

    # Make certain that the output is consistent
    gdb_test_no_output "set print sevenbit-strings"
    gdb_test_no_output "set print address off"
    gdb_test_no_output "set width 0"
    gdb_test_no_output "set print elements 300"

    # Advance to main
    if { ![runto_main] } then {
	gdb_suppress_tests
    }

    # Get the debug format
    get_debug_format

    # Limit the slow $anychar_re{256} matching for better performance.
    if $first {
	set first 0

	# Verify $anychar_re can match all the values of `char' type.
	gdb_breakpoint [gdb_get_line_number "chartest-done"]
	gdb_continue_to_breakpoint "chartest-done" ".*chartest-done.*"
	gdb_test "p chartest" "= {({c = ${anychar_re}}, ){255}{c = ${anychar_re}}}"
    }

    # check that at the struct containing all the relevant types is correct
    set foo_t "type = struct struct[llength ${types}] \{"
    for {set n 0} {$n<[llength ${types}]} {incr n} {
	append foo_t "\[\r\n \]+[lindex ${types} $n] [i2a $n];"
    }
    append foo_t "\[\r\n \]+\}"
    gdb_test "ptype foo[llength ${types}]" "${foo_t}" \
	    "ptype foo[llength ${types}]; ${testfile}"
}

# The expected value for fun${n}, L${n} and foo${n}.  First element is
# empty to make indexing easier.  "foo" returns the modified value,
# "zed" returns the invalid value.

proc foo { n } {
    return [lindex {
	"{}"
	"{a = 49 '1'}"
	"{a = 97 'a', b = 50 '2'}"
	"{a = 49 '1', b = 98 'b', c = 51 '3'}"
	"{a = 97 'a', b = 50 '2', c = 99 'c', d = 52 '4'}"
	"{a = 49 '1', b = 98 'b', c = 51 '3', d = 100 'd', e = 53 '5'}"
	"{a = 97 'a', b = 50 '2', c = 99 'c', d = 52 '4', e = 101 'e', f = 54 '6'}"
	"{a = 49 '1', b = 98 'b', c = 51 '3', d = 100 'd', e = 53 '5', f = 102 'f', g = 55 '7'}"
	"{a = 97 'a', b = 50 '2', c = 99 'c', d = 52 '4', e = 101 'e', f = 54 '6', g = 103 'g', h = 56 '8'}"
	"{a = 49 '1', b = 98 'b', c = 51 '3', d = 100 'd', e = 53 '5', f = 102 'f', g = 55 '7', h = 104 'h', i = 57 '9'}"
	"{a = 97 'a', b = 50 '2', c = 99 'c', d = 52 '4', e = 101 'e', f = 54 '6', g = 103 'g', h = 56 '8', i = 105 'i', j = 65 'A'}"
	"{a = 49 '1', b = 98 'b', c = 51 '3', d = 100 'd', e = 53 '5', f = 102 'f', g = 55 '7', h = 104 'h', i = 57 '9', j = 106 'j', k = 66 'B'}"
	"{a = 97 'a', b = 50 '2', c = 99 'c', d = 52 '4', e = 101 'e', f = 54 '6', g = 103 'g', h = 56 '8', i = 105 'i', j = 65 'A', k = 107 'k', l = 67 'C'}"
	"{a = 49 '1', b = 98 'b', c = 51 '3', d = 100 'd', e = 53 '5', f = 102 'f', g = 55 '7', h = 104 'h', i = 57 '9', j = 106 'j', k = 66 'B', l = 108 'l', m = 68 'D'}"
	"{a = 97 'a', b = 50 '2', c = 99 'c', d = 52 '4', e = 101 'e', f = 54 '6', g = 103 'g', h = 56 '8', i = 105 'i', j = 65 'A', k = 107 'k', l = 67 'C', m = 109 'm', n = 69 'E'}"
	"{a = 49 '1', b = 98 'b', c = 51 '3', d = 100 'd', e = 53 '5', f = 102 'f', g = 55 '7', h = 104 'h', i = 57 '9', j = 106 'j', k = 66 'B', l = 108 'l', m = 68 'D', n = 110 'n', o = 70 'F'}"
	"{a = 97 'a', b = 50 '2', c = 99 'c', d = 52 '4', e = 101 'e', f = 54 '6', g = 103 'g', h = 56 '8', i = 105 'i', j = 65 'A', k = 107 'k', l = 67 'C', m = 109 'm', n = 69 'E', o = 111 'o', p = 71 'G'}"
	"{a = 49 '1', b = 98 'b', c = 51 '3', d = 100 'd', e = 53 '5', f = 102 'f', g = 55 '7', h = 104 'h', i = 57 '9', j = 106 'j', k = 66 'B', l = 108 'l', m = 68 'D', n = 110 'n', o = 70 'F', p = 112 'p', q = 72 'H'}"
    } $n]
}

proc zed { n } {
    return [lindex {
	"{}"
	"{a = 90 'Z'}"
	"{a = 90 'Z', b = 90 'Z'}"
	"{a = 90 'Z', b = 90 'Z', c = 90 'Z'}"
	"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z'}"
	"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z', e = 90 'Z'}"
	"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z', e = 90 'Z', f = 90 'Z'}"
	"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z', e = 90 'Z', f = 90 'Z', g = 90 'Z'}"
	"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z', e = 90 'Z', f = 90 'Z', g = 90 'Z', h = 90 'Z'}"
	"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z', e = 90 'Z', f = 90 'Z', g = 90 'Z', h = 90 'Z', i = 90 'Z'}"
	"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z', e = 90 'Z', f = 90 'Z', g = 90 'Z', h = 90 'Z', i = 90 'Z', j = 90 'Z'}"
	"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z', e = 90 'Z', f = 90 'Z', g = 90 'Z', h = 90 'Z', i = 90 'Z', j = 90 'Z', k = 90 'Z'}"
	"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z', e = 90 'Z', f = 90 'Z', g = 90 'Z', h = 90 'Z', i = 90 'Z', j = 90 'Z', k = 90 'Z', l = 90 'Z'}"
	"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z', e = 90 'Z', f = 90 'Z', g = 90 'Z', h = 90 'Z', i = 90 'Z', j = 90 'Z', k = 90 'Z', l = 90 'Z', m = 90 'Z'}"
	"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z', e = 90 'Z', f = 90 'Z', g = 90 'Z', h = 90 'Z', i = 90 'Z', j = 90 'Z', k = 90 'Z', l = 90 'Z', m = 90 'Z', n = 90 'Z'}"
	"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z', e = 90 'Z', f = 90 'Z', g = 90 'Z', h = 90 'Z', i = 90 'Z', j = 90 'Z', k = 90 'Z', l = 90 'Z', m = 90 'Z', n = 90 'Z', o = 90 'Z'}"
	"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z', e = 90 'Z', f = 90 'Z', g = 90 'Z', h = 90 'Z', i = 90 'Z', j = 90 'Z', k = 90 'Z', l = 90 'Z', m = 90 'Z', n = 90 'Z', o = 90 'Z', p = 90 'Z'}"
	"{a = 90 'Z', b = 90 'Z', c = 90 'Z', d = 90 'Z', e = 90 'Z', f = 90 'Z', g = 90 'Z', h = 90 'Z', i = 90 'Z', j = 90 'Z', k = 90 'Z', l = 90 'Z', m = 90 'Z', n = 90 'Z', o = 90 'Z', p = 90 'Z', q = 90 'Z'}"
    } $n]
}

proc any { n } {
    global anychar_re
    set ac $anychar_re
    return [lindex [list \
	"{}" \
	"{a = ${ac}}" \
	"{a = ${ac}, b = ${ac}}" \
	"{a = ${ac}, b = ${ac}, c = ${ac}}" \
	"{a = ${ac}, b = ${ac}, c = ${ac}, d = ${ac}}" \
	"{a = ${ac}, b = ${ac}, c = ${ac}, d = ${ac}, e = ${ac}}" \
	"{a = ${ac}, b = ${ac}, c = ${ac}, d = ${ac}, e = ${ac}, f = ${ac}}" \
	"{a = ${ac}, b = ${ac}, c = ${ac}, d = ${ac}, e = ${ac}, f = ${ac}, g = ${ac}}" \
	"{a = ${ac}, b = ${ac}, c = ${ac}, d = ${ac}, e = ${ac}, f = ${ac}, g = ${ac}, h = ${ac}}" \
	"{a = ${ac}, b = ${ac}, c = ${ac}, d = ${ac}, e = ${ac}, f = ${ac}, g = ${ac}, h = ${ac}, i = ${ac}}" \
	"{a = ${ac}, b = ${ac}, c = ${ac}, d = ${ac}, e = ${ac}, f = ${ac}, g = ${ac}, h = ${ac}, i = ${ac}, j = ${ac}}" \
	"{a = ${ac}, b = ${ac}, c = ${ac}, d = ${ac}, e = ${ac}, f = ${ac}, g = ${ac}, h = ${ac}, i = ${ac}, j = ${ac}, k = ${ac}}" \
	"{a = ${ac}, b = ${ac}, c = ${ac}, d = ${ac}, e = ${ac}, f = ${ac}, g = ${ac}, h = ${ac}, i = ${ac}, j = ${ac}, k = ${ac}, l = ${ac}}" \
	"{a = ${ac}, b = ${ac}, c = ${ac}, d = ${ac}, e = ${ac}, f = ${ac}, g = ${ac}, h = ${ac}, i = ${ac}, j = ${ac}, k = ${ac}, l = ${ac}, m = ${ac}}" \
	"{a = ${ac}, b = ${ac}, c = ${ac}, d = ${ac}, e = ${ac}, f = ${ac}, g = ${ac}, h = ${ac}, i = ${ac}, j = ${ac}, k = ${ac}, l = ${ac}, m = ${ac}, n = ${ac}}" \
	"{a = ${ac}, b = ${ac}, c = ${ac}, d = ${ac}, e = ${ac}, f = ${ac}, g = ${ac}, h = ${ac}, i = ${ac}, j = ${ac}, k = ${ac}, l = ${ac}, m = ${ac}, n = ${ac}, o = ${ac}}" \
	"{a = ${ac}, b = ${ac}, c = ${ac}, d = ${ac}, e = ${ac}, f = ${ac}, g = ${ac}, h = ${ac}, i = ${ac}, j = ${ac}, k = ${ac}, l = ${ac}, m = ${ac}, n = ${ac}, o = ${ac}, p = ${ac}}" \
	"{a = ${ac}, b = ${ac}, c = ${ac}, d = ${ac}, e = ${ac}, f = ${ac}, g = ${ac}, h = ${ac}, i = ${ac}, j = ${ac}, k = ${ac}, l = ${ac}, m = ${ac}, n = ${ac}, o = ${ac}, p = ${ac}, q = ${ac}}" \
    ] $n]
}

# Given N (0..25), return the corresponding alphabetic letter in lower
# or upper case.  This is ment to be i18n proof.

proc i2a { n } {
    return [string range "abcdefghijklmnopqrstuvwxyz" $n $n]
}

proc I2A { n } {
    return [string toupper [i2a $n]]
}


# Use the file name, compiler and tuples to set up any needed KFAILs.

proc setup_compiler_kfails { file compiler format tuples bug } {
    global testfile
    if {[string match $file $testfile] && [test_compiler_info $compiler]  && [test_debug_format $format]} {
	foreach f $tuples { setup_kfail $bug $f }
    }
}

# Test GDB's ability to make inferior function calls to functions
# returning (or passing in a single structs.

# N identifies the number of elements in the struct that will be used
# for the test case.  FAILS is a list of target tuples that will fail
# this test.

#  start_structs_test() will have previously built a program with a
# specified combination of types for those elements.  To ensure
# robustness of the output, "p/c" is used.

# This tests the code paths "which return-value convention?" and
# "extract return-value from registers" called by "infcall.c".

proc test_struct_calls { n } {
    global testfile
    global gdb_prompt

    # Check that GDB can always extract a struct-return value from an
    # inferior function call.  Since GDB always knows the location of an
    # inferior function call's return value these should never fail
    
    # Implemented by calling the parameterless function "fun$N" and then
    # examining the return value printed by GDB.

    set tests "call $n ${testfile}"

    # Call fun${n}, checking the printed return-value.
    setup_compiler_kfails structs-tc-tll gcc-3-3-* "DWARF 2" i*86-*-* gdb/1455
    setup_compiler_kfails structs-tc-td gcc-3-3-* "DWARF 2" i*86-*-* gdb/1455
    gdb_test "p/c fun${n}()"  "[foo ${n}]" "p/c fun<n>(); ${tests}"

    # Check that GDB can always pass a structure to an inferior function.
    # This test can never fail.

    # Implemented by calling the one parameter function "Fun$N" which
    # stores its parameter in the global variable "L$N".  GDB then
    # examining that global to confirm that the value is as expected.

    gdb_test_no_output "call Fun${n}(foo${n})" "call Fun<n>(foo<n>); ${tests}"
    setup_compiler_kfails structs-tc-tll gcc-3-3-* "DWARF 2" i*86-*-* gdb/1455
    setup_compiler_kfails structs-tc-td gcc-3-3-* "DWARF 2" i*86-*-* gdb/1455
    gdb_test "p/c L${n}" [foo ${n}] "p/c L<n>; ${tests}"
}

# Test GDB's ability to both return a function (with "return" or
# "finish") and correctly extract/store any corresponding
# return-value.

# Check that GDB can consistently extract/store structure return
# values.  There are two cases - returned in registers and returned in
# memory.  For the latter case, the return value can't be found and a
# failure is "expected".  However GDB must still both return the
# function and display the final source and line information.

# N identifies the number of elements in the struct that will be used
# for the test case.  FAILS is a list of target tuples that will fail
# this test.

# This tests the code paths "which return-value convention?", "extract
# return-value from registers", and "store return-value in registers".
# Unlike "test struct calls", this test is expected to "fail" when the
# return-value is in memory (GDB can't find the location).  The test
# is in three parts: test "return"; test "finish"; check that the two
# are consistent.  GDB can sometimes work for one command and not the
# other.

proc test_struct_returns { n } {
    global gdb_prompt
    global testfile

    set tests "return $n ${testfile}"


    # Check that "return" works.

    # GDB must always force the return of a function that has
    # a struct result.  Dependant on the ABI, it may, or may not be
    # possible to store the return value in a register.

    # The relevant code looks like "L{n} = fun{n}()".  The test forces
    # "fun{n}" to "return" with an explicit value.  Since that code
    # snippet will store the returned value in "L{n}" the return
    # is tested by examining "L{n}".  This assumes that the
    # compiler implemented this as fun{n}(&L{n}) and hence that when
    # the value isn't stored "L{n}" remains unchanged.  Also check for
    # consistency between this and the "finish" case.

    # Get into a call of fun${n}
    gdb_test "advance fun${n}" \
	    "fun${n} .*\[\r\n\]+\[0-9\].*return foo${n}.*" \
	    "advance to fun<n> for return; ${tests}"

    # Check that the program invalidated the relevant global.
    gdb_test "p/c L${n}" " = [zed $n]" "zed L<n> for return; ${tests}"

    # Force the "return".  This checks that the return is always
    # performed, and that GDB correctly reported this to the user.
    # GDB 6.0 and earlier, when the return-value's location wasn't
    # known, both failed to print a final "source and line" and misplaced
    # the frame ("No frame").

    # The test is writen so that it only reports one FAIL/PASS for the
    # entire operation.  The value returned is checked further down.
    # "return_value_known", if non-zero, indicates that GDB knew where
    # the return value was located.

    set test "return foo<n>; ${tests}"
    set return_value_known 1
    set return_value_unimplemented 0
    gdb_test_multiple "return foo${n}" "${test}" {
	-re "The location" {
	    # Ulgh, a struct return, remember this (still need prompt).
	    set return_value_known 0
	    exp_continue
	}
	-re "A structure or union" {
	    # Ulgh, a struct return, remember this (still need prompt).
	    set return_value_known 0
	    # Double ulgh.  Architecture doesn't use return_value and
	    # hence hasn't implemented small structure return.
	    set return_value_unimplemented 1
	    exp_continue
	}
	-re "Make fun${n} return now.*y or n. $" {
	    gdb_test_multiple "y" "${test}" {
		-re "L${n} *= fun${n}.*${gdb_prompt} $" {
		    # Need to step off the function call
		    gdb_test "next" "L.* *= fun.*" "${test}"
		}
		-re "L[expr ${n} + 1] *= fun[expr ${n} + 1].*${gdb_prompt} $" {
		    pass "${test}"
		}
	    }
	}
    }

    # Check that the return-value is as expected.  At this stage we're
    # just checking that GDB has returned a value consistent with
    # "return_value_known" set above.
    #
    # Note that, when return_value_known is false, we can't make any
    # assumptions at all about the value L<n>:
    #
    # - If the caller passed the address of L<n> directly as fun<n>'s
    #   return value buffer, then L<n> will be unchanged, because we
    #   forced fun<n> to return before it could store anything in it.
    #
    # - If the caller passed the address of some temporary buffer to
    #   fun<n>, and then copied the buffer into L<n>, then L<n> will
    #   have been overwritten with whatever garbage was in the
    #   uninitialized buffer.
    #
    # - However, if the temporary buffer just happened to have the
    #   "right" value of foo<n> in it, then L<n> will, in fact, have
    #   the value you'd expect to see if the 'return' had worked!
    #   This has actually been observed to happen on the Renesas M32C.
    #
    # So, really, anything is acceptable unless return_value_known is
    # true.

    set test "value foo<n> returned; ${tests}"
    gdb_test_multiple "p/c L${n}" "${test}" {
	-re " = [foo ${n}].*${gdb_prompt} $" {
            # This answer is okay regardless of whether GDB claims to
            # have set the return value: if it did, then this is what
            # we expected; and if it didn't, then any answer is okay.
            pass "${test}"
	}
	-re " = [any $n].*${gdb_prompt} $" {
	    if $return_value_known {
		# This contradicts the above claim that GDB knew
		# the location of the return value.
		fail "${test}"
	    } else {
                # We expected L${n} to be set to garbage, so any
                # answer is acceptable.
		pass "${test}"
	    }
	}
	-re ".*${gdb_prompt} $" {
	    if $return_value_unimplemented {
		# What a suprize.  The architecture hasn't implemented
		# return_value, and hence has to fail.
		kfail "$test" gdb/1444
	    } else {
		fail "$test"
	    }
	}
    }	
    
    # Check that a "finish" works.

    # This is almost but not quite the same as "call struct funcs".
    # Architectures can have subtle differences in the two code paths.

    # The relevant code snippet is "L{n} = fun{n}()".  The program is
    # advanced into a call to  "fun{n}" and then that function is
    # finished.  The returned value that GDB prints, reformatted using
    # "p/c", is checked.

    # Get into "fun${n}()".
    gdb_test "advance fun${n}" \
	    "fun${n} .*\[\r\n\]+\[0-9\].*return foo${n}.*" \
	    "advance to fun<n> for finish; ${tests}"

    # Check that the program invalidated the relevant global.
    gdb_test "p/c L${n}" " = [zed $n]" "zed L<n> for finish; ${tests}"

    # Finish the function, set 'finish_value_known" to non-empty if
    # the return-value was found.

    set test "finish foo<n>; ${tests}"
    set finish_value_known 1
    gdb_test_multiple "finish" "${test}" {
	-re "Value returned is .*${gdb_prompt} $" {
	    pass "${test}"
	}
	-re "Cannot determine contents.*${gdb_prompt} $" {
	    # Expected bad value.  For the moment this is ok.
	    set finish_value_known 0
	    pass "${test}"
	}
    }

    # Re-print the last (return-value) using the more robust
    # "p/c".  If no return value was found, the 'Z' from the previous
    # check that the variable was cleared, is printed.
    set test "value foo<n> finished; ${tests}"
    gdb_test_multiple "p/c" "${test}" {
	-re "[foo ${n}]\[\r\n\]+${gdb_prompt} $" {
	    if $finish_value_known {
		pass "${test}"
	    } else {
		# This contradicts the above claim that GDB didn't
		# know the location of the return-value.
		fail "${test}"
	    }
	}
	-re "[zed ${n}]\[\r\n\]+${gdb_prompt} $" {
	    # The value didn't get found.  This is "expected".
	    if $finish_value_known {
		# This contradicts the above claim that GDB did
		# know the location of the return-value.
		fail "${test}"
	    } else {
		pass "${test}"
	    }
	}
    }

    # Finally, check that "return" and finish" have consistent
    # behavior.

    # Since "finish" works in more cases than "return" (see
    # RETURN_VALUE_ABI_RETURNS_ADDRESS and
    # RETURN_VALUE_ABI_PRESERVES_ADDRESS), the "return" value being
    # known implies that the "finish" value is known (but not the
    # reverse).

    set test "return value known implies finish value known; ${tests}"
    if {$return_value_known && ! $finish_value_known} {
	kfail gdb/1444 "${test}"
    } else {
	pass "${test}"
    }
}

# ABIs pass anything >8 or >16 bytes in memory but below that things
# randomly use register and/and structure conventions.  Check all
# possible sized char structs in that range.  But only a restricted
# range of the other types.

# NetBSD/PPC returns "unnatural" (3, 5, 6, 7) sized structs in memory.

# d10v is weird. 5/6 byte structs go in memory.  2 or more char
# structs go in memory.  Everything else is in a register!

# Test every single char struct from 1..17 in size.  This is what the
# original "structs" test was doing.

start_structs_test { tc }
test_struct_calls 1
test_struct_calls 2
test_struct_calls 3
test_struct_calls 4
test_struct_calls 5
test_struct_calls 6
test_struct_calls 7
test_struct_calls 8
test_struct_calls 9
test_struct_calls 10
test_struct_calls 11
test_struct_calls 12
test_struct_calls 13
test_struct_calls 14
test_struct_calls 15
test_struct_calls 16
test_struct_calls 17
test_struct_returns 1
test_struct_returns 2
test_struct_returns 3
test_struct_returns 4
test_struct_returns 5
test_struct_returns 6
test_struct_returns 7
test_struct_returns 8


# Let the fun begin.

# Assuming that any integer struct larger than 8 bytes goes in memory,
# come up with many and varied combinations of a return struct.  For
# "struct calls" test just beyond that 8 byte boundary, for "struct
# returns" test up to that boundary.

# For floats, assumed that up to two struct elements can be stored in
# floating point registers, regardless of their size.

# The approx size of each structure it is computed assumed that tc=1,
# ts=2, ti=4, tl=4, tll=8, tf=4, td=8, tld=16, and that all fields are
# naturally aligned.  Padding being added where needed.  Note that
# these numbers are just approx, the d10v has ti=2, a 64-bit has has
# tl=8.

# Approx size: 2, 4, ...
start_structs_test { ts }
test_struct_calls 1
test_struct_calls 2
test_struct_calls 3
test_struct_calls 4
test_struct_calls 5
test_struct_returns 1
test_struct_returns 2
test_struct_returns 3
test_struct_returns 4

# Approx size: 4, 8, ...
start_structs_test { ti }
test_struct_calls 1
test_struct_calls 2
test_struct_calls 3
test_struct_returns 1
test_struct_returns 2

# Approx size: 4, 8, ...
start_structs_test { tl }
test_struct_calls 1
test_struct_calls 2
test_struct_calls 3
test_struct_returns 1
test_struct_returns 2

# Approx size: 8, 16, ...
start_structs_test { tll }
test_struct_calls 1
test_struct_calls 2
test_struct_returns 1

# Approx size: 4, 8, ...
start_structs_test { tf }
test_struct_calls 1
test_struct_calls 2
test_struct_calls 3
test_struct_returns 1
test_struct_returns 2

# Approx size: 8, 16, ...
start_structs_test { td }
test_struct_calls 1
test_struct_calls 2
test_struct_returns 1

# Approx size: 16, 32, ...
start_structs_test { tld }
test_struct_calls 1
test_struct_calls 2
test_struct_returns 1

# Approx size: 2+1=3, 4, ...
start_structs_test { ts tc }
test_struct_calls 2
test_struct_calls 3
test_struct_calls 4
test_struct_calls 5
test_struct_calls 6
test_struct_calls 7
test_struct_calls 8
test_struct_returns 2

# Approx size: 4+1=5, 6, ...
start_structs_test { ti tc }
test_struct_calls 2
test_struct_calls 3
test_struct_calls 4
test_struct_calls 5
test_struct_calls 6
test_struct_returns 2

# Approx size: 4+1=5, 6, ...
start_structs_test { tl tc }
test_struct_calls 2
test_struct_calls 3
test_struct_calls 4
test_struct_calls 5
test_struct_calls 6
test_struct_returns 2

# Approx size: 8+1=9, 10, ...
start_structs_test { tll tc }
test_struct_calls 2

# Approx size: 4+1=5, 6, ...
start_structs_test { tf tc }
test_struct_calls 2
test_struct_calls 3
test_struct_calls 4
test_struct_calls 5
test_struct_calls 6
test_struct_returns 2

# Approx size: 8+1=9, 10, ...
start_structs_test { td tc }
test_struct_calls 2

# Approx size: 16+1=17, 18, ...
start_structs_test { tld tc }
test_struct_calls 2

# Approx size: (1+1)+2=4, 6, ...
start_structs_test { tc ts }
test_struct_calls 2
test_struct_calls 3
test_struct_calls 4
test_struct_calls 5
test_struct_calls 6
test_struct_returns 2

# Approx size: (1+3)+4=8, 12, ...
start_structs_test { tc ti }
test_struct_calls 2
test_struct_calls 3
test_struct_calls 4
test_struct_returns 2

# Approx size: (1+3)+4=8, 12, ...
start_structs_test { tc tl }
test_struct_calls 2
test_struct_calls 3
test_struct_calls 4
test_struct_returns 2

# Approx size: (1+7)+8=16, 24, ...
start_structs_test { tc tll }
test_struct_calls 2

# Approx size: (1+3)+4=8, 12, ...
start_structs_test { tc tf }
test_struct_calls 2
test_struct_calls 3
test_struct_calls 4

# Approx size: (1+7)+8=16, 24, ...
start_structs_test { tc td }
test_struct_calls 2

# Approx size: (1+15)+16=32, 48, ...
start_structs_test { tc tld }
test_struct_calls 2

# Some float combinations

# Approx size: 8+4=12, 16, ...
# d10v: 4+4=8, 12, ...
start_structs_test { td tf }
test_struct_calls 2
test_struct_returns 2

# Approx size: (4+4)+8=16, 32, ...
# d10v: 4+4=8, 12, ...
start_structs_test { tf td }
test_struct_calls 2
test_struct_returns 2

return 0