summaryrefslogtreecommitdiff
path: root/gdb/spu-multiarch.c
blob: d4da08e62abb8ebed37e6cf90f7c1d334e853019 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
/* Cell SPU GNU/Linux multi-architecture debugging support.
   Copyright (C) 2009-2016 Free Software Foundation, Inc.

   Contributed by Ulrich Weigand <uweigand@de.ibm.com>.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "arch-utils.h"
#include "observer.h"
#include "inferior.h"
#include "regcache.h"
#include "symfile.h"
#include "objfiles.h"
#include "solib.h"
#include "solist.h"

#include "ppc-tdep.h"
#include "ppc-linux-tdep.h"
#include "spu-tdep.h"

/* This module's target vector.  */
static struct target_ops spu_ops;

/* Number of SPE objects loaded into the current inferior.  */
static int spu_nr_solib;

/* Stand-alone SPE executable?  */
#define spu_standalone_p() \
  (symfile_objfile && symfile_objfile->obfd \
   && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu)

/* PPU side system calls.  */
#define INSTR_SC	0x44000002
#define NR_spu_run	0x0116

/* If the PPU thread is currently stopped on a spu_run system call,
   return to FD and ADDR the file handle and NPC parameter address
   used with the system call.  Return non-zero if successful.  */
static int
parse_spufs_run (ptid_t ptid, int *fd, CORE_ADDR *addr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
  struct cleanup *old_chain;
  struct gdbarch_tdep *tdep;
  struct regcache *regcache;
  gdb_byte buf[4];
  ULONGEST regval;

  /* If we're not on PPU, there's nothing to detect.  */
  if (gdbarch_bfd_arch_info (target_gdbarch ())->arch != bfd_arch_powerpc)
    return 0;

  /* If we're called too early (e.g. after fork), we cannot
     access the inferior yet.  */
  if (find_inferior_ptid (ptid) == NULL)
    return 0;

  /* Get PPU-side registers.  */
  regcache = get_thread_arch_regcache (ptid, target_gdbarch ());
  tdep = gdbarch_tdep (target_gdbarch ());

  /* Fetch instruction preceding current NIP.  */
  old_chain = save_inferior_ptid ();
  inferior_ptid = ptid;
  regval = target_read_memory (regcache_read_pc (regcache) - 4, buf, 4);
  do_cleanups (old_chain);
  if (regval != 0)
    return 0;
  /* It should be a "sc" instruction.  */
  if (extract_unsigned_integer (buf, 4, byte_order) != INSTR_SC)
    return 0;
  /* System call number should be NR_spu_run.  */
  regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum, &regval);
  if (regval != NR_spu_run)
    return 0;

  /* Register 3 contains fd, register 4 the NPC param pointer.  */
  regcache_cooked_read_unsigned (regcache, PPC_ORIG_R3_REGNUM, &regval);
  *fd = (int) regval;
  regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 4, &regval);
  *addr = (CORE_ADDR) regval;
  return 1;
}

/* Find gdbarch for SPU context SPUFS_FD.  */
static struct gdbarch *
spu_gdbarch (int spufs_fd)
{
  struct gdbarch_info info;
  gdbarch_info_init (&info);
  info.bfd_arch_info = bfd_lookup_arch (bfd_arch_spu, bfd_mach_spu);
  info.byte_order = BFD_ENDIAN_BIG;
  info.osabi = GDB_OSABI_LINUX;
  info.tdep_info = &spufs_fd;
  return gdbarch_find_by_info (info);
}

/* Override the to_thread_architecture routine.  */
static struct gdbarch *
spu_thread_architecture (struct target_ops *ops, ptid_t ptid)
{
  int spufs_fd;
  CORE_ADDR spufs_addr;

  if (parse_spufs_run (ptid, &spufs_fd, &spufs_addr))
    return spu_gdbarch (spufs_fd);

  return target_gdbarch ();
}

/* Override the to_region_ok_for_hw_watchpoint routine.  */
static int
spu_region_ok_for_hw_watchpoint (struct target_ops *self,
				 CORE_ADDR addr, int len)
{
  struct target_ops *ops_beneath = find_target_beneath (self);

  /* We cannot watch SPU local store.  */
  if (SPUADDR_SPU (addr) != -1)
    return 0;

  return ops_beneath->to_region_ok_for_hw_watchpoint (ops_beneath, addr, len);
}

/* Override the to_fetch_registers routine.  */
static void
spu_fetch_registers (struct target_ops *ops,
		     struct regcache *regcache, int regno)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct target_ops *ops_beneath = find_target_beneath (ops);
  int spufs_fd;
  CORE_ADDR spufs_addr;

  /* This version applies only if we're currently in spu_run.  */
  if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
    {
      ops_beneath->to_fetch_registers (ops_beneath, regcache, regno);
      return;
    }

  /* We must be stopped on a spu_run system call.  */
  if (!parse_spufs_run (inferior_ptid, &spufs_fd, &spufs_addr))
    return;

  /* The ID register holds the spufs file handle.  */
  if (regno == -1 || regno == SPU_ID_REGNUM)
    {
      gdb_byte buf[4];
      store_unsigned_integer (buf, 4, byte_order, spufs_fd);
      regcache_raw_supply (regcache, SPU_ID_REGNUM, buf);
    }

  /* The NPC register is found in PPC memory at SPUFS_ADDR.  */
  if (regno == -1 || regno == SPU_PC_REGNUM)
    {
      gdb_byte buf[4];

      if (target_read (ops_beneath, TARGET_OBJECT_MEMORY, NULL,
		       buf, spufs_addr, sizeof buf) == sizeof buf)
	regcache_raw_supply (regcache, SPU_PC_REGNUM, buf);
    }

  /* The GPRs are found in the "regs" spufs file.  */
  if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
    {
      gdb_byte buf[16 * SPU_NUM_GPRS];
      char annex[32];
      int i;

      xsnprintf (annex, sizeof annex, "%d/regs", spufs_fd);
      if (target_read (ops_beneath, TARGET_OBJECT_SPU, annex,
		       buf, 0, sizeof buf) == sizeof buf)
	for (i = 0; i < SPU_NUM_GPRS; i++)
	  regcache_raw_supply (regcache, i, buf + i*16);
    }
}

/* Override the to_store_registers routine.  */
static void
spu_store_registers (struct target_ops *ops,
		     struct regcache *regcache, int regno)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct target_ops *ops_beneath = find_target_beneath (ops);
  int spufs_fd;
  CORE_ADDR spufs_addr;

  /* This version applies only if we're currently in spu_run.  */
  if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
    {
      ops_beneath->to_store_registers (ops_beneath, regcache, regno);
      return;
    }

  /* We must be stopped on a spu_run system call.  */
  if (!parse_spufs_run (inferior_ptid, &spufs_fd, &spufs_addr))
    return;

  /* The NPC register is found in PPC memory at SPUFS_ADDR.  */
  if (regno == -1 || regno == SPU_PC_REGNUM)
    {
      gdb_byte buf[4];
      regcache_raw_collect (regcache, SPU_PC_REGNUM, buf);

      target_write (ops_beneath, TARGET_OBJECT_MEMORY, NULL,
		    buf, spufs_addr, sizeof buf);
    }

  /* The GPRs are found in the "regs" spufs file.  */
  if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
    {
      gdb_byte buf[16 * SPU_NUM_GPRS];
      char annex[32];
      int i;

      for (i = 0; i < SPU_NUM_GPRS; i++)
	regcache_raw_collect (regcache, i, buf + i*16);

      xsnprintf (annex, sizeof annex, "%d/regs", spufs_fd);
      target_write (ops_beneath, TARGET_OBJECT_SPU, annex,
		    buf, 0, sizeof buf);
    }
}

/* Override the to_xfer_partial routine.  */
static enum target_xfer_status
spu_xfer_partial (struct target_ops *ops, enum target_object object,
		  const char *annex, gdb_byte *readbuf,
		  const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
		  ULONGEST *xfered_len)
{
  struct target_ops *ops_beneath = find_target_beneath (ops);

  /* Use the "mem" spufs file to access SPU local store.  */
  if (object == TARGET_OBJECT_MEMORY)
    {
      int fd = SPUADDR_SPU (offset);
      CORE_ADDR addr = SPUADDR_ADDR (offset);
      char mem_annex[32], lslr_annex[32];
      gdb_byte buf[32];
      ULONGEST lslr;
      enum target_xfer_status ret;

      if (fd >= 0)
	{
	  xsnprintf (mem_annex, sizeof mem_annex, "%d/mem", fd);
	  ret = ops_beneath->to_xfer_partial (ops_beneath, TARGET_OBJECT_SPU,
					      mem_annex, readbuf, writebuf,
					      addr, len, xfered_len);
	  if (ret == TARGET_XFER_OK)
	    return ret;

	  /* SPU local store access wraps the address around at the
	     local store limit.  We emulate this here.  To avoid needing
	     an extra access to retrieve the LSLR, we only do that after
	     trying the original address first, and getting end-of-file.  */
	  xsnprintf (lslr_annex, sizeof lslr_annex, "%d/lslr", fd);
	  memset (buf, 0, sizeof buf);
	  if (ops_beneath->to_xfer_partial (ops_beneath, TARGET_OBJECT_SPU,
					    lslr_annex, buf, NULL,
					    0, sizeof buf, xfered_len)
	      != TARGET_XFER_OK)
	    return ret;

	  lslr = strtoulst ((char *) buf, NULL, 16);
	  return ops_beneath->to_xfer_partial (ops_beneath, TARGET_OBJECT_SPU,
					       mem_annex, readbuf, writebuf,
					       addr & lslr, len, xfered_len);
	}
    }

  return ops_beneath->to_xfer_partial (ops_beneath, object, annex,
				       readbuf, writebuf, offset, len, xfered_len);
}

/* Override the to_search_memory routine.  */
static int
spu_search_memory (struct target_ops* ops,
		   CORE_ADDR start_addr, ULONGEST search_space_len,
		   const gdb_byte *pattern, ULONGEST pattern_len,
		   CORE_ADDR *found_addrp)
{
  struct target_ops *ops_beneath = find_target_beneath (ops);

  /* For SPU local store, always fall back to the simple method.  */
  if (SPUADDR_SPU (start_addr) >= 0)
    return simple_search_memory (ops,
				 start_addr, search_space_len,
				 pattern, pattern_len, found_addrp);

  return ops_beneath->to_search_memory (ops_beneath,
					start_addr, search_space_len,
					pattern, pattern_len, found_addrp);
}


/* Push and pop the SPU multi-architecture support target.  */

static void
spu_multiarch_activate (void)
{
  /* If GDB was configured without SPU architecture support,
     we cannot install SPU multi-architecture support either.  */
  if (spu_gdbarch (-1) == NULL)
    return;

  push_target (&spu_ops);

  /* Make sure the thread architecture is re-evaluated.  */
  registers_changed ();
}

static void
spu_multiarch_deactivate (void)
{
  unpush_target (&spu_ops);

  /* Make sure the thread architecture is re-evaluated.  */
  registers_changed ();
}

static void
spu_multiarch_inferior_created (struct target_ops *ops, int from_tty)
{
  if (spu_standalone_p ())
    spu_multiarch_activate ();
}

static void
spu_multiarch_solib_loaded (struct so_list *so)
{
  if (!spu_standalone_p ())
    if (so->abfd && bfd_get_arch (so->abfd) == bfd_arch_spu)
      if (spu_nr_solib++ == 0)
	spu_multiarch_activate ();
}

static void
spu_multiarch_solib_unloaded (struct so_list *so)
{
  if (!spu_standalone_p ())
    if (so->abfd && bfd_get_arch (so->abfd) == bfd_arch_spu)
      if (--spu_nr_solib == 0)
	spu_multiarch_deactivate ();
}

static void
spu_mourn_inferior (struct target_ops *ops)
{
  struct target_ops *ops_beneath = find_target_beneath (ops);

  ops_beneath->to_mourn_inferior (ops_beneath);
  spu_multiarch_deactivate ();
}


/* Initialize the SPU multi-architecture support target.  */

static void
init_spu_ops (void)
{
  spu_ops.to_shortname = "spu";
  spu_ops.to_longname = "SPU multi-architecture support.";
  spu_ops.to_doc = "SPU multi-architecture support.";
  spu_ops.to_mourn_inferior = spu_mourn_inferior;
  spu_ops.to_fetch_registers = spu_fetch_registers;
  spu_ops.to_store_registers = spu_store_registers;
  spu_ops.to_xfer_partial = spu_xfer_partial;
  spu_ops.to_search_memory = spu_search_memory;
  spu_ops.to_region_ok_for_hw_watchpoint = spu_region_ok_for_hw_watchpoint;
  spu_ops.to_thread_architecture = spu_thread_architecture;
  spu_ops.to_stratum = arch_stratum;
  spu_ops.to_magic = OPS_MAGIC;
}

/* -Wmissing-prototypes */
extern initialize_file_ftype _initialize_spu_multiarch;

void
_initialize_spu_multiarch (void)
{
  /* Install ourselves on the target stack.  */
  init_spu_ops ();
  complete_target_initialization (&spu_ops);

  /* Install observers to watch for SPU objects.  */
  observer_attach_inferior_created (spu_multiarch_inferior_created);
  observer_attach_solib_loaded (spu_multiarch_solib_loaded);
  observer_attach_solib_unloaded (spu_multiarch_solib_unloaded);
}