summaryrefslogtreecommitdiff
path: root/gdb/sh64-tdep.c
blob: 8a81fcb8d25e12f1f5568065f82d4215792e5f9b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
/* Target-dependent code for Renesas Super-H, for GDB.

   Copyright (C) 1993-2013 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

/* Contributed by Steve Chamberlain
   sac@cygnus.com.  */

#include "defs.h"
#include "frame.h"
#include "frame-base.h"
#include "frame-unwind.h"
#include "dwarf2-frame.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "value.h"
#include "dis-asm.h"
#include "inferior.h"
#include "gdb_string.h"
#include "gdb_assert.h"
#include "arch-utils.h"
#include "regcache.h"
#include "osabi.h"
#include "valprint.h"

#include "elf-bfd.h"

/* sh flags */
#include "elf/sh.h"
/* Register numbers shared with the simulator.  */
#include "gdb/sim-sh.h"
#include "language.h"
#include "sh64-tdep.h"

/* Information that is dependent on the processor variant.  */
enum sh_abi
  {
    SH_ABI_UNKNOWN,
    SH_ABI_32,
    SH_ABI_64
  };

struct gdbarch_tdep
  {
    enum sh_abi sh_abi;
  };

struct sh64_frame_cache
{
  /* Base address.  */
  CORE_ADDR base;
  LONGEST sp_offset;
  CORE_ADDR pc;

  /* Flag showing that a frame has been created in the prologue code.  */
  int uses_fp;

  int media_mode;

  /* Saved registers.  */
  CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
  CORE_ADDR saved_sp;
};

/* Registers of SH5 */
enum
  {
    R0_REGNUM = 0,
    DEFAULT_RETURN_REGNUM = 2,
    STRUCT_RETURN_REGNUM = 2,
    ARG0_REGNUM = 2,
    ARGLAST_REGNUM = 9,
    FLOAT_ARGLAST_REGNUM = 11,
    MEDIA_FP_REGNUM = 14,
    PR_REGNUM = 18,
    SR_REGNUM = 65,
    DR0_REGNUM = 141,
    DR_LAST_REGNUM = 172,
    /* FPP stands for Floating Point Pair, to avoid confusion with
       GDB's gdbarch_fp0_regnum, which is the number of the first Floating
       point register.  Unfortunately on the sh5, the floating point
       registers are called FR, and the floating point pairs are called FP.  */
    FPP0_REGNUM = 173,
    FPP_LAST_REGNUM = 204,
    FV0_REGNUM = 205,
    FV_LAST_REGNUM = 220,
    R0_C_REGNUM = 221,
    R_LAST_C_REGNUM = 236,
    PC_C_REGNUM = 237,
    GBR_C_REGNUM = 238,
    MACH_C_REGNUM = 239,
    MACL_C_REGNUM = 240,
    PR_C_REGNUM = 241,
    T_C_REGNUM = 242,
    FPSCR_C_REGNUM = 243,
    FPUL_C_REGNUM = 244,
    FP0_C_REGNUM = 245,
    FP_LAST_C_REGNUM = 260,
    DR0_C_REGNUM = 261,
    DR_LAST_C_REGNUM = 268,
    FV0_C_REGNUM = 269,
    FV_LAST_C_REGNUM = 272,
    FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
    SSR_REGNUM = SIM_SH64_SSR_REGNUM,
    SPC_REGNUM = SIM_SH64_SPC_REGNUM,
    TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
    FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
  };

static const char *
sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
{
  static char *register_names[] =
  {
    /* SH MEDIA MODE (ISA 32) */
    /* general registers (64-bit) 0-63 */
    "r0",   "r1",   "r2",   "r3",   "r4",   "r5",   "r6",   "r7",
    "r8",   "r9",   "r10",  "r11",  "r12",  "r13",  "r14",  "r15",
    "r16",  "r17",  "r18",  "r19",  "r20",  "r21",  "r22",  "r23",
    "r24",  "r25",  "r26",  "r27",  "r28",  "r29",  "r30",  "r31",
    "r32",  "r33",  "r34",  "r35",  "r36",  "r37",  "r38",  "r39",
    "r40",  "r41",  "r42",  "r43",  "r44",  "r45",  "r46",  "r47",
    "r48",  "r49",  "r50",  "r51",  "r52",  "r53",  "r54",  "r55",
    "r56",  "r57",  "r58",  "r59",  "r60",  "r61",  "r62",  "r63",

    /* pc (64-bit) 64 */
    "pc",   

    /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
    "sr",  "ssr",  "spc", 

    /* target registers (64-bit) 68-75 */
    "tr0",  "tr1",  "tr2",  "tr3",  "tr4",  "tr5",  "tr6",  "tr7",

    /* floating point state control register (32-bit) 76 */
    "fpscr",

    /* single precision floating point registers (32-bit) 77-140 */
    "fr0",  "fr1",  "fr2",  "fr3",  "fr4",  "fr5",  "fr6",  "fr7",
    "fr8",  "fr9",  "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
    "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
    "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
    "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
    "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
    "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
    "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",

    /* double precision registers (pseudo) 141-172 */
    "dr0",  "dr2",  "dr4",  "dr6",  "dr8",  "dr10", "dr12", "dr14",
    "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
    "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
    "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",

    /* floating point pairs (pseudo) 173-204 */
    "fp0",  "fp2",  "fp4",  "fp6",  "fp8",  "fp10", "fp12", "fp14",
    "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
    "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
    "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",

    /* floating point vectors (4 floating point regs) (pseudo) 205-220 */
    "fv0",  "fv4",  "fv8",  "fv12", "fv16", "fv20", "fv24", "fv28",
    "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",

    /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
    "r0_c", "r1_c", "r2_c",  "r3_c",  "r4_c",  "r5_c",  "r6_c",  "r7_c",
    "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
    "pc_c",
    "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
    "fpscr_c", "fpul_c",
    "fr0_c",  "fr1_c",  "fr2_c",  "fr3_c",
    "fr4_c",  "fr5_c",  "fr6_c",  "fr7_c",
    "fr8_c",  "fr9_c",  "fr10_c", "fr11_c",
    "fr12_c", "fr13_c", "fr14_c", "fr15_c",
    "dr0_c",  "dr2_c",  "dr4_c",  "dr6_c",
    "dr8_c",  "dr10_c", "dr12_c", "dr14_c",
    "fv0_c", "fv4_c", "fv8_c",  "fv12_c",
    /* FIXME!!!! XF0 XF15, XD0 XD14 ?????  */
  };

  if (reg_nr < 0)
    return NULL;
  if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
    return NULL;
  return register_names[reg_nr];
}

#define NUM_PSEUDO_REGS_SH_MEDIA 80
#define NUM_PSEUDO_REGS_SH_COMPACT 51

/* Macros and functions for setting and testing a bit in a minimal
   symbol that marks it as 32-bit function.  The MSB of the minimal
   symbol's "info" field is used for this purpose.

   gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
   i.e. refers to a 32-bit function, and sets a "special" bit in a
   minimal symbol to mark it as a 32-bit function
   MSYMBOL_IS_SPECIAL   tests the "special" bit in a minimal symbol  */

#define MSYMBOL_IS_SPECIAL(msym) \
  MSYMBOL_TARGET_FLAG_1 (msym)

static void
sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
{
  if (msym == NULL)
    return;

  if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
    {
      MSYMBOL_TARGET_FLAG_1 (msym) = 1;
      SYMBOL_VALUE_ADDRESS (msym) |= 1;
    }
}

/* ISA32 (shmedia) function addresses are odd (bit 0 is set).  Here
   are some macros to test, set, or clear bit 0 of addresses.  */
#define IS_ISA32_ADDR(addr)	 ((addr) & 1)
#define MAKE_ISA32_ADDR(addr)	 ((addr) | 1)
#define UNMAKE_ISA32_ADDR(addr)  ((addr) & ~1)

static int
pc_is_isa32 (bfd_vma memaddr)
{
  struct bound_minimal_symbol sym;

  /* If bit 0 of the address is set, assume this is a
     ISA32 (shmedia) address.  */
  if (IS_ISA32_ADDR (memaddr))
    return 1;

  /* A flag indicating that this is a ISA32 function is stored by elfread.c in
     the high bit of the info field.  Use this to decide if the function is
     ISA16 or ISA32.  */
  sym = lookup_minimal_symbol_by_pc (memaddr);
  if (sym.minsym)
    return MSYMBOL_IS_SPECIAL (sym.minsym);
  else
    return 0;
}

static const unsigned char *
sh64_breakpoint_from_pc (struct gdbarch *gdbarch,
			 CORE_ADDR *pcptr, int *lenptr)
{
  /* The BRK instruction for shmedia is 
     01101111 11110101 11111111 11110000
     which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
     and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */

  /* The BRK instruction for shcompact is
     00000000 00111011
     which translates in big endian mode to 0x0, 0x3b
     and in little endian mode to 0x3b, 0x0 */

  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
    {
      if (pc_is_isa32 (*pcptr))
	{
	  static unsigned char big_breakpoint_media[] = {
	    0x6f, 0xf5, 0xff, 0xf0
	  };
	  *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
	  *lenptr = sizeof (big_breakpoint_media);
	  return big_breakpoint_media;
	}
      else
	{
	  static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
	  *lenptr = sizeof (big_breakpoint_compact);
	  return big_breakpoint_compact;
	}
    }
  else
    {
      if (pc_is_isa32 (*pcptr))
	{
	  static unsigned char little_breakpoint_media[] = {
	    0xf0, 0xff, 0xf5, 0x6f
	  };
	  *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
	  *lenptr = sizeof (little_breakpoint_media);
	  return little_breakpoint_media;
	}
      else
	{
	  static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
	  *lenptr = sizeof (little_breakpoint_compact);
	  return little_breakpoint_compact;
	}
    }
}

/* Prologue looks like
   [mov.l       <regs>,@-r15]...
   [sts.l       pr,@-r15]
   [mov.l       r14,@-r15]
   [mov         r15,r14]

   Actually it can be more complicated than this.  For instance, with
   newer gcc's:

   mov.l   r14,@-r15
   add     #-12,r15
   mov     r15,r14
   mov     r4,r1
   mov     r5,r2
   mov.l   r6,@(4,r14)
   mov.l   r7,@(8,r14)
   mov.b   r1,@r14
   mov     r14,r1
   mov     r14,r1
   add     #2,r1
   mov.w   r2,@r1

 */

/* PTABS/L Rn, TRa       0110101111110001nnnnnnl00aaa0000 
   with l=1 and n = 18   0110101111110001010010100aaa0000 */
#define IS_PTABSL_R18(x)  (((x) & 0xffffff8f) == 0x6bf14a00)

/* STS.L PR,@-r0   0100000000100010
   r0-4-->r0, PR-->(r0) */
#define IS_STS_R0(x)  		((x) == 0x4022)

/* STS PR, Rm      0000mmmm00101010
   PR-->Rm */
#define IS_STS_PR(x)            (((x) & 0xf0ff) == 0x2a)

/* MOV.L Rm,@(disp,r15)  00011111mmmmdddd
   Rm-->(dispx4+r15) */
#define IS_MOV_TO_R15(x)              (((x) & 0xff00) == 0x1f00)

/* MOV.L R14,@(disp,r15)  000111111110dddd
   R14-->(dispx4+r15) */
#define IS_MOV_R14(x)              (((x) & 0xfff0) == 0x1fe0)

/* ST.Q R14, disp, R18    101011001110dddddddddd0100100000
   R18-->(dispx8+R14) */
#define IS_STQ_R18_R14(x)          (((x) & 0xfff003ff) == 0xace00120)

/* ST.Q R15, disp, R18    101011001111dddddddddd0100100000
   R18-->(dispx8+R15) */
#define IS_STQ_R18_R15(x)          (((x) & 0xfff003ff) == 0xacf00120)

/* ST.L R15, disp, R18    101010001111dddddddddd0100100000
   R18-->(dispx4+R15) */
#define IS_STL_R18_R15(x)          (((x) & 0xfff003ff) == 0xa8f00120)

/* ST.Q R15, disp, R14    1010 1100 1111 dddd dddd dd00 1110 0000
   R14-->(dispx8+R15) */
#define IS_STQ_R14_R15(x)          (((x) & 0xfff003ff) == 0xacf000e0)

/* ST.L R15, disp, R14    1010 1000 1111 dddd dddd dd00 1110 0000
   R14-->(dispx4+R15) */
#define IS_STL_R14_R15(x)          (((x) & 0xfff003ff) == 0xa8f000e0)

/* ADDI.L R15,imm,R15     1101 0100 1111 ssss ssss ss00 1111 0000
   R15 + imm --> R15 */
#define IS_ADDIL_SP_MEDIA(x)         (((x) & 0xfff003ff) == 0xd4f000f0)

/* ADDI R15,imm,R15     1101 0000 1111 ssss ssss ss00 1111 0000
   R15 + imm --> R15 */
#define IS_ADDI_SP_MEDIA(x)         (((x) & 0xfff003ff) == 0xd0f000f0)

/* ADD.L R15,R63,R14    0000 0000 1111 1000 1111 1100 1110 0000 
   R15 + R63 --> R14 */
#define IS_ADDL_SP_FP_MEDIA(x)  	((x) == 0x00f8fce0)

/* ADD R15,R63,R14    0000 0000 1111 1001 1111 1100 1110 0000 
   R15 + R63 --> R14 */
#define IS_ADD_SP_FP_MEDIA(x)  	((x) == 0x00f9fce0)

#define IS_MOV_SP_FP_MEDIA(x)  	\
  (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))

/* MOV #imm, R0    1110 0000 ssss ssss 
   #imm-->R0 */
#define IS_MOV_R0(x) 		(((x) & 0xff00) == 0xe000)

/* MOV.L @(disp,PC), R0    1101 0000 iiii iiii  */
#define IS_MOVL_R0(x) 		(((x) & 0xff00) == 0xd000)

/* ADD r15,r0      0011 0000 1111 1100
   r15+r0-->r0 */
#define IS_ADD_SP_R0(x)	        ((x) == 0x30fc)

/* MOV.L R14 @-R0  0010 0000 1110 0110
   R14-->(R0-4), R0-4-->R0 */
#define IS_MOV_R14_R0(x)        ((x) == 0x20e6)

/* ADD Rm,R63,Rn  Rm+R63-->Rn  0000 00mm mmmm 1001 1111 11nn nnnn 0000
   where Rm is one of r2-r9 which are the argument registers.  */
/* FIXME: Recognize the float and double register moves too!  */
#define IS_MEDIA_IND_ARG_MOV(x) \
  ((((x) & 0xfc0ffc0f) == 0x0009fc00) \
   && (((x) & 0x03f00000) >= 0x00200000 \
       && ((x) & 0x03f00000) <= 0x00900000))

/* ST.Q Rn,0,Rm  Rm-->Rn+0  1010 11nn nnnn 0000 0000 00mm mmmm 0000
   or ST.L Rn,0,Rm  Rm-->Rn+0  1010 10nn nnnn 0000 0000 00mm mmmm 0000
   where Rm is one of r2-r9 which are the argument registers.  */
#define IS_MEDIA_ARG_MOV(x) \
(((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
   && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))

/* ST.B R14,0,Rn     Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
/* ST.W R14,0,Rn     Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
/* ST.L R14,0,Rn     Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
/* FST.S R14,0,FRn   Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
/* FST.D R14,0,DRn   Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
#define IS_MEDIA_MOV_TO_R14(x)  \
((((x) & 0xfffffc0f) == 0xa0e00000) \
|| (((x) & 0xfffffc0f) == 0xa4e00000) \
|| (((x) & 0xfffffc0f) == 0xa8e00000) \
|| (((x) & 0xfffffc0f) == 0xb4e00000) \
|| (((x) & 0xfffffc0f) == 0xbce00000))

/* MOV Rm, Rn  Rm-->Rn 0110 nnnn mmmm 0011
   where Rm is r2-r9 */
#define IS_COMPACT_IND_ARG_MOV(x) \
  ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
   && (((x) & 0x00f0) <= 0x0090))

/* compact direct arg move! 
   MOV.L Rn, @r14     0010 1110 mmmm 0010 */
#define IS_COMPACT_ARG_MOV(x) \
  (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
    && ((x) & 0x00f0) <= 0x0090))

/* MOV.B Rm, @R14     0010 1110 mmmm 0000 
   MOV.W Rm, @R14     0010 1110 mmmm 0001 */
#define IS_COMPACT_MOV_TO_R14(x) \
((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))

#define IS_JSR_R0(x)           ((x) == 0x400b)
#define IS_NOP(x)              ((x) == 0x0009)


/* MOV r15,r14     0110111011110011
   r15-->r14  */
#define IS_MOV_SP_FP(x)  	((x) == 0x6ef3)

/* ADD #imm,r15    01111111iiiiiiii
   r15+imm-->r15 */
#define IS_ADD_SP(x) 		(((x) & 0xff00) == 0x7f00)

/* Skip any prologue before the guts of a function.  */

/* Skip the prologue using the debug information.  If this fails we'll
   fall back on the 'guess' method below.  */
static CORE_ADDR
after_prologue (CORE_ADDR pc)
{
  struct symtab_and_line sal;
  CORE_ADDR func_addr, func_end;

  /* If we can not find the symbol in the partial symbol table, then
     there is no hope we can determine the function's start address
     with this code.  */
  if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    return 0;


  /* Get the line associated with FUNC_ADDR.  */
  sal = find_pc_line (func_addr, 0);

  /* There are only two cases to consider.  First, the end of the source line
     is within the function bounds.  In that case we return the end of the
     source line.  Second is the end of the source line extends beyond the
     bounds of the current function.  We need to use the slow code to
     examine instructions in that case.  */
  if (sal.end < func_end)
    return sal.end;
  else
    return 0;
}

static CORE_ADDR 
look_for_args_moves (struct gdbarch *gdbarch,
		     CORE_ADDR start_pc, int media_mode)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR here, end;
  int w;
  int insn_size = (media_mode ? 4 : 2);

  for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
    {
      if (media_mode)
	{
	  w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
				   insn_size, byte_order);
	  here += insn_size;
	  if (IS_MEDIA_IND_ARG_MOV (w))
	    {
	      /* This must be followed by a store to r14, so the argument
		 is where the debug info says it is.  This can happen after
		 the SP has been saved, unfortunately.  */
	 
	      int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
						   insn_size, byte_order);
	      here += insn_size;
	      if (IS_MEDIA_MOV_TO_R14 (next_insn))
		start_pc = here;	  
	    }
	  else if (IS_MEDIA_ARG_MOV (w))
	    {
	      /* These instructions store directly the argument in r14.  */
	      start_pc = here;
	    }
	  else
	    break;
	}
      else
	{
	  w = read_memory_integer (here, insn_size, byte_order);
	  w = w & 0xffff;
	  here += insn_size;
	  if (IS_COMPACT_IND_ARG_MOV (w))
	    {
	      /* This must be followed by a store to r14, so the argument
		 is where the debug info says it is.  This can happen after
		 the SP has been saved, unfortunately.  */
	 
	      int next_insn = 0xffff & read_memory_integer (here, insn_size,
							    byte_order);
	      here += insn_size;
	      if (IS_COMPACT_MOV_TO_R14 (next_insn))
		start_pc = here;
	    }
	  else if (IS_COMPACT_ARG_MOV (w))
	    {
	      /* These instructions store directly the argument in r14.  */
	      start_pc = here;
	    }
	  else if (IS_MOVL_R0 (w))
	    {
	      /* There is a function that gcc calls to get the arguments
		 passed correctly to the function.  Only after this
		 function call the arguments will be found at the place
		 where they are supposed to be.  This happens in case the
		 argument has to be stored into a 64-bit register (for
		 instance doubles, long longs).  SHcompact doesn't have
		 access to the full 64-bits, so we store the register in
		 stack slot and store the address of the stack slot in
		 the register, then do a call through a wrapper that
		 loads the memory value into the register.  A SHcompact
		 callee calls an argument decoder
		 (GCC_shcompact_incoming_args) that stores the 64-bit
		 value in a stack slot and stores the address of the
		 stack slot in the register.  GCC thinks the argument is
		 just passed by transparent reference, but this is only
		 true after the argument decoder is called.  Such a call
		 needs to be considered part of the prologue.  */

	      /* This must be followed by a JSR @r0 instruction and by
                 a NOP instruction.  After these, the prologue is over!  */
	 
	      int next_insn = 0xffff & read_memory_integer (here, insn_size,
							    byte_order);
	      here += insn_size;
	      if (IS_JSR_R0 (next_insn))
		{
		  next_insn = 0xffff & read_memory_integer (here, insn_size,
							    byte_order);
		  here += insn_size;

		  if (IS_NOP (next_insn))
		    start_pc = here;
		}
	    }
	  else
	    break;
	}
    }

  return start_pc;
}

static CORE_ADDR
sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR here, end;
  int updated_fp = 0;
  int insn_size = 4;
  int media_mode = 1;

  if (!start_pc)
    return 0;

  if (pc_is_isa32 (start_pc) == 0)
    {
      insn_size = 2;
      media_mode = 0;
    }

  for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
    {

      if (media_mode)
	{
	  int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
				       insn_size, byte_order);
	  here += insn_size;
	  if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
	      || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
	      || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w)
	      || IS_PTABSL_R18 (w))
	    {
	      start_pc = here;
	    }
	  else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
	    {
	      start_pc = here;
	      updated_fp = 1;
	    }
	  else
	    if (updated_fp)
	      {
		/* Don't bail out yet, we may have arguments stored in
		   registers here, according to the debug info, so that
		   gdb can print the frames correctly.  */
		start_pc = look_for_args_moves (gdbarch,
						here - insn_size, media_mode);
		break;
	      }
	}
      else
	{
	  int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
	  here += insn_size;

	  if (IS_STS_R0 (w) || IS_STS_PR (w)
	      || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w) 
	      || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
	    {
	      start_pc = here;
	    }
	  else if (IS_MOV_SP_FP (w))
	    {
	      start_pc = here;
	      updated_fp = 1;
	    }
	  else
	    if (updated_fp)
	      {
		/* Don't bail out yet, we may have arguments stored in
		   registers here, according to the debug info, so that
		   gdb can print the frames correctly.  */
		start_pc = look_for_args_moves (gdbarch,
						here - insn_size, media_mode);
		break;
	      }
	}
    }

  return start_pc;
}

static CORE_ADDR
sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  CORE_ADDR post_prologue_pc;

  /* See if we can determine the end of the prologue via the symbol table.
     If so, then return either PC, or the PC after the prologue, whichever
     is greater.  */
  post_prologue_pc = after_prologue (pc);

  /* If after_prologue returned a useful address, then use it.  Else
     fall back on the instruction skipping code.  */
  if (post_prologue_pc != 0)
    return max (pc, post_prologue_pc);
  else
    return sh64_skip_prologue_hard_way (gdbarch, pc);
}

/* Should call_function allocate stack space for a struct return?  */
static int
sh64_use_struct_convention (struct type *type)
{
  return (TYPE_LENGTH (type) > 8);
}

/* For vectors of 4 floating point registers.  */
static int
sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
{
  int fp_regnum;

  fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
  return fp_regnum;
}

/* For double precision floating point registers, i.e 2 fp regs.  */
static int
sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
{
  int fp_regnum;

  fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
  return fp_regnum;
}

/* For pairs of floating point registers.  */
static int
sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
{
  int fp_regnum;

  fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
  return fp_regnum;
}

/* *INDENT-OFF* */
/*
    SH COMPACT MODE (ISA 16) (all pseudo) 221-272
       GDB_REGNUM  BASE_REGNUM
 r0_c       221      0
 r1_c       222      1
 r2_c       223      2
 r3_c       224      3
 r4_c       225      4
 r5_c       226      5
 r6_c       227      6
 r7_c       228      7
 r8_c       229      8
 r9_c       230      9
 r10_c      231      10
 r11_c      232      11
 r12_c      233      12
 r13_c      234      13
 r14_c      235      14
 r15_c      236      15

 pc_c       237      64
 gbr_c      238      16
 mach_c     239      17
 macl_c     240      17
 pr_c       241      18
 t_c        242      19
 fpscr_c    243      76
 fpul_c     244      109

 fr0_c      245      77
 fr1_c      246      78
 fr2_c      247      79
 fr3_c      248      80
 fr4_c      249      81
 fr5_c      250      82
 fr6_c      251      83
 fr7_c      252      84
 fr8_c      253      85
 fr9_c      254      86
 fr10_c     255      87
 fr11_c     256      88
 fr12_c     257      89
 fr13_c     258      90
 fr14_c     259      91
 fr15_c     260      92

 dr0_c      261      77
 dr2_c      262      79
 dr4_c      263      81
 dr6_c      264      83
 dr8_c      265      85
 dr10_c     266      87
 dr12_c     267      89
 dr14_c     268      91

 fv0_c      269      77
 fv4_c      270      81
 fv8_c      271      85
 fv12_c     272      91
*/
/* *INDENT-ON* */
static int
sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
{
  int base_regnum = reg_nr;

  /* general register N maps to general register N */
  if (reg_nr >= R0_C_REGNUM 
      && reg_nr <= R_LAST_C_REGNUM)
    base_regnum = reg_nr - R0_C_REGNUM;

  /* floating point register N maps to floating point register N */
  else if (reg_nr >= FP0_C_REGNUM 
	    && reg_nr <= FP_LAST_C_REGNUM)
    base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);

  /* double prec register N maps to base regnum for double prec register N */
  else if (reg_nr >= DR0_C_REGNUM 
	    && reg_nr <= DR_LAST_C_REGNUM)
    base_regnum = sh64_dr_reg_base_num (gdbarch,
					DR0_REGNUM + reg_nr - DR0_C_REGNUM);

  /* vector N maps to base regnum for vector register N */
  else if (reg_nr >= FV0_C_REGNUM 
	    && reg_nr <= FV_LAST_C_REGNUM)
    base_regnum = sh64_fv_reg_base_num (gdbarch,
					FV0_REGNUM + reg_nr - FV0_C_REGNUM);

  else if (reg_nr == PC_C_REGNUM)
    base_regnum = gdbarch_pc_regnum (gdbarch);

  else if (reg_nr == GBR_C_REGNUM) 
    base_regnum = 16;

  else if (reg_nr == MACH_C_REGNUM
	   || reg_nr == MACL_C_REGNUM)
    base_regnum = 17;

  else if (reg_nr == PR_C_REGNUM) 
    base_regnum = PR_REGNUM;

  else if (reg_nr == T_C_REGNUM) 
    base_regnum = 19;

  else if (reg_nr == FPSCR_C_REGNUM) 
    base_regnum = FPSCR_REGNUM; /*???? this register is a mess.  */

  else if (reg_nr == FPUL_C_REGNUM) 
    base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
  
  return base_regnum;
}

static int
sign_extend (int value, int bits)
{
  value = value & ((1 << bits) - 1);
  return (value & (1 << (bits - 1))
	  ? value | (~((1 << bits) - 1))
	  : value);
}

static void
sh64_analyze_prologue (struct gdbarch *gdbarch,
		       struct sh64_frame_cache *cache,
		       CORE_ADDR func_pc,
		       CORE_ADDR current_pc)
{
  int pc;
  int opc;
  int insn;
  int r0_val = 0;
  int insn_size;
  int gdb_register_number;
  int register_number;
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  
  cache->sp_offset = 0;

  /* Loop around examining the prologue insns until we find something
     that does not appear to be part of the prologue.  But give up
     after 20 of them, since we're getting silly then.  */

  pc = func_pc;

  if (cache->media_mode)
    insn_size = 4;
  else
    insn_size = 2;

  opc = pc + (insn_size * 28);
  if (opc > current_pc)
    opc = current_pc;
  for ( ; pc <= opc; pc += insn_size)
    {
      insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
						    : pc,
				  insn_size, byte_order);

      if (!cache->media_mode)
	{
	  if (IS_STS_PR (insn))
	    {
	      int next_insn = read_memory_integer (pc + insn_size,
						   insn_size, byte_order);
	      if (IS_MOV_TO_R15 (next_insn))
		{
		  cache->saved_regs[PR_REGNUM]
		    = cache->sp_offset - ((((next_insn & 0xf) ^ 0x8)
					   - 0x8) << 2);
		  pc += insn_size;
		}
	    }

	  else if (IS_MOV_R14 (insn))
	    cache->saved_regs[MEDIA_FP_REGNUM] =
	      cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);

	  else if (IS_MOV_R0 (insn))
	    {
	      /* Put in R0 the offset from SP at which to store some
		 registers.  We are interested in this value, because it
		 will tell us where the given registers are stored within
		 the frame.  */
	      r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
	    }

	  else if (IS_ADD_SP_R0 (insn))
	    {
	      /* This instruction still prepares r0, but we don't care.
		 We already have the offset in r0_val.  */
	    }

	  else if (IS_STS_R0 (insn))
	    {
	      /* Store PR at r0_val-4 from SP.  Decrement r0 by 4.  */
	      cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
	      r0_val -= 4;
	    }

	  else if (IS_MOV_R14_R0 (insn))
	    {
	      /* Store R14 at r0_val-4 from SP.  Decrement r0 by 4.  */
	      cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
	      					   - (r0_val - 4);
	      r0_val -= 4;
	    }

	  else if (IS_ADD_SP (insn))
	    cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;

	  else if (IS_MOV_SP_FP (insn))
	    break;
	}
      else
	{
	  if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
	    cache->sp_offset -=
	      sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);

	  else if (IS_STQ_R18_R15 (insn))
	    cache->saved_regs[PR_REGNUM]
	      = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
						 9) << 3);

	  else if (IS_STL_R18_R15 (insn))
	    cache->saved_regs[PR_REGNUM]
	      = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
						 9) << 2);

	  else if (IS_STQ_R14_R15 (insn))
	    cache->saved_regs[MEDIA_FP_REGNUM]
	      = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
						 9) << 3);

	  else if (IS_STL_R14_R15 (insn))
	    cache->saved_regs[MEDIA_FP_REGNUM]
	      = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
						 9) << 2);

	  else if (IS_MOV_SP_FP_MEDIA (insn))
	    break;
	}
    }

  if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
    cache->uses_fp = 1;
}

static CORE_ADDR
sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
{
  return sp & ~7;
}

/* Function: push_dummy_call
   Setup the function arguments for calling a function in the inferior.

   On the Renesas SH architecture, there are four registers (R4 to R7)
   which are dedicated for passing function arguments.  Up to the first
   four arguments (depending on size) may go into these registers.
   The rest go on the stack.

   Arguments that are smaller than 4 bytes will still take up a whole
   register or a whole 32-bit word on the stack, and will be 
   right-justified in the register or the stack word.  This includes
   chars, shorts, and small aggregate types.

   Arguments that are larger than 4 bytes may be split between two or 
   more registers.  If there are not enough registers free, an argument
   may be passed partly in a register (or registers), and partly on the
   stack.  This includes doubles, long longs, and larger aggregates.
   As far as I know, there is no upper limit to the size of aggregates 
   that will be passed in this way; in other words, the convention of 
   passing a pointer to a large aggregate instead of a copy is not used.

   An exceptional case exists for struct arguments (and possibly other
   aggregates such as arrays) if the size is larger than 4 bytes but 
   not a multiple of 4 bytes.  In this case the argument is never split 
   between the registers and the stack, but instead is copied in its
   entirety onto the stack, AND also copied into as many registers as 
   there is room for.  In other words, space in registers permitting, 
   two copies of the same argument are passed in.  As far as I can tell,
   only the one on the stack is used, although that may be a function 
   of the level of compiler optimization.  I suspect this is a compiler
   bug.  Arguments of these odd sizes are left-justified within the 
   word (as opposed to arguments smaller than 4 bytes, which are 
   right-justified).

   If the function is to return an aggregate type such as a struct, it 
   is either returned in the normal return value register R0 (if its 
   size is no greater than one byte), or else the caller must allocate
   space into which the callee will copy the return value (if the size
   is greater than one byte).  In this case, a pointer to the return 
   value location is passed into the callee in register R2, which does 
   not displace any of the other arguments passed in via registers R4
   to R7.  */

/* R2-R9 for integer types and integer equivalent (char, pointers) and
   non-scalar (struct, union) elements (even if the elements are
   floats).  
   FR0-FR11 for single precision floating point (float)
   DR0-DR10 for double precision floating point (double) 
   
   If a float is argument number 3 (for instance) and arguments number
   1,2, and 4 are integer, the mapping will be:
   arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5.  I.e. R4 is not used.
   
   If a float is argument number 10 (for instance) and arguments number
   1 through 10 are integer, the mapping will be:
   arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
   arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
   arg11->stack(16,SP).  I.e. there is hole in the stack.

   Different rules apply for variable arguments functions, and for functions
   for which the prototype is not known.  */

static CORE_ADDR
sh64_push_dummy_call (struct gdbarch *gdbarch,
		      struct value *function,
		      struct regcache *regcache,
		      CORE_ADDR bp_addr,
		      int nargs, struct value **args,
		      CORE_ADDR sp, int struct_return,
		      CORE_ADDR struct_addr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int stack_offset, stack_alloc;
  int int_argreg;
  int float_argreg;
  int double_argreg;
  int float_arg_index = 0;
  int double_arg_index = 0;
  int argnum;
  struct type *type;
  CORE_ADDR regval;
  char *val;
  char valbuf[8];
  int len;
  int argreg_size;
  int fp_args[12];

  memset (fp_args, 0, sizeof (fp_args));

  /* First force sp to a 8-byte alignment.  */
  sp = sh64_frame_align (gdbarch, sp);

  /* The "struct return pointer" pseudo-argument has its own dedicated 
     register.  */

  if (struct_return)
    regcache_cooked_write_unsigned (regcache, 
				    STRUCT_RETURN_REGNUM, struct_addr);

  /* Now make sure there's space on the stack.  */
  for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
    stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
  sp -= stack_alloc;		/* Make room on stack for args.  */

  /* Now load as many as possible of the first arguments into
     registers, and push the rest onto the stack.  There are 64 bytes
     in eight registers available.  Loop thru args from first to last.  */

  int_argreg = ARG0_REGNUM;
  float_argreg = gdbarch_fp0_regnum (gdbarch);
  double_argreg = DR0_REGNUM;

  for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
    {
      type = value_type (args[argnum]);
      len = TYPE_LENGTH (type);
      memset (valbuf, 0, sizeof (valbuf));
      
      if (TYPE_CODE (type) != TYPE_CODE_FLT)
	{
	  argreg_size = register_size (gdbarch, int_argreg);

	  if (len < argreg_size)
	    {
	      /* value gets right-justified in the register or stack word.  */
	      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
		memcpy (valbuf + argreg_size - len,
			(char *) value_contents (args[argnum]), len);
	      else
		memcpy (valbuf, (char *) value_contents (args[argnum]), len);

	      val = valbuf;
	    }
	  else
	    val = (char *) value_contents (args[argnum]);

	  while (len > 0)
	    {
	      if (int_argreg > ARGLAST_REGNUM)
		{			
		  /* Must go on the stack.  */
		  write_memory (sp + stack_offset, (const bfd_byte *) val,
		  		argreg_size);
		  stack_offset += 8;/*argreg_size;*/
		}
	      /* NOTE WELL!!!!!  This is not an "else if" clause!!!
		 That's because some *&^%$ things get passed on the stack
		 AND in the registers!   */
	      if (int_argreg <= ARGLAST_REGNUM)
		{			
		  /* There's room in a register.  */
		  regval = extract_unsigned_integer (val, argreg_size,
						     byte_order);
		  regcache_cooked_write_unsigned (regcache,
						  int_argreg, regval);
		}
	      /* Store the value 8 bytes at a time.  This means that
		 things larger than 8 bytes may go partly in registers
		 and partly on the stack.  FIXME: argreg is incremented
		 before we use its size.  */
	      len -= argreg_size;
	      val += argreg_size;
	      int_argreg++;
	    }
	}
      else
	{
	  val = (char *) value_contents (args[argnum]);
	  if (len == 4)
	    {
	      /* Where is it going to be stored?  */
	      while (fp_args[float_arg_index])
		float_arg_index ++;

	      /* Now float_argreg points to the register where it
		 should be stored.  Are we still within the allowed
		 register set?  */
	      if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
		{
		  /* Goes in FR0...FR11 */
		  regcache_cooked_write (regcache,
					 gdbarch_fp0_regnum (gdbarch)
					 + float_arg_index,
					 val);
		  fp_args[float_arg_index] = 1;
		  /* Skip the corresponding general argument register.  */
		  int_argreg ++;
		}
	      else 
		{
		  /* Store it as the integers, 8 bytes at the time, if
		     necessary spilling on the stack.  */
		}
	    }
	    else if (len == 8)
	      {
		/* Where is it going to be stored?  */
		while (fp_args[double_arg_index])
		  double_arg_index += 2;
		/* Now double_argreg points to the register
		   where it should be stored.
		   Are we still within the allowed register set?  */
		if (double_arg_index < FLOAT_ARGLAST_REGNUM)
		  {
		    /* Goes in DR0...DR10 */
		    /* The numbering of the DRi registers is consecutive,
		       i.e. includes odd numbers.  */
		    int double_register_offset = double_arg_index / 2;
		    int regnum = DR0_REGNUM + double_register_offset;
		    regcache_cooked_write (regcache, regnum, val);
		    fp_args[double_arg_index] = 1;
		    fp_args[double_arg_index + 1] = 1;
		    /* Skip the corresponding general argument register.  */
		    int_argreg ++;
		  }
		else
		  {
		    /* Store it as the integers, 8 bytes at the time, if
		       necessary spilling on the stack.  */
		  }
	      }
	}
    }
  /* Store return address.  */
  regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);

  /* Update stack pointer.  */
  regcache_cooked_write_unsigned (regcache,
				  gdbarch_sp_regnum (gdbarch), sp);

  return sp;
}

/* Find a function's return value in the appropriate registers (in
   regbuf), and copy it into valbuf.  Extract from an array REGBUF
   containing the (raw) register state a function return value of type
   TYPE, and copy that, in virtual format, into VALBUF.  */
static void
sh64_extract_return_value (struct type *type, struct regcache *regcache,
			   void *valbuf)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int len = TYPE_LENGTH (type);

  if (TYPE_CODE (type) == TYPE_CODE_FLT)
    {
      if (len == 4)
	{
	  /* Return value stored in gdbarch_fp0_regnum.  */
	  regcache_raw_read (regcache,
			     gdbarch_fp0_regnum (gdbarch), valbuf);
	}
      else if (len == 8)
	{
	  /* return value stored in DR0_REGNUM.  */
	  DOUBLEST val;
	  gdb_byte buf[8];

	  regcache_cooked_read (regcache, DR0_REGNUM, buf);
	  
	  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
	    floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
				     buf, &val);
	  else
	    floatformat_to_doublest (&floatformat_ieee_double_big,
				     buf, &val);
	  store_typed_floating (valbuf, type, val);
	}
    }
  else
    { 
      if (len <= 8)
	{
	  int offset;
	  gdb_byte buf[8];
	  /* Result is in register 2.  If smaller than 8 bytes, it is padded 
	     at the most significant end.  */
	  regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);

	  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
	    offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
		     - len;
	  else
	    offset = 0;
	  memcpy (valbuf, buf + offset, len);
	}
      else
	error (_("bad size for return value"));
    }
}

/* Write into appropriate registers a function return value
   of type TYPE, given in virtual format.
   If the architecture is sh4 or sh3e, store a function's return value
   in the R0 general register or in the FP0 floating point register,
   depending on the type of the return value.  In all the other cases
   the result is stored in r0, left-justified.  */

static void
sh64_store_return_value (struct type *type, struct regcache *regcache,
			 const void *valbuf)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  gdb_byte buf[64];	/* more than enough...  */
  int len = TYPE_LENGTH (type);

  if (TYPE_CODE (type) == TYPE_CODE_FLT)
    {
      int i, regnum = gdbarch_fp0_regnum (gdbarch);
      for (i = 0; i < len; i += 4)
	if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
	  regcache_raw_write (regcache, regnum++,
			      (char *) valbuf + len - 4 - i);
	else
	  regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
    }
  else
    {
      int return_register = DEFAULT_RETURN_REGNUM;
      int offset = 0;

      if (len <= register_size (gdbarch, return_register))
	{
	  /* Pad with zeros.  */
	  memset (buf, 0, register_size (gdbarch, return_register));
	  if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
	    offset = 0; /*register_size (gdbarch, 
			  return_register) - len;*/
	  else
	    offset = register_size (gdbarch, return_register) - len;

	  memcpy (buf + offset, valbuf, len);
	  regcache_raw_write (regcache, return_register, buf);
	}
      else
	regcache_raw_write (regcache, return_register, valbuf);
    }
}

static enum return_value_convention
sh64_return_value (struct gdbarch *gdbarch, struct value *function,
		   struct type *type, struct regcache *regcache,
		   gdb_byte *readbuf, const gdb_byte *writebuf)
{
  if (sh64_use_struct_convention (type))
    return RETURN_VALUE_STRUCT_CONVENTION;
  if (writebuf)
    sh64_store_return_value (type, regcache, writebuf);
  else if (readbuf)
    sh64_extract_return_value (type, regcache, readbuf);
  return RETURN_VALUE_REGISTER_CONVENTION;
}

/* *INDENT-OFF* */
/*
    SH MEDIA MODE (ISA 32)
    general registers (64-bit) 0-63
0    r0,   r1,   r2,   r3,   r4,   r5,   r6,   r7,
64   r8,   r9,   r10,  r11,  r12,  r13,  r14,  r15,
128  r16,  r17,  r18,  r19,  r20,  r21,  r22,  r23,
192  r24,  r25,  r26,  r27,  r28,  r29,  r30,  r31,
256  r32,  r33,  r34,  r35,  r36,  r37,  r38,  r39,
320  r40,  r41,  r42,  r43,  r44,  r45,  r46,  r47,
384  r48,  r49,  r50,  r51,  r52,  r53,  r54,  r55,
448  r56,  r57,  r58,  r59,  r60,  r61,  r62,  r63,

    pc (64-bit) 64
512  pc,

    status reg., saved status reg., saved pc reg. (64-bit) 65-67
520  sr,  ssr,  spc,

    target registers (64-bit) 68-75
544  tr0,  tr1,  tr2,  tr3,  tr4,  tr5,  tr6,  tr7,

    floating point state control register (32-bit) 76
608  fpscr,

    single precision floating point registers (32-bit) 77-140
612  fr0,  fr1,  fr2,  fr3,  fr4,  fr5,  fr6,  fr7,
644  fr8,  fr9,  fr10, fr11, fr12, fr13, fr14, fr15,
676  fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
708  fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
740  fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
772  fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
804  fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
836  fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,

TOTAL SPACE FOR REGISTERS: 868 bytes

From here on they are all pseudo registers: no memory allocated.
REGISTER_BYTE returns the register byte for the base register.

    double precision registers (pseudo) 141-172
     dr0,  dr2,  dr4,  dr6,  dr8,  dr10, dr12, dr14,
     dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
     dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
     dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
 
    floating point pairs (pseudo) 173-204
     fp0,  fp2,  fp4,  fp6,  fp8,  fp10, fp12, fp14,
     fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
     fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
     fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
 
    floating point vectors (4 floating point regs) (pseudo) 205-220
     fv0,  fv4,  fv8,  fv12, fv16, fv20, fv24, fv28,
     fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
 
    SH COMPACT MODE (ISA 16) (all pseudo) 221-272
     r0_c, r1_c, r2_c,  r3_c,  r4_c,  r5_c,  r6_c,  r7_c,
     r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
     pc_c,
     gbr_c, mach_c, macl_c, pr_c, t_c,
     fpscr_c, fpul_c,
     fr0_c, fr1_c, fr2_c,  fr3_c,  fr4_c,  fr5_c,  fr6_c,  fr7_c,
     fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
     dr0_c, dr2_c, dr4_c,  dr6_c,  dr8_c,  dr10_c, dr12_c, dr14_c
     fv0_c, fv4_c, fv8_c,  fv12_c
*/

static struct type *
sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
{
  return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
				  0, high);
}

/* Return the GDB type object for the "standard" data type
   of data in register REG_NR.  */
static struct type *
sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
{
  if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
       && reg_nr <= FP_LAST_REGNUM)
      || (reg_nr >= FP0_C_REGNUM
	  && reg_nr <= FP_LAST_C_REGNUM))
    return builtin_type (gdbarch)->builtin_float;
  else if ((reg_nr >= DR0_REGNUM 
	    && reg_nr <= DR_LAST_REGNUM)
	   || (reg_nr >= DR0_C_REGNUM 
	       && reg_nr <= DR_LAST_C_REGNUM))
    return builtin_type (gdbarch)->builtin_double;
  else if  (reg_nr >= FPP0_REGNUM 
	    && reg_nr <= FPP_LAST_REGNUM)
    return sh64_build_float_register_type (gdbarch, 1);
  else if ((reg_nr >= FV0_REGNUM
	    && reg_nr <= FV_LAST_REGNUM)
	   ||(reg_nr >= FV0_C_REGNUM 
	      && reg_nr <= FV_LAST_C_REGNUM))
    return sh64_build_float_register_type (gdbarch, 3);
  else if (reg_nr == FPSCR_REGNUM)
    return builtin_type (gdbarch)->builtin_int;
  else if (reg_nr >= R0_C_REGNUM
	   && reg_nr < FP0_C_REGNUM)
    return builtin_type (gdbarch)->builtin_int;
  else
    return builtin_type (gdbarch)->builtin_long_long;
}

static void
sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
				  struct type *type, char *from, char *to)
{
  if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
    {
      /* It is a no-op.  */
      memcpy (to, from, register_size (gdbarch, regnum));
      return;
    }

  if ((regnum >= DR0_REGNUM 
       && regnum <= DR_LAST_REGNUM)
      || (regnum >= DR0_C_REGNUM 
	  && regnum <= DR_LAST_C_REGNUM))
    {
      DOUBLEST val;
      floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword, 
			       from, &val);
      store_typed_floating (to, type, val);
    }
  else
    error (_("sh64_register_convert_to_virtual "
	     "called with non DR register number"));
}

static void
sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
			      int regnum, const void *from, void *to)
{
  if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
    {
      /* It is a no-op.  */
      memcpy (to, from, register_size (gdbarch, regnum));
      return;
    }

  if ((regnum >= DR0_REGNUM 
       && regnum <= DR_LAST_REGNUM)
      || (regnum >= DR0_C_REGNUM 
	  && regnum <= DR_LAST_C_REGNUM))
    {
      DOUBLEST val = extract_typed_floating (from, type);
      floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword, 
				 &val, to);
    }
  else
    error (_("sh64_register_convert_to_raw called "
	     "with non DR register number"));
}

/* Concatenate PORTIONS contiguous raw registers starting at
   BASE_REGNUM into BUFFER.  */

static enum register_status
pseudo_register_read_portions (struct gdbarch *gdbarch,
			       struct regcache *regcache,
			       int portions,
			       int base_regnum, gdb_byte *buffer)
{
  int portion;

  for (portion = 0; portion < portions; portion++)
    {
      enum register_status status;
      gdb_byte *b;

      b = buffer + register_size (gdbarch, base_regnum) * portion;
      status = regcache_raw_read (regcache, base_regnum + portion, b);
      if (status != REG_VALID)
	return status;
    }

  return REG_VALID;
}

static enum register_status
sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
			   int reg_nr, gdb_byte *buffer)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int base_regnum;
  int offset = 0;
  char temp_buffer[MAX_REGISTER_SIZE];
  enum register_status status;

  if (reg_nr >= DR0_REGNUM 
      && reg_nr <= DR_LAST_REGNUM)
    {
      base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);

      /* Build the value in the provided buffer.  */ 
      /* DR regs are double precision registers obtained by
	 concatenating 2 single precision floating point registers.  */
      status = pseudo_register_read_portions (gdbarch, regcache,
					      2, base_regnum, temp_buffer);
      if (status == REG_VALID)
	{
	  /* We must pay attention to the endianness.  */
	  sh64_register_convert_to_virtual (gdbarch, reg_nr,
					    register_type (gdbarch, reg_nr),
					    temp_buffer, buffer);
	}

      return status;
    }

  else if (reg_nr >= FPP0_REGNUM
	   && reg_nr <= FPP_LAST_REGNUM)
    {
      base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);

      /* Build the value in the provided buffer.  */ 
      /* FPP regs are pairs of single precision registers obtained by
	 concatenating 2 single precision floating point registers.  */
      return pseudo_register_read_portions (gdbarch, regcache,
					    2, base_regnum, buffer);
    }

  else if (reg_nr >= FV0_REGNUM 
	   && reg_nr <= FV_LAST_REGNUM)
    {
      base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);

      /* Build the value in the provided buffer.  */ 
      /* FV regs are vectors of single precision registers obtained by
	 concatenating 4 single precision floating point registers.  */
      return pseudo_register_read_portions (gdbarch, regcache,
					    4, base_regnum, buffer);
    }

  /* sh compact pseudo registers.  1-to-1 with a shmedia register.  */
  else if (reg_nr >= R0_C_REGNUM 
	   && reg_nr <= T_C_REGNUM)
    {
      base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);

      /* Build the value in the provided buffer.  */ 
      status = regcache_raw_read (regcache, base_regnum, temp_buffer);
      if (status != REG_VALID)
	return status;
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
	offset = 4;
      memcpy (buffer,
	      temp_buffer + offset, 4); /* get LOWER 32 bits only????  */
      return REG_VALID;
    }

  else if (reg_nr >= FP0_C_REGNUM
	   && reg_nr <= FP_LAST_C_REGNUM)
    {
      base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);

      /* Build the value in the provided buffer.  */ 
      /* Floating point registers map 1-1 to the media fp regs,
	 they have the same size and endianness.  */
      return regcache_raw_read (regcache, base_regnum, buffer);
    }

  else if (reg_nr >= DR0_C_REGNUM 
	   && reg_nr <= DR_LAST_C_REGNUM)
    {
      base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);

      /* DR_C regs are double precision registers obtained by
	 concatenating 2 single precision floating point registers.  */
      status = pseudo_register_read_portions (gdbarch, regcache,
					      2, base_regnum, temp_buffer);
      if (status == REG_VALID)
	{
	  /* We must pay attention to the endianness.  */
	  sh64_register_convert_to_virtual (gdbarch, reg_nr,
					    register_type (gdbarch, reg_nr),
					    temp_buffer, buffer);
	}
      return status;
    }

  else if (reg_nr >= FV0_C_REGNUM 
	   && reg_nr <= FV_LAST_C_REGNUM)
    {
      base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);

      /* Build the value in the provided buffer.  */ 
      /* FV_C regs are vectors of single precision registers obtained by
	 concatenating 4 single precision floating point registers.  */
      return pseudo_register_read_portions (gdbarch, regcache,
					    4, base_regnum, buffer);
    }

  else if (reg_nr == FPSCR_C_REGNUM)
    {
      int fpscr_base_regnum;
      int sr_base_regnum;
      unsigned int fpscr_value;
      unsigned int sr_value;
      unsigned int fpscr_c_value;
      unsigned int fpscr_c_part1_value;
      unsigned int fpscr_c_part2_value;

      fpscr_base_regnum = FPSCR_REGNUM;
      sr_base_regnum = SR_REGNUM;

      /* Build the value in the provided buffer.  */ 
      /* FPSCR_C is a very weird register that contains sparse bits
	 from the FPSCR and the SR architectural registers.
	 Specifically: */
      /* *INDENT-OFF* */
      /*
	 FPSRC_C bit
            0         Bit 0 of FPSCR
            1         reserved
            2-17      Bit 2-18 of FPSCR
            18-20     Bits 12,13,14 of SR
            21-31     reserved
       */
      /* *INDENT-ON* */
      /* Get FPSCR into a local buffer.  */
      status = regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
      if (status != REG_VALID)
	return status;
      /* Get value as an int.  */
      fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
      /* Get SR into a local buffer */
      status = regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
      if (status != REG_VALID)
	return status;
      /* Get value as an int.  */
      sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
      /* Build the new value.  */
      fpscr_c_part1_value = fpscr_value & 0x3fffd;
      fpscr_c_part2_value = (sr_value & 0x7000) << 6;
      fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
      /* Store that in out buffer!!!  */
      store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
      /* FIXME There is surely an endianness gotcha here.  */

      return REG_VALID;
    }

  else if (reg_nr == FPUL_C_REGNUM)
    {
      base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);

      /* FPUL_C register is floating point register 32,
	 same size, same endianness.  */
      return regcache_raw_read (regcache, base_regnum, buffer);
    }
  else
    gdb_assert_not_reached ("invalid pseudo register number");
}

static void
sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
			    int reg_nr, const gdb_byte *buffer)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int base_regnum, portion;
  int offset;
  char temp_buffer[MAX_REGISTER_SIZE];

  if (reg_nr >= DR0_REGNUM
      && reg_nr <= DR_LAST_REGNUM)
    {
      base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
      /* We must pay attention to the endianness.  */
      sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
				    reg_nr,
				    buffer, temp_buffer);

      /* Write the real regs for which this one is an alias.  */
      for (portion = 0; portion < 2; portion++)
	regcache_raw_write (regcache, base_regnum + portion, 
			    (temp_buffer
			     + register_size (gdbarch, 
					      base_regnum) * portion));
    }

  else if (reg_nr >= FPP0_REGNUM 
	   && reg_nr <= FPP_LAST_REGNUM)
    {
      base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);

      /* Write the real regs for which this one is an alias.  */
      for (portion = 0; portion < 2; portion++)
	regcache_raw_write (regcache, base_regnum + portion,
			    ((char *) buffer
			     + register_size (gdbarch, 
					      base_regnum) * portion));
    }

  else if (reg_nr >= FV0_REGNUM
	   && reg_nr <= FV_LAST_REGNUM)
    {
      base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);

      /* Write the real regs for which this one is an alias.  */
      for (portion = 0; portion < 4; portion++)
	regcache_raw_write (regcache, base_regnum + portion,
			    ((char *) buffer
			     + register_size (gdbarch, 
					      base_regnum) * portion));
    }

  /* sh compact general pseudo registers.  1-to-1 with a shmedia
     register but only 4 bytes of it.  */
  else if (reg_nr >= R0_C_REGNUM 
	   && reg_nr <= T_C_REGNUM)
    {
      base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
      /* reg_nr is 32 bit here, and base_regnum is 64 bits.  */
      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
	offset = 4;
      else 
	offset = 0;
      /* Let's read the value of the base register into a temporary
	 buffer, so that overwriting the last four bytes with the new
	 value of the pseudo will leave the upper 4 bytes unchanged.  */
      regcache_raw_read (regcache, base_regnum, temp_buffer);
      /* Write as an 8 byte quantity.  */
      memcpy (temp_buffer + offset, buffer, 4);
      regcache_raw_write (regcache, base_regnum, temp_buffer);
    }

  /* sh floating point compact pseudo registers.  1-to-1 with a shmedia
     registers.  Both are 4 bytes.  */
  else if (reg_nr >= FP0_C_REGNUM
	       && reg_nr <= FP_LAST_C_REGNUM)
    {
      base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
      regcache_raw_write (regcache, base_regnum, buffer);
    }

  else if (reg_nr >= DR0_C_REGNUM 
	   && reg_nr <= DR_LAST_C_REGNUM)
    {
      base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
      for (portion = 0; portion < 2; portion++)
	{
	  /* We must pay attention to the endianness.  */
	  sh64_register_convert_to_raw (gdbarch,
					register_type (gdbarch, reg_nr),
					reg_nr,
					buffer, temp_buffer);

	  regcache_raw_write (regcache, base_regnum + portion,
			      (temp_buffer
			       + register_size (gdbarch, 
						base_regnum) * portion));
	}
    }

  else if (reg_nr >= FV0_C_REGNUM 
	   && reg_nr <= FV_LAST_C_REGNUM)
    {
      base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
     
      for (portion = 0; portion < 4; portion++)
	{
	  regcache_raw_write (regcache, base_regnum + portion,
			      ((char *) buffer
			       + register_size (gdbarch, 
						base_regnum) * portion));
	}
    }

  else if (reg_nr == FPSCR_C_REGNUM)
    {      
      int fpscr_base_regnum;
      int sr_base_regnum;
      unsigned int fpscr_value;
      unsigned int sr_value;
      unsigned int old_fpscr_value;
      unsigned int old_sr_value;
      unsigned int fpscr_c_value;
      unsigned int fpscr_mask;
      unsigned int sr_mask;

      fpscr_base_regnum = FPSCR_REGNUM;
      sr_base_regnum = SR_REGNUM;

      /* FPSCR_C is a very weird register that contains sparse bits
	 from the FPSCR and the SR architectural registers.
	 Specifically: */
      /* *INDENT-OFF* */
      /*
	 FPSRC_C bit
            0         Bit 0 of FPSCR
            1         reserved
            2-17      Bit 2-18 of FPSCR
            18-20     Bits 12,13,14 of SR
            21-31     reserved
       */
      /* *INDENT-ON* */
      /* Get value as an int.  */
      fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);

      /* Build the new values.  */
      fpscr_mask = 0x0003fffd;
      sr_mask = 0x001c0000;
       
      fpscr_value = fpscr_c_value & fpscr_mask;
      sr_value = (fpscr_value & sr_mask) >> 6;
      
      regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
      old_fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
      old_fpscr_value &= 0xfffc0002;
      fpscr_value |= old_fpscr_value;
      store_unsigned_integer (temp_buffer, 4, byte_order, fpscr_value);
      regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
      
      regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
      old_sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
      old_sr_value &= 0xffff8fff;
      sr_value |= old_sr_value;
      store_unsigned_integer (temp_buffer, 4, byte_order, sr_value);
      regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
    }

  else if (reg_nr == FPUL_C_REGNUM)
    {
      base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
      regcache_raw_write (regcache, base_regnum, buffer);
    }
}

/* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
   shmedia REGISTERS.  */
/* Control registers, compact mode.  */
static void
sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
			    int cr_c_regnum)
{
  switch (cr_c_regnum)
    {
    case PC_C_REGNUM:
      fprintf_filtered (file, "pc_c\t0x%08x\n",
	  (int) get_frame_register_unsigned (frame, cr_c_regnum));
      break;
    case GBR_C_REGNUM: 
      fprintf_filtered (file, "gbr_c\t0x%08x\n",
      	  (int) get_frame_register_unsigned (frame, cr_c_regnum));
      break;
    case MACH_C_REGNUM: 
      fprintf_filtered (file, "mach_c\t0x%08x\n",
      	  (int) get_frame_register_unsigned (frame, cr_c_regnum));
      break;
    case MACL_C_REGNUM: 
      fprintf_filtered (file, "macl_c\t0x%08x\n",
      	  (int) get_frame_register_unsigned (frame, cr_c_regnum));
      break;
    case PR_C_REGNUM: 
      fprintf_filtered (file, "pr_c\t0x%08x\n",
      	  (int) get_frame_register_unsigned (frame, cr_c_regnum));
      break;
    case T_C_REGNUM: 
      fprintf_filtered (file, "t_c\t0x%08x\n",
      	  (int) get_frame_register_unsigned (frame, cr_c_regnum));
      break;
    case FPSCR_C_REGNUM: 
      fprintf_filtered (file, "fpscr_c\t0x%08x\n",
      	  (int) get_frame_register_unsigned (frame, cr_c_regnum));
      break;
    case FPUL_C_REGNUM:
      fprintf_filtered (file, "fpul_c\t0x%08x\n",
          (int) get_frame_register_unsigned (frame, cr_c_regnum));
      break;
    }
}

static void
sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
		     struct frame_info *frame, int regnum)
{				/* Do values for FP (float) regs.  */
  unsigned char *raw_buffer;
  double flt;	/* Double extracted from raw hex data.  */
  int inv;
  int j;

  /* Allocate space for the float.  */
  raw_buffer = (unsigned char *)
    alloca (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)));

  /* Get the data in raw format.  */
  if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
    error (_("can't read register %d (%s)"),
	   regnum, gdbarch_register_name (gdbarch, regnum));

  /* Get the register as a number.  */ 
  flt = unpack_double (builtin_type (gdbarch)->builtin_float,
		       raw_buffer, &inv);

  /* Print the name and some spaces.  */
  fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
  print_spaces_filtered (15 - strlen (gdbarch_register_name
					(gdbarch, regnum)), file);

  /* Print the value.  */
  if (inv)
    fprintf_filtered (file, "<invalid float>");
  else
    fprintf_filtered (file, "%-10.9g", flt);

  /* Print the fp register as hex.  */
  fprintf_filtered (file, "\t(raw 0x");
  for (j = 0; j < register_size (gdbarch, regnum); j++)
    {
      int idx = gdbarch_byte_order (gdbarch)
		== BFD_ENDIAN_BIG ? j : register_size
		(gdbarch, regnum) - 1 - j;
      fprintf_filtered (file, "%02x", raw_buffer[idx]);
    }
  fprintf_filtered (file, ")");
  fprintf_filtered (file, "\n");
}

static void
sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
			 struct frame_info *frame, int regnum)
{
  /* All the sh64-compact mode registers are pseudo registers.  */

  if (regnum < gdbarch_num_regs (gdbarch)
      || regnum >= gdbarch_num_regs (gdbarch)
		   + NUM_PSEUDO_REGS_SH_MEDIA
		   + NUM_PSEUDO_REGS_SH_COMPACT)
    internal_error (__FILE__, __LINE__,
		    _("Invalid pseudo register number %d\n"), regnum);

  else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
    {
      int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
      fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM, 
	  (unsigned) get_frame_register_unsigned (frame, fp_regnum),
	  (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
    }

  else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
    {
      int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
      fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
	  (unsigned) get_frame_register_unsigned (frame, fp_regnum),
	  (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
    }

  else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
    {
      int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
      fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n", 
	   regnum - FV0_REGNUM, 
	   (unsigned) get_frame_register_unsigned (frame, fp_regnum),
	   (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
	   (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
	   (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
    }
	   
  else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
    {
      int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
      fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n", 
	   regnum - FV0_C_REGNUM, 
	   (unsigned) get_frame_register_unsigned (frame, fp_regnum),
	   (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
	   (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
	   (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
    }

  else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
    {
      int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
      fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM, 
	  (unsigned) get_frame_register_unsigned (frame, fp_regnum),
	  (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
    }

  else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
    {
      int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
      fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM, 
	   (unsigned) get_frame_register_unsigned (frame, c_regnum));
    }
  else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
    /* This should work also for pseudoregs.  */
    sh64_do_fp_register (gdbarch, file, frame, regnum);
  else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
    sh64_do_cr_c_register_info (file, frame, regnum);
}

static void
sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
		  struct frame_info *frame, int regnum)
{
  unsigned char raw_buffer[MAX_REGISTER_SIZE];
  struct value_print_options opts;

  fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
  print_spaces_filtered (15 - strlen (gdbarch_register_name
				      (gdbarch, regnum)), file);

  /* Get the data in raw format.  */
  if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
    fprintf_filtered (file, "*value not available*\n");

  get_formatted_print_options (&opts, 'x');
  opts.deref_ref = 1;
  val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
	     file, 0, NULL, &opts, current_language);
  fprintf_filtered (file, "\t");
  get_formatted_print_options (&opts, 0);
  opts.deref_ref = 1;
  val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
	     file, 0, NULL, &opts, current_language);
  fprintf_filtered (file, "\n");
}

static void
sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
		     struct frame_info *frame, int regnum)
{
  if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
			      + gdbarch_num_pseudo_regs (gdbarch))
    internal_error (__FILE__, __LINE__,
		    _("Invalid register number %d\n"), regnum);

  else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
    {
      if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
	sh64_do_fp_register (gdbarch, file, frame, regnum);	/* FP regs */
      else
	sh64_do_register (gdbarch, file, frame, regnum);
    }

  else if (regnum < gdbarch_num_regs (gdbarch)
		    + gdbarch_num_pseudo_regs (gdbarch))
    sh64_do_pseudo_register (gdbarch, file, frame, regnum);
}

static void
sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
				 struct frame_info *frame, int regnum,
				 int fpregs)
{
  if (regnum != -1)		/* Do one specified register.  */
    {
      if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
	error (_("Not a valid register for the current processor type"));

      sh64_print_register (gdbarch, file, frame, regnum);
    }
  else
    /* Do all (or most) registers.  */
    {
      regnum = 0;
      while (regnum < gdbarch_num_regs (gdbarch))
	{
	  /* If the register name is empty, it is undefined for this
	     processor, so don't display anything.  */
	  if (gdbarch_register_name (gdbarch, regnum) == NULL
	      || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
	    { 
	      regnum++;
	      continue;
	    }

	  if (TYPE_CODE (register_type (gdbarch, regnum))
	      == TYPE_CODE_FLT)
	    {
	      if (fpregs)
		{
		  /* true for "INFO ALL-REGISTERS" command.  */
		  sh64_do_fp_register (gdbarch, file, frame, regnum);
		  regnum ++;
		}
	      else
		regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
		/* skip FP regs */
	    }
	  else
	    {
	      sh64_do_register (gdbarch, file, frame, regnum);
	      regnum++;
	    }
	}

      if (fpregs)
	while (regnum < gdbarch_num_regs (gdbarch)
			+ gdbarch_num_pseudo_regs (gdbarch))
	  {
	    sh64_do_pseudo_register (gdbarch, file, frame, regnum);
	    regnum++;
	  }
    }
}

static void
sh64_compact_print_registers_info (struct gdbarch *gdbarch,
				   struct ui_file *file,
				   struct frame_info *frame, int regnum,
				   int fpregs)
{
  if (regnum != -1)		/* Do one specified register.  */
    {
      if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
	error (_("Not a valid register for the current processor type"));

      if (regnum >= 0 && regnum < R0_C_REGNUM)
        error (_("Not a valid register for the current processor mode."));

      sh64_print_register (gdbarch, file, frame, regnum);
    }
  else
    /* Do all compact registers.  */
    {
      regnum = R0_C_REGNUM;
      while (regnum < gdbarch_num_regs (gdbarch)
		      + gdbarch_num_pseudo_regs (gdbarch))
        {
          sh64_do_pseudo_register (gdbarch, file, frame, regnum);
          regnum++;
        }
    }
}

static void
sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
			   struct frame_info *frame, int regnum, int fpregs)
{
  if (pc_is_isa32 (get_frame_pc (frame)))
    sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
  else
    sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
}

static struct sh64_frame_cache *
sh64_alloc_frame_cache (void)
{
  struct sh64_frame_cache *cache;
  int i;

  cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);

  /* Base address.  */
  cache->base = 0;
  cache->saved_sp = 0;
  cache->sp_offset = 0;
  cache->pc = 0;

  /* Frameless until proven otherwise.  */
  cache->uses_fp = 0;

  /* Saved registers.  We initialize these to -1 since zero is a valid
     offset (that's where fp is supposed to be stored).  */
  for (i = 0; i < SIM_SH64_NR_REGS; i++)
    {
      cache->saved_regs[i] = -1;
    }

  return cache;
}

static struct sh64_frame_cache *
sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  struct gdbarch *gdbarch;
  struct sh64_frame_cache *cache;
  CORE_ADDR current_pc;
  int i;

  if (*this_cache)
    return *this_cache;

  gdbarch = get_frame_arch (this_frame);
  cache = sh64_alloc_frame_cache ();
  *this_cache = cache;

  current_pc = get_frame_pc (this_frame);
  cache->media_mode = pc_is_isa32 (current_pc);

  /* In principle, for normal frames, fp holds the frame pointer,
     which holds the base address for the current stack frame.
     However, for functions that don't need it, the frame pointer is
     optional.  For these "frameless" functions the frame pointer is
     actually the frame pointer of the calling frame.  */
  cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
  if (cache->base == 0)
    return cache;

  cache->pc = get_frame_func (this_frame);
  if (cache->pc != 0)
    sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);

  if (!cache->uses_fp)
    {
      /* We didn't find a valid frame, which means that CACHE->base
         currently holds the frame pointer for our calling frame.  If
         we're at the start of a function, or somewhere half-way its
         prologue, the function's frame probably hasn't been fully
         setup yet.  Try to reconstruct the base address for the stack
         frame by looking at the stack pointer.  For truly "frameless"
         functions this might work too.  */
      cache->base = get_frame_register_unsigned
		    (this_frame, gdbarch_sp_regnum (gdbarch));
    }

  /* Now that we have the base address for the stack frame we can
     calculate the value of sp in the calling frame.  */
  cache->saved_sp = cache->base + cache->sp_offset;

  /* Adjust all the saved registers such that they contain addresses
     instead of offsets.  */
  for (i = 0; i < SIM_SH64_NR_REGS; i++)
    if (cache->saved_regs[i] != -1)
      cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];

  return cache;
}

static struct value *
sh64_frame_prev_register (struct frame_info *this_frame,
			  void **this_cache, int regnum)
{
  struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  gdb_assert (regnum >= 0);

  if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
    frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);

  /* The PC of the previous frame is stored in the PR register of
     the current frame.  Frob regnum so that we pull the value from
     the correct place.  */
  if (regnum == gdbarch_pc_regnum (gdbarch))
    regnum = PR_REGNUM;

  if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
    {
      if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
          && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
        {
	  CORE_ADDR val;
	  val = read_memory_unsigned_integer (cache->saved_regs[regnum],
					      4, byte_order);
	  return frame_unwind_got_constant (this_frame, regnum, val);
        }

      return frame_unwind_got_memory (this_frame, regnum,
				      cache->saved_regs[regnum]);
    }

  return frame_unwind_got_register (this_frame, regnum, regnum);
}

static void
sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
		    struct frame_id *this_id)
{
  struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);

  /* This marks the outermost frame.  */
  if (cache->base == 0)
    return;

  *this_id = frame_id_build (cache->saved_sp, cache->pc);
}

static const struct frame_unwind sh64_frame_unwind = {
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  sh64_frame_this_id,
  sh64_frame_prev_register,
  NULL,
  default_frame_sniffer
};

static CORE_ADDR
sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  return frame_unwind_register_unsigned (next_frame,
					 gdbarch_sp_regnum (gdbarch));
}

static CORE_ADDR
sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  return frame_unwind_register_unsigned (next_frame,
					 gdbarch_pc_regnum (gdbarch));
}

static struct frame_id
sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
  CORE_ADDR sp = get_frame_register_unsigned (this_frame,
					      gdbarch_sp_regnum (gdbarch));
  return frame_id_build (sp, get_frame_pc (this_frame));
}

static CORE_ADDR
sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
  struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);

  return cache->base;
}

static const struct frame_base sh64_frame_base = {
  &sh64_frame_unwind,
  sh64_frame_base_address,
  sh64_frame_base_address,
  sh64_frame_base_address
};


struct gdbarch *
sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;

  /* If there is already a candidate, use it.  */
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return arches->gdbarch;

  /* None found, create a new architecture from the information
     provided.  */
  tdep = XMALLOC (struct gdbarch_tdep);
  gdbarch = gdbarch_alloc (&info, tdep);

  /* Determine the ABI */
  if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
    {
      /* If the ABI is the 64-bit one, it can only be sh-media.  */
      tdep->sh_abi = SH_ABI_64;
      set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
      set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
    }
  else
    {
      /* If the ABI is the 32-bit one it could be either media or
	 compact.  */
      tdep->sh_abi = SH_ABI_32;
      set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
      set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
    }

  set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
  set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
  set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);

  /* The number of real registers is the same whether we are in 
     ISA16(compact) or ISA32(media).  */
  set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
  set_gdbarch_sp_regnum (gdbarch, 15);
  set_gdbarch_pc_regnum (gdbarch, 64);
  set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
  set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
  					+ NUM_PSEUDO_REGS_SH_COMPACT);

  set_gdbarch_register_name (gdbarch, sh64_register_name);
  set_gdbarch_register_type (gdbarch, sh64_register_type);

  set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
  set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);

  set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);

  set_gdbarch_print_insn (gdbarch, print_insn_sh);
  set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);

  set_gdbarch_return_value (gdbarch, sh64_return_value);

  set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);

  set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);

  set_gdbarch_believe_pcc_promotion (gdbarch, 1);

  set_gdbarch_frame_align (gdbarch, sh64_frame_align);
  set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
  set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
  set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
  frame_base_set_default (gdbarch, &sh64_frame_base);

  set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);

  set_gdbarch_elf_make_msymbol_special (gdbarch,
					sh64_elf_make_msymbol_special);

  /* Hook in ABI-specific overrides, if they have been registered.  */
  gdbarch_init_osabi (info, gdbarch);

  dwarf2_append_unwinders (gdbarch);
  frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);

  return gdbarch;
}