summaryrefslogtreecommitdiff
path: root/gdb/or1k-tdep.c
blob: 8f6f6e196090f0c39d3f347a41531b4eeebd37b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
/* Target-dependent code for the 32-bit OpenRISC 1000, for the GDB.
   Copyright (C) 2008-2019 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "symtab.h"
#include "value.h"
#include "gdbcmd.h"
#include "language.h"
#include "gdbcore.h"
#include "symfile.h"
#include "objfiles.h"
#include "gdbtypes.h"
#include "target.h"
#include "regcache.h"
#include "safe-ctype.h"
#include "block.h"
#include "reggroups.h"
#include "arch-utils.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "dwarf2-frame.h"
#include "trad-frame.h"
#include "regset.h"
#include "remote.h"
#include "target-descriptions.h"
#include <inttypes.h>
#include "dis-asm.h"

/* OpenRISC specific includes.  */
#include "or1k-tdep.h"
#include "features/or1k.c"


/* Global debug flag.  */

static int or1k_debug = 0;

static void
show_or1k_debug (struct ui_file *file, int from_tty,
		 struct cmd_list_element *c, const char *value)
{
  fprintf_filtered (file, _("OpenRISC debugging is %s.\n"), value);
}


/* The target-dependent structure for gdbarch.  */

struct gdbarch_tdep
{
  int bytes_per_word;
  int bytes_per_address;
  CGEN_CPU_DESC gdb_cgen_cpu_desc;
};

/* Support functions for the architecture definition.  */

/* Get an instruction from memory.  */

static ULONGEST
or1k_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR addr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  gdb_byte buf[OR1K_INSTLEN];

  if (target_read_code (addr, buf, OR1K_INSTLEN)) {
    memory_error (TARGET_XFER_E_IO, addr);
  }

  return extract_unsigned_integer (buf, OR1K_INSTLEN, byte_order);
}

/* Generic function to read bits from an instruction.  */

static bool
or1k_analyse_inst (uint32_t inst, const char *format, ...)
{
  /* Break out each field in turn, validating as we go.  */
  va_list ap;
  int i;
  int iptr = 0; /* Instruction pointer */

  va_start (ap, format);

  for (i = 0; 0 != format[i];)
    {
      const char *start_ptr;
      char *end_ptr;

      uint32_t bits; /* Bit substring of interest */
      uint32_t width; /* Substring width */
      uint32_t *arg_ptr;

      switch (format[i])
	{
	case ' ':
	  i++;
	  break; /* Formatting: ignored */

	case '0':
	case '1': /* Constant bit field */
	  bits = (inst >> (OR1K_INSTBITLEN - iptr - 1)) & 0x1;

	  if ((format[i] - '0') != bits)
	    return false;

	  iptr++;
	  i++;
	  break;

	case '%': /* Bit field */
	  i++;
	  start_ptr = &(format[i]);
	  width = strtoul (start_ptr, &end_ptr, 10);

	  /* Check we got something, and if so skip on.  */
	  if (start_ptr == end_ptr)
	    error (_("bitstring \"%s\" at offset %d has no length field."),
		   format, i);

	  i += end_ptr - start_ptr;

	  /* Look for and skip the terminating 'b'.  If it's not there, we
	     still give a fatal error, because these are fixed strings that
	     just should not be wrong.  */
	  if ('b' != format[i++])
	    error (_("bitstring \"%s\" at offset %d has no terminating 'b'."),
		   format, i);

	  /* Break out the field.  There is a special case with a bit width
	     of 32.  */
	  if (32 == width)
	    bits = inst;
	  else
	    bits =
	      (inst >> (OR1K_INSTBITLEN - iptr - width)) & ((1 << width) - 1);

	  arg_ptr = va_arg (ap, uint32_t *);
	  *arg_ptr = bits;
	  iptr += width;
	  break;

	default:
	  error (_("invalid character in bitstring \"%s\" at offset %d."),
		 format, i);
	  break;
	}
    }

  /* Is the length OK?  */
  gdb_assert (OR1K_INSTBITLEN == iptr);

  return true; /* Success */
}

/* This is used to parse l.addi instructions during various prologue
   analysis routines.  The l.addi instruction has semantics:

     assembly:        l.addi  rD,rA,I
     implementation:  rD = rA + sign_extend(Immediate)

   The rd_ptr, ra_ptr and simm_ptr must be non NULL pointers and are used
   to store the parse results.  Upon successful parsing true is returned,
   false on failure. */

static bool
or1k_analyse_l_addi (uint32_t inst, unsigned int *rd_ptr,
		     unsigned int *ra_ptr, int *simm_ptr)
{
  /* Instruction fields */
  uint32_t rd, ra, i;

  if (or1k_analyse_inst (inst, "10 0111 %5b %5b %16b", &rd, &ra, &i))
    {
      /* Found it.  Construct the result fields.  */
      *rd_ptr = (unsigned int) rd;
      *ra_ptr = (unsigned int) ra;
      *simm_ptr = (int) (((i & 0x8000) == 0x8000) ? 0xffff0000 | i : i);

      return true; /* Success */
    }
  else
    return false; /* Failure */
}

/* This is used to to parse store instructions during various prologue
   analysis routines.  The l.sw instruction has semantics:

     assembly:        l.sw  I(rA),rB
     implementation:  store rB contents to memory at effective address of
		      rA + sign_extend(Immediate)

   The simm_ptr, ra_ptr and rb_ptr must be non NULL pointers and are used
   to store the parse results. Upon successful parsing true is returned,
   false on failure. */

static bool
or1k_analyse_l_sw (uint32_t inst, int *simm_ptr, unsigned int *ra_ptr,
		   unsigned int *rb_ptr)
{
  /* Instruction fields */
  uint32_t ihi, ilo, ra, rb;

  if (or1k_analyse_inst (inst, "11 0101 %5b %5b %5b %11b", &ihi, &ra, &rb,
			 &ilo))

    {
      /* Found it.  Construct the result fields.  */
      *simm_ptr = (int) ((ihi << 11) | ilo);
      *simm_ptr |= ((ihi & 0x10) == 0x10) ? 0xffff0000 : 0;

      *ra_ptr = (unsigned int) ra;
      *rb_ptr = (unsigned int) rb;

      return true; /* Success */
    }
  else
    return false; /* Failure */
}


/* Functions defining the architecture.  */

/* Implement the return_value gdbarch method.  */

static enum return_value_convention
or1k_return_value (struct gdbarch *gdbarch, struct value *functype,
		   struct type *valtype, struct regcache *regcache,
		   gdb_byte *readbuf, const gdb_byte *writebuf)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum type_code rv_type = TYPE_CODE (valtype);
  unsigned int rv_size = TYPE_LENGTH (valtype);
  int bpw = (gdbarch_tdep (gdbarch))->bytes_per_word;

  /* Deal with struct/union as addresses.  If an array won't fit in a
     single register it is returned as address.  Anything larger than 2
     registers needs to also be passed as address (matches gcc
     default_return_in_memory).  */
  if ((TYPE_CODE_STRUCT == rv_type) || (TYPE_CODE_UNION == rv_type)
      || ((TYPE_CODE_ARRAY == rv_type) && (rv_size > bpw))
      || (rv_size > 2 * bpw))
    {
      if (readbuf != NULL)
	{
	  ULONGEST tmp;

	  regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM, &tmp);
	  read_memory (tmp, readbuf, rv_size);
	}
      if (writebuf != NULL)
	{
	  ULONGEST tmp;

	  regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM, &tmp);
	  write_memory (tmp, writebuf, rv_size);
	}

      return RETURN_VALUE_ABI_RETURNS_ADDRESS;
    }

  if (rv_size <= bpw)
    {
      /* Up to one word scalars are returned in R11.  */
      if (readbuf != NULL)
	{
	  ULONGEST tmp;

	  regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM, &tmp);
	  store_unsigned_integer (readbuf, rv_size, byte_order, tmp);

	}
      if (writebuf != NULL)
	{
	  gdb_byte *buf = XCNEWVEC(gdb_byte, bpw);

	  if (BFD_ENDIAN_BIG == byte_order)
	    memcpy (buf + (sizeof (gdb_byte) * bpw) - rv_size, writebuf,
		    rv_size);
	  else
	    memcpy (buf, writebuf, rv_size);

	  regcache->cooked_write (OR1K_RV_REGNUM, buf);

	  free (buf);
	}
    }
  else
    {
      /* 2 word scalars are returned in r11/r12 (with the MS word in r11).  */
      if (readbuf != NULL)
	{
	  ULONGEST tmp_lo;
	  ULONGEST tmp_hi;
	  ULONGEST tmp;

	  regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM,
					 &tmp_hi);
	  regcache_cooked_read_unsigned (regcache, OR1K_RV_REGNUM + 1,
					 &tmp_lo);
	  tmp = (tmp_hi << (bpw * 8)) | tmp_lo;

	  store_unsigned_integer (readbuf, rv_size, byte_order, tmp);
	}
      if (writebuf != NULL)
	{
	  gdb_byte *buf_lo = XCNEWVEC(gdb_byte, bpw);
	  gdb_byte *buf_hi = XCNEWVEC(gdb_byte, bpw);

	  /* This is cheating.  We assume that we fit in 2 words exactly,
	     which wouldn't work if we had (say) a 6-byte scalar type on a
	     big endian architecture (with the OpenRISC 1000 usually is).  */
	  memcpy (buf_hi, writebuf, rv_size - bpw);
	  memcpy (buf_lo, writebuf + bpw, bpw);

	  regcache->cooked_write (OR1K_RV_REGNUM, buf_hi);
	  regcache->cooked_write (OR1K_RV_REGNUM + 1, buf_lo);

	  free (buf_lo);
	  free (buf_hi);
	}
    }

  return RETURN_VALUE_REGISTER_CONVENTION;
}

/* OR1K always uses a l.trap instruction for breakpoints.  */

constexpr gdb_byte or1k_break_insn[] = {0x21, 0x00, 0x00, 0x01};

typedef BP_MANIPULATION (or1k_break_insn) or1k_breakpoint;

/* Implement the single_step_through_delay gdbarch method.  */

static int
or1k_single_step_through_delay (struct gdbarch *gdbarch,
				struct frame_info *this_frame)
{
  ULONGEST val;
  CORE_ADDR ppc;
  CORE_ADDR npc;
  CGEN_FIELDS tmp_fields;
  const CGEN_INSN *insn;
  struct regcache *regcache = get_current_regcache ();
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* Get the previous and current instruction addresses.  If they are not
    adjacent, we cannot be in a delay slot.  */
  regcache_cooked_read_unsigned (regcache, OR1K_PPC_REGNUM, &val);
  ppc = (CORE_ADDR) val;
  regcache_cooked_read_unsigned (regcache, OR1K_NPC_REGNUM, &val);
  npc = (CORE_ADDR) val;

  if (0x4 != (npc - ppc))
    return 0;

  insn = cgen_lookup_insn (tdep->gdb_cgen_cpu_desc,
			   NULL,
			   or1k_fetch_instruction (gdbarch, ppc),
			   NULL, 32, &tmp_fields, 0);

  /* NULL here would mean the last instruction was not understood by cgen.
     This should not usually happen, but if does its not a delay slot.  */
  if (insn == NULL)
    return 0;

  /* TODO: we should add a delay slot flag to the CGEN_INSN and remove
     this hard coded test.  */
  return ((CGEN_INSN_NUM (insn) == OR1K_INSN_L_J)
	  || (CGEN_INSN_NUM (insn) == OR1K_INSN_L_JAL)
	  || (CGEN_INSN_NUM (insn) == OR1K_INSN_L_JR)
	  || (CGEN_INSN_NUM (insn) == OR1K_INSN_L_JALR)
	  || (CGEN_INSN_NUM (insn) == OR1K_INSN_L_BNF)
	  || (CGEN_INSN_NUM (insn) == OR1K_INSN_L_BF));
}

/* Name for or1k general registers.  */

static const char *const or1k_reg_names[OR1K_NUM_REGS] = {
  /* general purpose registers */
  "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
  "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
  "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
  "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",

  /* previous program counter, next program counter and status register */
  "ppc", "npc", "sr"
};

static int
or1k_is_arg_reg (unsigned int regnum)
{
  return (OR1K_FIRST_ARG_REGNUM <= regnum)
    && (regnum <= OR1K_LAST_ARG_REGNUM);
}

static int
or1k_is_callee_saved_reg (unsigned int regnum)
{
  return (OR1K_FIRST_SAVED_REGNUM <= regnum) && (0 == regnum % 2);
}

/* Implement the skip_prologue gdbarch method.  */

static CORE_ADDR
or1k_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  CORE_ADDR start_pc;
  CORE_ADDR addr;
  uint32_t inst;

  unsigned int ra, rb, rd; /* for instruction analysis */
  int simm;

  int frame_size = 0;

  /* Try using SAL first if we have symbolic information available.  This
     only works for DWARF 2, not STABS.  */

  if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
    {
      CORE_ADDR prologue_end = skip_prologue_using_sal (gdbarch, pc);

      if (0 != prologue_end)
	{
	  struct symtab_and_line prologue_sal = find_pc_line (start_pc, 0);
	  struct compunit_symtab *compunit
	    = SYMTAB_COMPUNIT (prologue_sal.symtab);
	  const char *debug_format = COMPUNIT_DEBUGFORMAT (compunit);

	  if ((NULL != debug_format)
	      && (strlen ("dwarf") <= strlen (debug_format))
	      && (0 == strncasecmp ("dwarf", debug_format, strlen ("dwarf"))))
	    return (prologue_end > pc) ? prologue_end : pc;
	}
    }

  /* Look to see if we can find any of the standard prologue sequence.  All
     quite difficult, since any or all of it may be missing.  So this is
     just a best guess!  */

  addr = pc; /* Where we have got to */
  inst = or1k_fetch_instruction (gdbarch, addr);

  /* Look for the new stack pointer being set up.  */
  if (or1k_analyse_l_addi (inst, &rd, &ra, &simm)
      && (OR1K_SP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
      && (simm < 0) && (0 == (simm % 4)))
    {
      frame_size = -simm;
      addr += OR1K_INSTLEN;
      inst = or1k_fetch_instruction (gdbarch, addr);
    }

  /* Look for the frame pointer being manipulated.  */
  if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
      && (OR1K_SP_REGNUM == ra) && (OR1K_FP_REGNUM == rb)
      && (simm >= 0) && (0 == (simm % 4)))
    {
      addr += OR1K_INSTLEN;
      inst = or1k_fetch_instruction (gdbarch, addr);

      gdb_assert (or1k_analyse_l_addi (inst, &rd, &ra, &simm)
		  && (OR1K_FP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
		  && (simm == frame_size));

      addr += OR1K_INSTLEN;
      inst = or1k_fetch_instruction (gdbarch, addr);
    }

  /* Look for the link register being saved.  */
  if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
      && (OR1K_SP_REGNUM == ra) && (OR1K_LR_REGNUM == rb)
      && (simm >= 0) && (0 == (simm % 4)))
    {
      addr += OR1K_INSTLEN;
      inst = or1k_fetch_instruction (gdbarch, addr);
    }

  /* Look for arguments or callee-saved register being saved.  The register
     must be one of the arguments (r3-r8) or the 10 callee saved registers
     (r10, r12, r14, r16, r18, r20, r22, r24, r26, r28, r30).  The base
     register must be the FP (for the args) or the SP (for the callee_saved
     registers).  */
  while (1)
    {
      if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
	  && (((OR1K_FP_REGNUM == ra) && or1k_is_arg_reg (rb))
	      || ((OR1K_SP_REGNUM == ra) && or1k_is_callee_saved_reg (rb)))
	  && (0 == (simm % 4)))
	{
	  addr += OR1K_INSTLEN;
	  inst = or1k_fetch_instruction (gdbarch, addr);
	}
      else
	{
	  /* Nothing else to look for.  We have found the end of the
	     prologue.  */
	  break;
	}
    }
  return addr;
}

/* Implement the frame_align gdbarch method.  */

static CORE_ADDR
or1k_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
{
  return align_down (sp, OR1K_STACK_ALIGN);
}

/* Implement the unwind_pc gdbarch method.  */

static CORE_ADDR
or1k_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  CORE_ADDR pc;

  if (or1k_debug)
    fprintf_unfiltered (gdb_stdlog, "or1k_unwind_pc, next_frame=%d\n",
			frame_relative_level (next_frame));

  pc = frame_unwind_register_unsigned (next_frame, OR1K_NPC_REGNUM);

  if (or1k_debug)
    fprintf_unfiltered (gdb_stdlog, "or1k_unwind_pc, pc=%s\n",
			paddress (gdbarch, pc));

  return pc;
}

/* Implement the unwind_sp gdbarch method.  */

static CORE_ADDR
or1k_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  CORE_ADDR sp;

  if (or1k_debug)
    fprintf_unfiltered (gdb_stdlog, "or1k_unwind_sp, next_frame=%d\n",
			frame_relative_level (next_frame));

  sp = frame_unwind_register_unsigned (next_frame, OR1K_SP_REGNUM);

  if (or1k_debug)
    fprintf_unfiltered (gdb_stdlog, "or1k_unwind_sp, sp=%s\n",
			paddress (gdbarch, sp));

  return sp;
}

/* Implement the push_dummy_code gdbarch method.  */

static CORE_ADDR
or1k_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
		      CORE_ADDR function, struct value **args, int nargs,
		      struct type *value_type, CORE_ADDR * real_pc,
		      CORE_ADDR * bp_addr, struct regcache *regcache)
{
  CORE_ADDR bp_slot;

  /* Reserve enough room on the stack for our breakpoint instruction.  */
  bp_slot = sp - 4;
  /* Store the address of that breakpoint.  */
  *bp_addr = bp_slot;
  /* keeping the stack aligned.  */
  sp = or1k_frame_align (gdbarch, bp_slot);
  /* The call starts at the callee's entry point.  */
  *real_pc = function;

  return sp;
}

/* Implement the push_dummy_call gdbarch method.  */

static CORE_ADDR
or1k_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
		      struct regcache *regcache, CORE_ADDR bp_addr,
		      int nargs, struct value **args, CORE_ADDR sp,
		      function_call_return_method return_method,
		      CORE_ADDR struct_addr)
{

  int argreg;
  int argnum;
  int first_stack_arg;
  int stack_offset = 0;
  int heap_offset = 0;
  CORE_ADDR heap_sp = sp - 128;
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int bpa = (gdbarch_tdep (gdbarch))->bytes_per_address;
  int bpw = (gdbarch_tdep (gdbarch))->bytes_per_word;
  struct type *func_type = value_type (function);

  /* Return address */
  regcache_cooked_write_unsigned (regcache, OR1K_LR_REGNUM, bp_addr);

  /* Register for the next argument.  */
  argreg = OR1K_FIRST_ARG_REGNUM;

  /* Location for a returned structure.  This is passed as a silent first
     argument.  */
  if (return_method == return_method_struct)
    {
      regcache_cooked_write_unsigned (regcache, OR1K_FIRST_ARG_REGNUM,
				      struct_addr);
      argreg++;
    }

  /* Put as many args as possible in registers.  */
  for (argnum = 0; argnum < nargs; argnum++)
    {
      const gdb_byte *val;
      gdb_byte valbuf[sizeof (ULONGEST)];

      struct value *arg = args[argnum];
      struct type *arg_type = check_typedef (value_type (arg));
      int len = TYPE_LENGTH (arg_type);
      enum type_code typecode = TYPE_CODE (arg_type);

      if (TYPE_VARARGS (func_type) && argnum >= TYPE_NFIELDS (func_type))
	break; /* end or regular args, varargs go to stack.  */

      /* Extract the value, either a reference or the data.  */
      if ((TYPE_CODE_STRUCT == typecode) || (TYPE_CODE_UNION == typecode)
	  || (len > bpw * 2))
	{
	  CORE_ADDR valaddr = value_address (arg);

	  /* If the arg is fabricated (i.e. 3*i, instead of i) valaddr is
	     undefined.  */
	  if (valaddr == 0)
	    {
	      /* The argument needs to be copied into the target space.
		 Since the bottom of the stack is reserved for function
		 arguments we store this at the these at the top growing
		 down.  */
	      heap_offset += align_up (len, bpw);
	      valaddr = heap_sp + heap_offset;

	      write_memory (valaddr, value_contents (arg), len);
	    }

	  /* The ABI passes all structures by reference, so get its
	     address.  */
	  store_unsigned_integer (valbuf, bpa, byte_order, valaddr);
	  len = bpa;
	  val = valbuf;
	}
      else
	{
	  /* Everything else, we just get the value.  */
	  val = value_contents (arg);
	}

      /* Stick the value in a register.  */
      if (len > bpw)
	{
	  /* Big scalars use two registers, but need NOT be pair aligned.  */

	  if (argreg <= (OR1K_LAST_ARG_REGNUM - 1))
	    {
	      ULONGEST regval =	extract_unsigned_integer (val, len,
							  byte_order);

	      unsigned int bits_per_word = bpw * 8;
	      ULONGEST mask = (((ULONGEST) 1) << bits_per_word) - 1;
	      ULONGEST lo = regval & mask;
	      ULONGEST hi = regval >> bits_per_word;

	      regcache_cooked_write_unsigned (regcache, argreg, hi);
	      regcache_cooked_write_unsigned (regcache, argreg + 1, lo);
	      argreg += 2;
	    }
	  else
	    {
	      /* Run out of regs */
	      break;
	    }
	}
      else if (argreg <= OR1K_LAST_ARG_REGNUM)
	{
	  /* Smaller scalars fit in a single register.  */
	  regcache_cooked_write_unsigned
	    (regcache, argreg, extract_unsigned_integer (val, len,
							 byte_order));
	  argreg++;
	}
      else
	{
	  /* Ran out of regs.  */
	  break;
	}
    }

  first_stack_arg = argnum;

  /* If we get here with argnum < nargs, then arguments remain to be
     placed on the stack.  This is tricky, since they must be pushed in
     reverse order and the stack in the end must be aligned.  The only
     solution is to do it in two stages, the first to compute the stack
     size, the second to save the args.  */

  for (argnum = first_stack_arg; argnum < nargs; argnum++)
    {
      struct value *arg = args[argnum];
      struct type *arg_type = check_typedef (value_type (arg));
      int len = TYPE_LENGTH (arg_type);
      enum type_code typecode = TYPE_CODE (arg_type);

      if ((TYPE_CODE_STRUCT == typecode) || (TYPE_CODE_UNION == typecode)
	  || (len > bpw * 2))
	{
	  /* Structures are passed as addresses.  */
	  sp -= bpa;
	}
      else
	{
	  /* Big scalars use more than one word.  Code here allows for
	     future quad-word entities (e.g. long double.)  */
	  sp -= align_up (len, bpw);
	}

      /* Ensure our dummy heap doesn't touch the stack, this could only
	 happen if we have many arguments including fabricated arguments.  */
      gdb_assert (heap_offset == 0 || ((heap_sp + heap_offset) < sp));
    }

  sp = gdbarch_frame_align (gdbarch, sp);
  stack_offset = 0;

  /* Push the remaining args on the stack.  */
  for (argnum = first_stack_arg; argnum < nargs; argnum++)
    {
      const gdb_byte *val;
      gdb_byte valbuf[sizeof (ULONGEST)];

      struct value *arg = args[argnum];
      struct type *arg_type = check_typedef (value_type (arg));
      int len = TYPE_LENGTH (arg_type);
      enum type_code typecode = TYPE_CODE (arg_type);
      /* The EABI passes structures that do not fit in a register by
         reference.  In all other cases, pass the structure by value.  */
      if ((TYPE_CODE_STRUCT == typecode) || (TYPE_CODE_UNION == typecode)
	  || (len > bpw * 2))
	{
	  store_unsigned_integer (valbuf, bpa, byte_order,
				  value_address (arg));
	  len = bpa;
	  val = valbuf;
	}
      else
	val = value_contents (arg);

      while (len > 0)
	{
	  int partial_len = (len < bpw ? len : bpw);

	  write_memory (sp + stack_offset, val, partial_len);
	  stack_offset += align_up (partial_len, bpw);
	  len -= partial_len;
	  val += partial_len;
	}
    }

  /* Save the updated stack pointer.  */
  regcache_cooked_write_unsigned (regcache, OR1K_SP_REGNUM, sp);

  if (heap_offset > 0)
    sp = heap_sp;

  return sp;
}



/* Support functions for frame handling.  */

/* Initialize a prologue cache

   We build a cache, saying where registers of the prev frame can be found
   from the data so far set up in this this.

   We also compute a unique ID for this frame, based on the function start
   address and the stack pointer (as it will be, even if it has yet to be
   computed.

   STACK FORMAT
   ============

   The OR1K has a falling stack frame and a simple prolog.  The Stack
   pointer is R1 and the frame pointer R2.  The frame base is therefore the
   address held in R2 and the stack pointer (R1) is the frame base of the
   next frame.

   l.addi  r1,r1,-frame_size	# SP now points to end of new stack frame

   The stack pointer may not be set up in a frameless function (e.g. a
   simple leaf function).

   l.sw    fp_loc(r1),r2        # old FP saved in new stack frame
   l.addi  r2,r1,frame_size     # FP now points to base of new stack frame

   The frame pointer is not necessarily saved right at the end of the stack
   frame - OR1K saves enough space for any args to called functions right
   at the end (this is a difference from the Architecture Manual).

   l.sw    lr_loc(r1),r9        # Link (return) address

   The link register is usally saved at fp_loc - 4.  It may not be saved at
   all in a leaf function.

   l.sw    reg_loc(r1),ry       # Save any callee saved regs

   The offsets x for the callee saved registers generally (always?) rise in
   increments of 4, starting at fp_loc + 4.  If the frame pointer is
   omitted (an option to GCC), then it may not be saved at all.  There may
   be no callee saved registers.

   So in summary none of this may be present.  However what is present
   seems always to follow this fixed order, and occur before any
   substantive code (it is possible for GCC to have more flexible
   scheduling of the prologue, but this does not seem to occur for OR1K).

   ANALYSIS
   ========

   This prolog is used, even for -O3 with GCC.

   All this analysis must allow for the possibility that the PC is in the
   middle of the prologue.  Data in the cache should only be set up insofar
   as it has been computed.

   HOWEVER.  The frame_id must be created with the SP *as it will be* at
   the end of the Prologue.  Otherwise a recursive call, checking the frame
   with the PC at the start address will end up with the same frame_id as
   the caller.

   A suite of "helper" routines are used, allowing reuse for
   or1k_skip_prologue().

   Reportedly, this is only valid for frames less than 0x7fff in size.  */

static struct trad_frame_cache *
or1k_frame_cache (struct frame_info *this_frame, void **prologue_cache)
{
  struct gdbarch *gdbarch;
  struct trad_frame_cache *info;

  CORE_ADDR this_pc;
  CORE_ADDR this_sp;
  CORE_ADDR this_sp_for_id;
  int frame_size = 0;

  CORE_ADDR start_addr;
  CORE_ADDR end_addr;

  if (or1k_debug)
    fprintf_unfiltered (gdb_stdlog,
			"or1k_frame_cache, prologue_cache = %s\n",
			host_address_to_string (*prologue_cache));

  /* Nothing to do if we already have this info.  */
  if (NULL != *prologue_cache)
    return (struct trad_frame_cache *) *prologue_cache;

  /* Get a new prologue cache and populate it with default values.  */
  info = trad_frame_cache_zalloc (this_frame);
  *prologue_cache = info;

  /* Find the start address of this function (which is a normal frame, even
     if the next frame is the sentinel frame) and the end of its prologue.  */
  this_pc = get_frame_pc (this_frame);
  find_pc_partial_function (this_pc, NULL, &start_addr, NULL);

  /* Get the stack pointer if we have one (if there's no process executing
     yet we won't have a frame.  */
  this_sp = (NULL == this_frame) ? 0 :
    get_frame_register_unsigned (this_frame, OR1K_SP_REGNUM);

  /* Return early if GDB couldn't find the function.  */
  if (start_addr == 0)
    {
      if (or1k_debug)
	fprintf_unfiltered (gdb_stdlog, "  couldn't find function\n");

      /* JPB: 28-Apr-11.  This is a temporary patch, to get round GDB
	 crashing right at the beginning.  Build the frame ID as best we
	 can.  */
      trad_frame_set_id (info, frame_id_build (this_sp, this_pc));

      return info;
    }

  /* The default frame base of this frame (for ID purposes only - frame
     base is an overloaded term) is its stack pointer.  For now we use the
     value of the SP register in this frame.  However if the PC is in the
     prologue of this frame, before the SP has been set up, then the value
     will actually be that of the prev frame, and we'll need to adjust it
     later.  */
  trad_frame_set_this_base (info, this_sp);
  this_sp_for_id = this_sp;

  /* The default is to find the PC of the previous frame in the link
     register of this frame.  This may be changed if we find the link
     register was saved on the stack.  */
  trad_frame_set_reg_realreg (info, OR1K_NPC_REGNUM, OR1K_LR_REGNUM);

  /* We should only examine code that is in the prologue.  This is all code
     up to (but not including) end_addr.  We should only populate the cache
     while the address is up to (but not including) the PC or end_addr,
     whichever is first.  */
  gdbarch = get_frame_arch (this_frame);
  end_addr = or1k_skip_prologue (gdbarch, start_addr);

  /* All the following analysis only occurs if we are in the prologue and
     have executed the code.  Check we have a sane prologue size, and if
     zero we are frameless and can give up here.  */
  if (end_addr < start_addr)
    error (_("end addr %s is less than start addr %s"),
	   paddress (gdbarch, end_addr), paddress (gdbarch, start_addr));

  if (end_addr == start_addr)
    frame_size = 0;
  else
    {
      /* We have a frame.  Look for the various components.  */
      CORE_ADDR addr = start_addr; /* Where we have got to */
      uint32_t inst = or1k_fetch_instruction (gdbarch, addr);

      unsigned int ra, rb, rd; /* for instruction analysis */
      int simm;

      /* Look for the new stack pointer being set up.  */
      if (or1k_analyse_l_addi (inst, &rd, &ra, &simm)
	  && (OR1K_SP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
	  && (simm < 0) && (0 == (simm % 4)))
	{
	  frame_size = -simm;
	  addr += OR1K_INSTLEN;
	  inst = or1k_fetch_instruction (gdbarch, addr);

	  /* If the PC has not actually got to this point, then the frame
	     base will be wrong, and we adjust it.

	     If we are past this point, then we need to populate the stack
	     accordingly.  */
	  if (this_pc <= addr)
	    {
	      /* Only do if executing.  */
	      if (0 != this_sp)
		{
		  this_sp_for_id = this_sp + frame_size;
		  trad_frame_set_this_base (info, this_sp_for_id);
		}
	    }
	  else
	    {
	      /* We are past this point, so the stack pointer of the prev
	         frame is frame_size greater than the stack pointer of this
	         frame.  */
	      trad_frame_set_reg_value (info, OR1K_SP_REGNUM,
					this_sp + frame_size);
	    }
	}

      /* From now on we are only populating the cache, so we stop once we
	 get to either the end OR the current PC.  */
      end_addr = (this_pc < end_addr) ? this_pc : end_addr;

      /* Look for the frame pointer being manipulated.  */
      if ((addr < end_addr)
	  && or1k_analyse_l_sw (inst, &simm, &ra, &rb)
	  && (OR1K_SP_REGNUM == ra) && (OR1K_FP_REGNUM == rb)
	  && (simm >= 0) && (0 == (simm % 4)))
	{
	  addr += OR1K_INSTLEN;
	  inst = or1k_fetch_instruction (gdbarch, addr);

	  /* At this stage, we can find the frame pointer of the previous
	     frame on the stack of the current frame.  */
	  trad_frame_set_reg_addr (info, OR1K_FP_REGNUM, this_sp + simm);

	  /* Look for the new frame pointer being set up.  */
	  if ((addr < end_addr)
	      && or1k_analyse_l_addi (inst, &rd, &ra, &simm)
	      && (OR1K_FP_REGNUM == rd) && (OR1K_SP_REGNUM == ra)
	      && (simm == frame_size))
	    {
	      addr += OR1K_INSTLEN;
	      inst = or1k_fetch_instruction (gdbarch, addr);

	      /* If we have got this far, the stack pointer of the previous
	         frame is the frame pointer of this frame.  */
	      trad_frame_set_reg_realreg (info, OR1K_SP_REGNUM,
					  OR1K_FP_REGNUM);
	    }
	}

      /* Look for the link register being saved.  */
      if ((addr < end_addr)
	  && or1k_analyse_l_sw (inst, &simm, &ra, &rb)
	  && (OR1K_SP_REGNUM == ra) && (OR1K_LR_REGNUM == rb)
	  && (simm >= 0) && (0 == (simm % 4)))
	{
	  addr += OR1K_INSTLEN;
	  inst = or1k_fetch_instruction (gdbarch, addr);

	  /* If the link register is saved in the this frame, it holds the
	     value of the PC in the previous frame.  This overwrites the
	     previous information about finding the PC in the link
	     register.  */
	  trad_frame_set_reg_addr (info, OR1K_NPC_REGNUM, this_sp + simm);
	}

      /* Look for arguments or callee-saved register being saved.  The
	 register must be one of the arguments (r3-r8) or the 10 callee
	 saved registers (r10, r12, r14, r16, r18, r20, r22, r24, r26, r28,
	 r30).  The base register must be the FP (for the args) or the SP
	 (for the callee_saved registers).  */
      while (addr < end_addr)
	{
	  if (or1k_analyse_l_sw (inst, &simm, &ra, &rb)
	      && (((OR1K_FP_REGNUM == ra) && or1k_is_arg_reg (rb))
		  || ((OR1K_SP_REGNUM == ra)
		      && or1k_is_callee_saved_reg (rb)))
	      && (0 == (simm % 4)))
	    {
	      addr += OR1K_INSTLEN;
	      inst = or1k_fetch_instruction (gdbarch, addr);

	      /* The register in the previous frame can be found at this
	         location in this frame.  */
	      trad_frame_set_reg_addr (info, rb, this_sp + simm);
	    }
	  else
	    break; /* Not a register save instruction.  */
	}
    }

  /* Build the frame ID */
  trad_frame_set_id (info, frame_id_build (this_sp_for_id, start_addr));

  if (or1k_debug)
    {
      fprintf_unfiltered (gdb_stdlog, "  this_sp_for_id = %s\n",
			  paddress (gdbarch, this_sp_for_id));
      fprintf_unfiltered (gdb_stdlog, "  start_addr     = %s\n",
			  paddress (gdbarch, start_addr));
    }

  return info;
}

/* Implement the this_id function for the stub unwinder.  */

static void
or1k_frame_this_id (struct frame_info *this_frame,
		    void **prologue_cache, struct frame_id *this_id)
{
  struct trad_frame_cache *info = or1k_frame_cache (this_frame,
						    prologue_cache);

  trad_frame_get_id (info, this_id);
}

/* Implement the prev_register function for the stub unwinder.  */

static struct value *
or1k_frame_prev_register (struct frame_info *this_frame,
			  void **prologue_cache, int regnum)
{
  struct trad_frame_cache *info = or1k_frame_cache (this_frame,
						    prologue_cache);

  return trad_frame_get_register (info, this_frame, regnum);
}

/* Data structures for the normal prologue-analysis-based unwinder.  */

static const struct frame_unwind or1k_frame_unwind = {
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  or1k_frame_this_id,
  or1k_frame_prev_register,
  NULL,
  default_frame_sniffer,
  NULL,
};

/* Architecture initialization for OpenRISC 1000.  */

static struct gdbarch *
or1k_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  const struct bfd_arch_info *binfo;
  struct tdesc_arch_data *tdesc_data = NULL;
  const struct target_desc *tdesc = info.target_desc;

  /* Find a candidate among the list of pre-declared architectures.  */
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (NULL != arches)
    return arches->gdbarch;

  /* None found, create a new architecture from the information
     provided.  Can't initialize all the target dependencies until we
     actually know which target we are talking to, but put in some defaults
     for now.  */
  binfo = info.bfd_arch_info;
  tdep = XCNEW (struct gdbarch_tdep);
  tdep->bytes_per_word = binfo->bits_per_word / binfo->bits_per_byte;
  tdep->bytes_per_address = binfo->bits_per_address / binfo->bits_per_byte;
  gdbarch = gdbarch_alloc (&info, tdep);

  /* Target data types */
  set_gdbarch_short_bit (gdbarch, 16);
  set_gdbarch_int_bit (gdbarch, 32);
  set_gdbarch_long_bit (gdbarch, 32);
  set_gdbarch_long_long_bit (gdbarch, 64);
  set_gdbarch_float_bit (gdbarch, 32);
  set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
  set_gdbarch_double_bit (gdbarch, 64);
  set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
  set_gdbarch_long_double_bit (gdbarch, 64);
  set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
  set_gdbarch_ptr_bit (gdbarch, binfo->bits_per_address);
  set_gdbarch_addr_bit (gdbarch, binfo->bits_per_address);
  set_gdbarch_char_signed (gdbarch, 1);

  /* Information about the target architecture */
  set_gdbarch_return_value (gdbarch, or1k_return_value);
  set_gdbarch_breakpoint_kind_from_pc (gdbarch,
				       or1k_breakpoint::kind_from_pc);
  set_gdbarch_sw_breakpoint_from_kind (gdbarch,
				       or1k_breakpoint::bp_from_kind);
  set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);

  /* Register architecture */
  set_gdbarch_num_regs (gdbarch, OR1K_NUM_REGS);
  set_gdbarch_num_pseudo_regs (gdbarch, OR1K_NUM_PSEUDO_REGS);
  set_gdbarch_sp_regnum (gdbarch, OR1K_SP_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, OR1K_NPC_REGNUM);
  set_gdbarch_ps_regnum (gdbarch, OR1K_SR_REGNUM);
  set_gdbarch_deprecated_fp_regnum (gdbarch, OR1K_FP_REGNUM);

  /* Functions to analyse frames */
  set_gdbarch_skip_prologue (gdbarch, or1k_skip_prologue);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_frame_align (gdbarch, or1k_frame_align);
  set_gdbarch_frame_red_zone_size (gdbarch, OR1K_FRAME_RED_ZONE_SIZE);

  /* Functions to access frame data */
  set_gdbarch_unwind_pc (gdbarch, or1k_unwind_pc);
  set_gdbarch_unwind_sp (gdbarch, or1k_unwind_sp);

  /* Functions handling dummy frames */
  set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
  set_gdbarch_push_dummy_code (gdbarch, or1k_push_dummy_code);
  set_gdbarch_push_dummy_call (gdbarch, or1k_push_dummy_call);

  /* Frame unwinders.  Use DWARF debug info if available, otherwise use our
     own unwinder.  */
  dwarf2_append_unwinders (gdbarch);
  frame_unwind_append_unwinder (gdbarch, &or1k_frame_unwind);

  /* Get a CGEN CPU descriptor for this architecture.  */
  {

    const char *mach_name = binfo->printable_name;
    enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
			       ? CGEN_ENDIAN_BIG : CGEN_ENDIAN_LITTLE);

    tdep->gdb_cgen_cpu_desc =
      or1k_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
			  CGEN_CPU_OPEN_ENDIAN, endian, CGEN_CPU_OPEN_END);

    or1k_cgen_init_asm (tdep->gdb_cgen_cpu_desc);
  }

  /* If this mach has a delay slot.  */
  if (binfo->mach == bfd_mach_or1k)
    set_gdbarch_single_step_through_delay (gdbarch,
					   or1k_single_step_through_delay);

  if (!tdesc_has_registers (info.target_desc))
    /* Pick a default target description.  */
    tdesc = tdesc_or1k;

  /* Check any target description for validity.  */
  if (tdesc_has_registers (tdesc))
    {
      const struct tdesc_feature *feature;
      int valid_p;
      int i;

      feature = tdesc_find_feature (tdesc, "org.gnu.gdb.or1k.group0");
      if (feature == NULL)
        return NULL;

      tdesc_data = tdesc_data_alloc ();

      valid_p = 1;

      for (i = 0; i < OR1K_NUM_REGS; i++)
        valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
                                            or1k_reg_names[i]);

      if (!valid_p)
        {
          tdesc_data_cleanup (tdesc_data);
          return NULL;
        }
    }

  if (tdesc_data != NULL)
    {
      /* If we are using tdesc, register our own reggroups, otherwise we
	 will used the defaults.  */
      reggroup_add (gdbarch, general_reggroup);
      reggroup_add (gdbarch, system_reggroup);
      reggroup_add (gdbarch, float_reggroup);
      reggroup_add (gdbarch, vector_reggroup);
      reggroup_add (gdbarch, all_reggroup);
      reggroup_add (gdbarch, save_reggroup);
      reggroup_add (gdbarch, restore_reggroup);

      tdesc_use_registers (gdbarch, tdesc, tdesc_data);
    }

  /* Hook in ABI-specific overrides, if they have been registered.  */
  gdbarch_init_osabi (info, gdbarch);

  return gdbarch;
}

/* Dump the target specific data for this architecture.  */

static void
or1k_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (NULL == tdep)
    return; /* Nothing to report */

  fprintf_unfiltered (file, "or1k_dump_tdep: %d bytes per word\n",
		      tdep->bytes_per_word);
  fprintf_unfiltered (file, "or1k_dump_tdep: %d bytes per address\n",
		      tdep->bytes_per_address);
}


void
_initialize_or1k_tdep (void)
{
  /* Register this architecture.  */
  gdbarch_register (bfd_arch_or1k, or1k_gdbarch_init, or1k_dump_tdep);

  initialize_tdesc_or1k ();

  /* Debugging flag.  */
  add_setshow_boolean_cmd ("or1k", class_maintenance, &or1k_debug,
			   _("Set OpenRISC debugging."),
			   _("Show OpenRISC debugging."),
			   _("When on, OpenRISC specific debugging is enabled."),
			   NULL,
			   show_or1k_debug,
			   &setdebuglist, &showdebuglist);
}