summaryrefslogtreecommitdiff
path: root/gdb/msp430-tdep.c
blob: 0e55eab22fe01a230acddbd2d525eb2c6e1d5ee8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
/* Target-dependent code for the Texas Instruments MSP430 for GDB, the
   GNU debugger.

   Copyright (C) 2012-2019 Free Software Foundation, Inc.

   Contributed by Red Hat, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "arch-utils.h"
#include "prologue-value.h"
#include "target.h"
#include "regcache.h"
#include "dis-asm.h"
#include "gdbtypes.h"
#include "frame.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "value.h"
#include "gdbcore.h"
#include "dwarf2-frame.h"
#include "reggroups.h"

#include "elf/msp430.h"
#include "opcode/msp430-decode.h"
#include "elf-bfd.h"

/* Register Numbers.  */

enum
{
  MSP430_PC_RAW_REGNUM,
  MSP430_SP_RAW_REGNUM,
  MSP430_SR_RAW_REGNUM,
  MSP430_CG_RAW_REGNUM,
  MSP430_R4_RAW_REGNUM,
  MSP430_R5_RAW_REGNUM,
  MSP430_R6_RAW_REGNUM,
  MSP430_R7_RAW_REGNUM,
  MSP430_R8_RAW_REGNUM,
  MSP430_R9_RAW_REGNUM,
  MSP430_R10_RAW_REGNUM,
  MSP430_R11_RAW_REGNUM,
  MSP430_R12_RAW_REGNUM,
  MSP430_R13_RAW_REGNUM,
  MSP430_R14_RAW_REGNUM,
  MSP430_R15_RAW_REGNUM,

  MSP430_NUM_REGS,

  MSP430_PC_REGNUM = MSP430_NUM_REGS,
  MSP430_SP_REGNUM,
  MSP430_SR_REGNUM,
  MSP430_CG_REGNUM,
  MSP430_R4_REGNUM,
  MSP430_R5_REGNUM,
  MSP430_R6_REGNUM,
  MSP430_R7_REGNUM,
  MSP430_R8_REGNUM,
  MSP430_R9_REGNUM,
  MSP430_R10_REGNUM,
  MSP430_R11_REGNUM,
  MSP430_R12_REGNUM,
  MSP430_R13_REGNUM,
  MSP430_R14_REGNUM,
  MSP430_R15_REGNUM,

  MSP430_NUM_TOTAL_REGS,
  MSP430_NUM_PSEUDO_REGS = MSP430_NUM_TOTAL_REGS - MSP430_NUM_REGS
};

enum
{
  /* TI MSP430 Architecture.  */
  MSP_ISA_MSP430,

  /* TI MSP430X Architecture.  */
  MSP_ISA_MSP430X
};

enum
{
  /* The small code model limits code addresses to 16 bits.  */
  MSP_SMALL_CODE_MODEL,

  /* The large code model uses 20 bit addresses for function
     pointers.  These are stored in memory using four bytes (32 bits).  */
  MSP_LARGE_CODE_MODEL
};

/* Architecture specific data.  */

struct gdbarch_tdep
{
  /* The ELF header flags specify the multilib used.  */
  int elf_flags;

  /* One of MSP_ISA_MSP430 or MSP_ISA_MSP430X.  */
  int isa;

  /* One of MSP_SMALL_CODE_MODEL or MSP_LARGE_CODE_MODEL.  If, at
     some point, we support different data models too, we'll probably
     structure things so that we can combine values using logical
     "or".  */
  int code_model;
};

/* This structure holds the results of a prologue analysis.  */

struct msp430_prologue
{
  /* The offset from the frame base to the stack pointer --- always
     zero or negative.

     Calling this a "size" is a bit misleading, but given that the
     stack grows downwards, using offsets for everything keeps one
     from going completely sign-crazy: you never change anything's
     sign for an ADD instruction; always change the second operand's
     sign for a SUB instruction; and everything takes care of
     itself.  */
  int frame_size;

  /* Non-zero if this function has initialized the frame pointer from
     the stack pointer, zero otherwise.  */
  int has_frame_ptr;

  /* If has_frame_ptr is non-zero, this is the offset from the frame
     base to where the frame pointer points.  This is always zero or
     negative.  */
  int frame_ptr_offset;

  /* The address of the first instruction at which the frame has been
     set up and the arguments are where the debug info says they are
     --- as best as we can tell.  */
  CORE_ADDR prologue_end;

  /* reg_offset[R] is the offset from the CFA at which register R is
     saved, or 1 if register R has not been saved.  (Real values are
     always zero or negative.)  */
  int reg_offset[MSP430_NUM_TOTAL_REGS];
};

/* Implement the "register_type" gdbarch method.  */

static struct type *
msp430_register_type (struct gdbarch *gdbarch, int reg_nr)
{
  if (reg_nr < MSP430_NUM_REGS)
    return builtin_type (gdbarch)->builtin_uint32;
  else if (reg_nr == MSP430_PC_REGNUM)
    return builtin_type (gdbarch)->builtin_func_ptr;
  else
    return builtin_type (gdbarch)->builtin_uint16;
}

/* Implement another version of the "register_type" gdbarch method
   for msp430x.  */

static struct type *
msp430x_register_type (struct gdbarch *gdbarch, int reg_nr)
{
  if (reg_nr < MSP430_NUM_REGS)
    return builtin_type (gdbarch)->builtin_uint32;
  else if (reg_nr == MSP430_PC_REGNUM)
    return builtin_type (gdbarch)->builtin_func_ptr;
  else
    return builtin_type (gdbarch)->builtin_uint32;
}

/* Implement the "register_name" gdbarch method.  */

static const char *
msp430_register_name (struct gdbarch *gdbarch, int regnr)
{
  static const char *const reg_names[] = {
    /* Raw registers.  */
    "", "", "", "", "", "", "", "",
    "", "", "", "", "", "", "", "",
    /* Pseudo registers.  */
    "pc", "sp", "sr", "cg", "r4", "r5", "r6", "r7",
    "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  };

  return reg_names[regnr];
}

/* Implement the "register_reggroup_p" gdbarch method.  */

static int
msp430_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
			    struct reggroup *group)
{
  if (group == all_reggroup)
    return 1;

  /* All other registers are saved and restored.  */
  if (group == save_reggroup || group == restore_reggroup)
    return (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS);

  return group == general_reggroup;
}

/* Implement the "pseudo_register_read" gdbarch method.  */

static enum register_status
msp430_pseudo_register_read (struct gdbarch *gdbarch,
			     readable_regcache *regcache,
			     int regnum, gdb_byte *buffer)
{
  if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS)
    {
      enum register_status status;
      ULONGEST val;
      enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
      int regsize = register_size (gdbarch, regnum);
      int raw_regnum = regnum - MSP430_NUM_REGS;

      status = regcache->raw_read (raw_regnum, &val);
      if (status == REG_VALID)
	store_unsigned_integer (buffer, regsize, byte_order, val);

      return status;
    }
  else
    gdb_assert_not_reached ("invalid pseudo register number");
}

/* Implement the "pseudo_register_write" gdbarch method.  */

static void
msp430_pseudo_register_write (struct gdbarch *gdbarch,
			      struct regcache *regcache,
			      int regnum, const gdb_byte *buffer)
{
  if (MSP430_NUM_REGS <= regnum && regnum < MSP430_NUM_TOTAL_REGS)

    {
      ULONGEST val;
      enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
      int regsize = register_size (gdbarch, regnum);
      int raw_regnum = regnum - MSP430_NUM_REGS;

      val = extract_unsigned_integer (buffer, regsize, byte_order);
      regcache_raw_write_unsigned (regcache, raw_regnum, val);

    }
  else
    gdb_assert_not_reached ("invalid pseudo register number");
}

/* Implement the `register_sim_regno' gdbarch method.  */

static int
msp430_register_sim_regno (struct gdbarch *gdbarch, int regnum)
{
  gdb_assert (regnum < MSP430_NUM_REGS);

  /* So long as regnum is in [0, RL78_NUM_REGS), it's valid.  We
     just want to override the default here which disallows register
     numbers which have no names.  */
  return regnum;
}

constexpr gdb_byte msp430_break_insn[] = { 0x43, 0x43 };

typedef BP_MANIPULATION (msp430_break_insn) msp430_breakpoint;

/* Define a "handle" struct for fetching the next opcode.  */

struct msp430_get_opcode_byte_handle
{
  CORE_ADDR pc;
};

/* Fetch a byte on behalf of the opcode decoder.  HANDLE contains
   the memory address of the next byte to fetch.  If successful,
   the address in the handle is updated and the byte fetched is
   returned as the value of the function.  If not successful, -1
   is returned.  */

static int
msp430_get_opcode_byte (void *handle)
{
  struct msp430_get_opcode_byte_handle *opcdata
    = (struct msp430_get_opcode_byte_handle *) handle;
  int status;
  gdb_byte byte;

  status = target_read_memory (opcdata->pc, &byte, 1);
  if (status == 0)
    {
      opcdata->pc += 1;
      return byte;
    }
  else
    return -1;
}

/* Function for finding saved registers in a 'struct pv_area'; this
   function is passed to pv_area::scan.

   If VALUE is a saved register, ADDR says it was saved at a constant
   offset from the frame base, and SIZE indicates that the whole
   register was saved, record its offset.  */

static void
check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
{
  struct msp430_prologue *result = (struct msp430_prologue *) result_untyped;

  if (value.kind == pvk_register
      && value.k == 0
      && pv_is_register (addr, MSP430_SP_REGNUM)
      && size == register_size (target_gdbarch (), value.reg))
    result->reg_offset[value.reg] = addr.k;
}

/* Analyze a prologue starting at START_PC, going no further than
   LIMIT_PC.  Fill in RESULT as appropriate.  */

static void
msp430_analyze_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc,
			 CORE_ADDR limit_pc, struct msp430_prologue *result)
{
  CORE_ADDR pc, next_pc;
  int rn;
  pv_t reg[MSP430_NUM_TOTAL_REGS];
  CORE_ADDR after_last_frame_setup_insn = start_pc;
  int code_model = gdbarch_tdep (gdbarch)->code_model;
  int sz;

  memset (result, 0, sizeof (*result));

  for (rn = 0; rn < MSP430_NUM_TOTAL_REGS; rn++)
    {
      reg[rn] = pv_register (rn, 0);
      result->reg_offset[rn] = 1;
    }

  pv_area stack (MSP430_SP_REGNUM, gdbarch_addr_bit (gdbarch));

  /* The call instruction has saved the return address on the stack.  */
  sz = code_model == MSP_LARGE_CODE_MODEL ? 4 : 2;
  reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -sz);
  stack.store (reg[MSP430_SP_REGNUM], sz, reg[MSP430_PC_REGNUM]);

  pc = start_pc;
  while (pc < limit_pc)
    {
      int bytes_read;
      struct msp430_get_opcode_byte_handle opcode_handle;
      MSP430_Opcode_Decoded opc;

      opcode_handle.pc = pc;
      bytes_read = msp430_decode_opcode (pc, &opc, msp430_get_opcode_byte,
					 &opcode_handle);
      next_pc = pc + bytes_read;

      if (opc.id == MSO_push && opc.op[0].type == MSP430_Operand_Register)
	{
	  int rsrc = opc.op[0].reg;

	  reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM], -2);
	  stack.store (reg[MSP430_SP_REGNUM], 2, reg[rsrc]);
	  after_last_frame_setup_insn = next_pc;
	}
      else if (opc.id == MSO_push	/* PUSHM  */
	       && opc.op[0].type == MSP430_Operand_None
	       && opc.op[1].type == MSP430_Operand_Register)
	{
	  int rsrc = opc.op[1].reg;
	  int count = opc.repeats + 1;
	  int size = opc.size == 16 ? 2 : 4;

	  while (count > 0)
	    {
	      reg[MSP430_SP_REGNUM]
		= pv_add_constant (reg[MSP430_SP_REGNUM], -size);
	      stack.store (reg[MSP430_SP_REGNUM], size, reg[rsrc]);
	      rsrc--;
	      count--;
	    }
	  after_last_frame_setup_insn = next_pc;
	}
      else if (opc.id == MSO_sub
	       && opc.op[0].type == MSP430_Operand_Register
	       && opc.op[0].reg == MSR_SP
	       && opc.op[1].type == MSP430_Operand_Immediate)
	{
	  int addend = opc.op[1].addend;

	  reg[MSP430_SP_REGNUM] = pv_add_constant (reg[MSP430_SP_REGNUM],
						   -addend);
	  after_last_frame_setup_insn = next_pc;
	}
      else if (opc.id == MSO_mov
	       && opc.op[0].type == MSP430_Operand_Immediate
	       && 12 <= opc.op[0].reg && opc.op[0].reg <= 15)
	after_last_frame_setup_insn = next_pc;
      else
	{
	  /* Terminate the prologue scan.  */
	  break;
	}

      pc = next_pc;
    }

  /* Is the frame size (offset, really) a known constant?  */
  if (pv_is_register (reg[MSP430_SP_REGNUM], MSP430_SP_REGNUM))
    result->frame_size = reg[MSP430_SP_REGNUM].k;

  /* Record where all the registers were saved.  */
  stack.scan (check_for_saved, result);

  result->prologue_end = after_last_frame_setup_insn;
}

/* Implement the "skip_prologue" gdbarch method.  */

static CORE_ADDR
msp430_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  const char *name;
  CORE_ADDR func_addr, func_end;
  struct msp430_prologue p;

  /* Try to find the extent of the function that contains PC.  */
  if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
    return pc;

  msp430_analyze_prologue (gdbarch, pc, func_end, &p);
  return p.prologue_end;
}

/* Given a frame described by THIS_FRAME, decode the prologue of its
   associated function if there is not cache entry as specified by
   THIS_PROLOGUE_CACHE.  Save the decoded prologue in the cache and
   return that struct as the value of this function.  */

static struct msp430_prologue *
msp430_analyze_frame_prologue (struct frame_info *this_frame,
			       void **this_prologue_cache)
{
  if (!*this_prologue_cache)
    {
      CORE_ADDR func_start, stop_addr;

      *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct msp430_prologue);

      func_start = get_frame_func (this_frame);
      stop_addr = get_frame_pc (this_frame);

      /* If we couldn't find any function containing the PC, then
         just initialize the prologue cache, but don't do anything.  */
      if (!func_start)
	stop_addr = func_start;

      msp430_analyze_prologue (get_frame_arch (this_frame), func_start,
			       stop_addr,
			       (struct msp430_prologue *) *this_prologue_cache);
    }

  return (struct msp430_prologue *) *this_prologue_cache;
}

/* Given a frame and a prologue cache, return this frame's base.  */

static CORE_ADDR
msp430_frame_base (struct frame_info *this_frame, void **this_prologue_cache)
{
  struct msp430_prologue *p
    = msp430_analyze_frame_prologue (this_frame, this_prologue_cache);
  CORE_ADDR sp = get_frame_register_unsigned (this_frame, MSP430_SP_REGNUM);

  return sp - p->frame_size;
}

/* Implement the "frame_this_id" method for unwinding frames.  */

static void
msp430_this_id (struct frame_info *this_frame,
		void **this_prologue_cache, struct frame_id *this_id)
{
  *this_id = frame_id_build (msp430_frame_base (this_frame,
						this_prologue_cache),
			     get_frame_func (this_frame));
}

/* Implement the "frame_prev_register" method for unwinding frames.  */

static struct value *
msp430_prev_register (struct frame_info *this_frame,
		      void **this_prologue_cache, int regnum)
{
  struct msp430_prologue *p
    = msp430_analyze_frame_prologue (this_frame, this_prologue_cache);
  CORE_ADDR frame_base = msp430_frame_base (this_frame, this_prologue_cache);

  if (regnum == MSP430_SP_REGNUM)
    return frame_unwind_got_constant (this_frame, regnum, frame_base);

  /* If prologue analysis says we saved this register somewhere,
     return a description of the stack slot holding it.  */
  else if (p->reg_offset[regnum] != 1)
    {
      struct value *rv = frame_unwind_got_memory (this_frame, regnum,
						  frame_base +
						  p->reg_offset[regnum]);

      if (regnum == MSP430_PC_REGNUM)
	{
	  ULONGEST pc = value_as_long (rv);

	  return frame_unwind_got_constant (this_frame, regnum, pc);
	}
      return rv;
    }

  /* Otherwise, presume we haven't changed the value of this
     register, and get it from the next frame.  */
  else
    return frame_unwind_got_register (this_frame, regnum, regnum);
}

static const struct frame_unwind msp430_unwind = {
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  msp430_this_id,
  msp430_prev_register,
  NULL,
  default_frame_sniffer
};

/* Implement the "dwarf2_reg_to_regnum" gdbarch method.  */

static int
msp430_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int reg)
{
  if (reg >= 0 && reg < MSP430_NUM_REGS)
    return reg + MSP430_NUM_REGS;
  return -1;
}

/* Implement the "return_value" gdbarch method.  */

static enum return_value_convention
msp430_return_value (struct gdbarch *gdbarch,
		     struct value *function,
		     struct type *valtype,
		     struct regcache *regcache,
		     gdb_byte *readbuf, const gdb_byte *writebuf)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  LONGEST valtype_len = TYPE_LENGTH (valtype);
  int code_model = gdbarch_tdep (gdbarch)->code_model;

  if (TYPE_LENGTH (valtype) > 8
      || TYPE_CODE (valtype) == TYPE_CODE_STRUCT
      || TYPE_CODE (valtype) == TYPE_CODE_UNION)
    return RETURN_VALUE_STRUCT_CONVENTION;

  if (readbuf)
    {
      ULONGEST u;
      int argreg = MSP430_R12_REGNUM;
      int offset = 0;

      while (valtype_len > 0)
	{
	  int size = 2;

	  if (code_model == MSP_LARGE_CODE_MODEL
	      && TYPE_CODE (valtype) == TYPE_CODE_PTR)
	    {
	      size = 4;
	    }

	  regcache_cooked_read_unsigned (regcache, argreg, &u);
	  store_unsigned_integer (readbuf + offset, size, byte_order, u);
	  valtype_len -= size;
	  offset += size;
	  argreg++;
	}
    }

  if (writebuf)
    {
      ULONGEST u;
      int argreg = MSP430_R12_REGNUM;
      int offset = 0;

      while (valtype_len > 0)
	{
	  int size = 2;

	  if (code_model == MSP_LARGE_CODE_MODEL
	      && TYPE_CODE (valtype) == TYPE_CODE_PTR)
	    {
	      size = 4;
	    }

	  u = extract_unsigned_integer (writebuf + offset, size, byte_order);
	  regcache_cooked_write_unsigned (regcache, argreg, u);
	  valtype_len -= size;
	  offset += size;
	  argreg++;
	}
    }

  return RETURN_VALUE_REGISTER_CONVENTION;
}


/* Implement the "frame_align" gdbarch method.  */

static CORE_ADDR
msp430_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
{
  return align_down (sp, 2);
}

/* Implement the "push_dummy_call" gdbarch method.  */

static CORE_ADDR
msp430_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
			struct regcache *regcache, CORE_ADDR bp_addr,
			int nargs, struct value **args, CORE_ADDR sp,
			function_call_return_method return_method,
			CORE_ADDR struct_addr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int write_pass;
  int sp_off = 0;
  CORE_ADDR cfa;
  int code_model = gdbarch_tdep (gdbarch)->code_model;

  struct type *func_type = value_type (function);

  /* Dereference function pointer types.  */
  while (TYPE_CODE (func_type) == TYPE_CODE_PTR)
    func_type = TYPE_TARGET_TYPE (func_type);

  /* The end result had better be a function or a method.  */
  gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
	      || TYPE_CODE (func_type) == TYPE_CODE_METHOD);

  /* We make two passes; the first does the stack allocation,
     the second actually stores the arguments.  */
  for (write_pass = 0; write_pass <= 1; write_pass++)
    {
      int i;
      int arg_reg = MSP430_R12_REGNUM;
      int args_on_stack = 0;

      if (write_pass)
	sp = align_down (sp - sp_off, 4);
      sp_off = 0;

      if (return_method == return_method_struct)
	{
	  if (write_pass)
	    regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
	  arg_reg++;
	}

      /* Push the arguments.  */
      for (i = 0; i < nargs; i++)
	{
	  struct value *arg = args[i];
	  const gdb_byte *arg_bits = value_contents_all (arg);
	  struct type *arg_type = check_typedef (value_type (arg));
	  ULONGEST arg_size = TYPE_LENGTH (arg_type);
	  int offset;
	  int current_arg_on_stack;
	  gdb_byte struct_addr_buf[4];

	  current_arg_on_stack = 0;

	  if (TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
	      || TYPE_CODE (arg_type) == TYPE_CODE_UNION)
	    {
	      /* Aggregates of any size are passed by reference.  */
	      store_unsigned_integer (struct_addr_buf, 4, byte_order,
				      value_address (arg));
	      arg_bits = struct_addr_buf;
	      arg_size = (code_model == MSP_LARGE_CODE_MODEL) ? 4 : 2;
	    }
	  else
	    {
	      /* Scalars bigger than 8 bytes such as complex doubles are passed
	         on the stack.  */
	      if (arg_size > 8)
		current_arg_on_stack = 1;
	    }


	  for (offset = 0; offset < arg_size; offset += 2)
	    {
	      /* The condition below prevents 8 byte scalars from being split
	         between registers and memory (stack).  It also prevents other
	         splits once the stack has been written to.  */
	      if (!current_arg_on_stack
		  && (arg_reg
		      + ((arg_size == 8 || args_on_stack)
			 ? ((arg_size - offset) / 2 - 1)
			 : 0) <= MSP430_R15_REGNUM))
		{
		  int size = 2;

		  if (code_model == MSP_LARGE_CODE_MODEL
		      && (TYPE_CODE (arg_type) == TYPE_CODE_PTR
		          || TYPE_IS_REFERENCE (arg_type)
			  || TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
			  || TYPE_CODE (arg_type) == TYPE_CODE_UNION))
		    {
		      /* When using the large memory model, pointer,
			 reference, struct, and union arguments are
			 passed using the entire register.  (As noted
			 earlier, aggregates are always passed by
			 reference.) */
		      if (offset != 0)
			continue;
		      size = 4;
		    }

		  if (write_pass)
		    regcache_cooked_write_unsigned (regcache, arg_reg,
						    extract_unsigned_integer
						    (arg_bits + offset, size,
						     byte_order));

		  arg_reg++;
		}
	      else
		{
		  if (write_pass)
		    write_memory (sp + sp_off, arg_bits + offset, 2);

		  sp_off += 2;
		  args_on_stack = 1;
		  current_arg_on_stack = 1;
		}
	    }
	}
    }

  /* Keep track of the stack address prior to pushing the return address.
     This is the value that we'll return.  */
  cfa = sp;

  /* Push the return address.  */
  {
    int sz = (gdbarch_tdep (gdbarch)->code_model == MSP_SMALL_CODE_MODEL)
      ? 2 : 4;
    sp = sp - sz;
    write_memory_unsigned_integer (sp, sz, byte_order, bp_addr);
  }

  /* Update the stack pointer.  */
  regcache_cooked_write_unsigned (regcache, MSP430_SP_REGNUM, sp);

  return cfa;
}

/* In order to keep code size small, the compiler may create epilogue
   code through which more than one function epilogue is routed.  I.e.
   the epilogue and return may just be a branch to some common piece of
   code which is responsible for tearing down the frame and performing
   the return.  These epilog (label) names will have the common prefix
   defined here.  */

static const char msp430_epilog_name_prefix[] = "__mspabi_func_epilog_";

/* Implement the "in_return_stub" gdbarch method.  */

static int
msp430_in_return_stub (struct gdbarch *gdbarch, CORE_ADDR pc,
		       const char *name)
{
  return (name != NULL
	  && startswith (name, msp430_epilog_name_prefix));
}

/* Implement the "skip_trampoline_code" gdbarch method.  */
static CORE_ADDR
msp430_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
{
  struct bound_minimal_symbol bms;
  const char *stub_name;
  struct gdbarch *gdbarch = get_frame_arch (frame);

  bms = lookup_minimal_symbol_by_pc (pc);
  if (!bms.minsym)
    return pc;

  stub_name = MSYMBOL_LINKAGE_NAME (bms.minsym);

  if (gdbarch_tdep (gdbarch)->code_model == MSP_SMALL_CODE_MODEL
      && msp430_in_return_stub (gdbarch, pc, stub_name))
    {
      CORE_ADDR sp = get_frame_register_unsigned (frame, MSP430_SP_REGNUM);

      return read_memory_integer
	(sp + 2 * (stub_name[strlen (msp430_epilog_name_prefix)] - '0'),
	 2, gdbarch_byte_order (gdbarch));
    }

  return pc;
}

/* Allocate and initialize a gdbarch object.  */

static struct gdbarch *
msp430_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  int elf_flags, isa, code_model;

  /* Extract the elf_flags if available.  */
  if (info.abfd != NULL
      && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
    elf_flags = elf_elfheader (info.abfd)->e_flags;
  else
    elf_flags = 0;

  if (info.abfd != NULL)
    switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
				      OFBA_MSPABI_Tag_ISA))
      {
      case 1:
	isa = MSP_ISA_MSP430;
	code_model = MSP_SMALL_CODE_MODEL;
	break;
      case 2:
	isa = MSP_ISA_MSP430X;
	switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_PROC,
					  OFBA_MSPABI_Tag_Code_Model))
	  {
	  case 1:
	    code_model = MSP_SMALL_CODE_MODEL;
	    break;
	  case 2:
	    code_model = MSP_LARGE_CODE_MODEL;
	    break;
	  default:
	    internal_error (__FILE__, __LINE__,
			    _("Unknown msp430x code memory model"));
	    break;
	  }
	break;
      case 0:
	/* This can happen when loading a previously dumped data structure.
	   Use the ISA and code model from the current architecture, provided
	   it's compatible.  */
	{
	  struct gdbarch *ca = get_current_arch ();
	  if (ca && gdbarch_bfd_arch_info (ca)->arch == bfd_arch_msp430)
	    {
	      struct gdbarch_tdep *ca_tdep = gdbarch_tdep (ca);

	      elf_flags = ca_tdep->elf_flags;
	      isa = ca_tdep->isa;
	      code_model = ca_tdep->code_model;
	      break;
	    }
	}
	/* Fall through.  */
      default:
	error (_("Unknown msp430 isa"));
	break;
      }
  else
    {
      isa = MSP_ISA_MSP430;
      code_model = MSP_SMALL_CODE_MODEL;
    }


  /* Try to find the architecture in the list of already defined
     architectures.  */
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
       arches != NULL;
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
    {
      struct gdbarch_tdep *candidate_tdep = gdbarch_tdep (arches->gdbarch);

      if (candidate_tdep->elf_flags != elf_flags
	  || candidate_tdep->isa != isa
	  || candidate_tdep->code_model != code_model)
	continue;

      return arches->gdbarch;
    }

  /* None found, create a new architecture from the information
     provided.  */
  tdep = XCNEW (struct gdbarch_tdep);
  gdbarch = gdbarch_alloc (&info, tdep);
  tdep->elf_flags = elf_flags;
  tdep->isa = isa;
  tdep->code_model = code_model;

  /* Registers.  */
  set_gdbarch_num_regs (gdbarch, MSP430_NUM_REGS);
  set_gdbarch_num_pseudo_regs (gdbarch, MSP430_NUM_PSEUDO_REGS);
  set_gdbarch_register_name (gdbarch, msp430_register_name);
  if (isa == MSP_ISA_MSP430)
    set_gdbarch_register_type (gdbarch, msp430_register_type);
  else
    set_gdbarch_register_type (gdbarch, msp430x_register_type);
  set_gdbarch_pc_regnum (gdbarch, MSP430_PC_REGNUM);
  set_gdbarch_sp_regnum (gdbarch, MSP430_SP_REGNUM);
  set_gdbarch_register_reggroup_p (gdbarch, msp430_register_reggroup_p);
  set_gdbarch_pseudo_register_read (gdbarch, msp430_pseudo_register_read);
  set_gdbarch_pseudo_register_write (gdbarch, msp430_pseudo_register_write);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, msp430_dwarf2_reg_to_regnum);
  set_gdbarch_register_sim_regno (gdbarch, msp430_register_sim_regno);

  /* Data types.  */
  set_gdbarch_char_signed (gdbarch, 0);
  set_gdbarch_short_bit (gdbarch, 16);
  set_gdbarch_int_bit (gdbarch, 16);
  set_gdbarch_long_bit (gdbarch, 32);
  set_gdbarch_long_long_bit (gdbarch, 64);
  if (code_model == MSP_SMALL_CODE_MODEL)
    {
      set_gdbarch_ptr_bit (gdbarch, 16);
      set_gdbarch_addr_bit (gdbarch, 16);
    }
  else				/* MSP_LARGE_CODE_MODEL */
    {
      set_gdbarch_ptr_bit (gdbarch, 32);
      set_gdbarch_addr_bit (gdbarch, 32);
    }
  set_gdbarch_dwarf2_addr_size (gdbarch, 4);
  set_gdbarch_float_bit (gdbarch, 32);
  set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
  set_gdbarch_double_bit (gdbarch, 64);
  set_gdbarch_long_double_bit (gdbarch, 64);
  set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
  set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);

  /* Breakpoints.  */
  set_gdbarch_breakpoint_kind_from_pc (gdbarch,
				       msp430_breakpoint::kind_from_pc);
  set_gdbarch_sw_breakpoint_from_kind (gdbarch,
				       msp430_breakpoint::bp_from_kind);
  set_gdbarch_decr_pc_after_break (gdbarch, 1);

  /* Frames, prologues, etc.  */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_skip_prologue (gdbarch, msp430_skip_prologue);
  set_gdbarch_frame_align (gdbarch, msp430_frame_align);
  dwarf2_append_unwinders (gdbarch);
  frame_unwind_append_unwinder (gdbarch, &msp430_unwind);

  /* Dummy frames, return values.  */
  set_gdbarch_push_dummy_call (gdbarch, msp430_push_dummy_call);
  set_gdbarch_return_value (gdbarch, msp430_return_value);

  /* Trampolines.  */
  set_gdbarch_in_solib_return_trampoline (gdbarch, msp430_in_return_stub);
  set_gdbarch_skip_trampoline_code (gdbarch, msp430_skip_trampoline_code);

  /* Virtual tables.  */
  set_gdbarch_vbit_in_delta (gdbarch, 0);

  return gdbarch;
}

/* Register the initialization routine.  */

void
_initialize_msp430_tdep (void)
{
  register_gdbarch_init (bfd_arch_msp430, msp430_gdbarch_init);
}