summaryrefslogtreecommitdiff
path: root/gdb/mep-tdep.c
blob: 28c826ec6849aff905bd579dbbe2bc64a78119de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
/* Target-dependent code for the Toshiba MeP for GDB, the GNU debugger.

   Copyright (C) 2001-2014 Free Software Foundation, Inc.

   Contributed by Red Hat, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "frame.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include <string.h>
#include "value.h"
#include "inferior.h"
#include "dis-asm.h"
#include "symfile.h"
#include "objfiles.h"
#include "language.h"
#include "arch-utils.h"
#include "regcache.h"
#include "remote.h"
#include "floatformat.h"
#include "sim-regno.h"
#include "disasm.h"
#include "trad-frame.h"
#include "reggroups.h"
#include "elf-bfd.h"
#include "elf/mep.h"
#include "prologue-value.h"
#include "cgen/bitset.h"
#include "infcall.h"

#include "gdb_assert.h"

/* Get the user's customized MeP coprocessor register names from
   libopcodes.  */
#include "opcodes/mep-desc.h"
#include "opcodes/mep-opc.h"


/* The gdbarch_tdep structure.  */

/* A quick recap for GDB hackers not familiar with the whole Toshiba
   Media Processor story:

   The MeP media engine is a configureable processor: users can design
   their own coprocessors, implement custom instructions, adjust cache
   sizes, select optional standard facilities like add-and-saturate
   instructions, and so on.  Then, they can build custom versions of
   the GNU toolchain to support their customized chips.  The
   MeP-Integrator program (see utils/mep) takes a GNU toolchain source
   tree, and a config file pointing to various files provided by the
   user describing their customizations, and edits the source tree to
   produce a compiler that can generate their custom instructions, an
   assembler that can assemble them and recognize their custom
   register names, and so on.

   Furthermore, the user can actually specify several of these custom
   configurations, called 'me_modules', and get a toolchain which can
   produce code for any of them, given a compiler/assembler switch;
   you say something like 'gcc -mconfig=mm_max' to generate code for
   the me_module named 'mm_max'.

   GDB, in particular, needs to:

   - use the coprocessor control register names provided by the user
     in their hardware description, in expressions, 'info register'
     output, and disassembly,

   - know the number, names, and types of the coprocessor's
     general-purpose registers, adjust the 'info all-registers' output
     accordingly, and print error messages if the user refers to one
     that doesn't exist

   - allow access to the control bus space only when the configuration
     actually has a control bus, and recognize which regions of the
     control bus space are actually populated,

   - disassemble using the user's provided mnemonics for their custom
     instructions, and

   - recognize whether the $hi and $lo registers are present, and
     allow access to them only when they are actually there.

   There are three sources of information about what sort of me_module
   we're actually dealing with:

   - A MeP executable file indicates which me_module it was compiled
     for, and libopcodes has tables describing each module.  So, given
     an executable file, we can find out about the processor it was
     compiled for.

   - There are SID command-line options to select a particular
     me_module, overriding the one specified in the ELF file.  SID
     provides GDB with a fake read-only register, 'module', which
     indicates which me_module GDB is communicating with an instance
     of.

   - There are SID command-line options to enable or disable certain
     optional processor features, overriding the defaults for the
     selected me_module.  The MeP $OPT register indicates which
     options are present on the current processor.  */


struct gdbarch_tdep
{
  /* A CGEN cpu descriptor for this BFD architecture and machine.

     Note: this is *not* customized for any particular me_module; the
     MeP libopcodes machinery actually puts off module-specific
     customization until the last minute.  So this contains
     information about all supported me_modules.  */
  CGEN_CPU_DESC cpu_desc;

  /* The me_module index from the ELF file we used to select this
     architecture, or CONFIG_NONE if there was none.

     Note that we should prefer to use the me_module number available
     via the 'module' register, whenever we're actually talking to a
     real target.

     In the absence of live information, we'd like to get the
     me_module number from the ELF file.  But which ELF file: the
     executable file, the core file, ... ?  The answer is, "the last
     ELF file we used to set the current architecture".  Thus, we
     create a separate instance of the gdbarch structure for each
     me_module value mep_gdbarch_init sees, and store the me_module
     value from the ELF file here.  */
  CONFIG_ATTR me_module;
};



/* Getting me_module information from the CGEN tables.  */


/* Find an entry in the DESC's hardware table whose name begins with
   PREFIX, and whose ISA mask intersects COPRO_ISA_MASK, but does not
   intersect with GENERIC_ISA_MASK.  If there is no matching entry,
   return zero.  */
static const CGEN_HW_ENTRY *
find_hw_entry_by_prefix_and_isa (CGEN_CPU_DESC desc,
                                 const char *prefix,
                                 CGEN_BITSET *copro_isa_mask,
                                 CGEN_BITSET *generic_isa_mask)
{
  int prefix_len = strlen (prefix);
  int i;

  for (i = 0; i < desc->hw_table.num_entries; i++)
    {
      const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];
      if (strncmp (prefix, hw->name, prefix_len) == 0)
        {
          CGEN_BITSET *hw_isa_mask
            = ((CGEN_BITSET *)
               &CGEN_ATTR_CGEN_HW_ISA_VALUE (CGEN_HW_ATTRS (hw)));

          if (cgen_bitset_intersect_p (hw_isa_mask, copro_isa_mask)
              && ! cgen_bitset_intersect_p (hw_isa_mask, generic_isa_mask))
            return hw;
        }
    }

  return 0;
}


/* Find an entry in DESC's hardware table whose type is TYPE.  Return
   zero if there is none.  */
static const CGEN_HW_ENTRY *
find_hw_entry_by_type (CGEN_CPU_DESC desc, CGEN_HW_TYPE type)
{
  int i;

  for (i = 0; i < desc->hw_table.num_entries; i++)
    {
      const CGEN_HW_ENTRY *hw = desc->hw_table.entries[i];

      if (hw->type == type)
        return hw;
    }

  return 0;
}


/* Return the CGEN hardware table entry for the coprocessor register
   set for ME_MODULE, whose name prefix is PREFIX.  If ME_MODULE has
   no such register set, return zero.  If ME_MODULE is the generic
   me_module CONFIG_NONE, return the table entry for the register set
   whose hardware type is GENERIC_TYPE.  */
static const CGEN_HW_ENTRY *
me_module_register_set (CONFIG_ATTR me_module,
                        const char *prefix,
                        CGEN_HW_TYPE generic_type)
{
  /* This is kind of tricky, because the hardware table is constructed
     in a way that isn't very helpful.  Perhaps we can fix that, but
     here's how it works at the moment:

     The configuration map, `mep_config_map', is indexed by me_module
     number, and indicates which coprocessor and core ISAs that
     me_module supports.  The 'core_isa' mask includes all the core
     ISAs, and the 'cop_isa' mask includes all the coprocessor ISAs.
     The entry for the generic me_module, CONFIG_NONE, has an empty
     'cop_isa', and its 'core_isa' selects only the standard MeP
     instruction set.

     The CGEN CPU descriptor's hardware table, desc->hw_table, has
     entries for all the register sets, for all me_modules.  Each
     entry has a mask indicating which ISAs use that register set.
     So, if an me_module supports some coprocessor ISA, we can find
     applicable register sets by scanning the hardware table for
     register sets whose masks include (at least some of) those ISAs.

     Each hardware table entry also has a name, whose prefix says
     whether it's a general-purpose ("h-cr") or control ("h-ccr")
     coprocessor register set.  It might be nicer to have an attribute
     indicating what sort of register set it was, that we could use
     instead of pattern-matching on the name.

     When there is no hardware table entry whose mask includes a
     particular coprocessor ISA and whose name starts with a given
     prefix, then that means that that coprocessor doesn't have any
     registers of that type.  In such cases, this function must return
     a null pointer.

     Coprocessor register sets' masks may or may not include the core
     ISA for the me_module they belong to.  Those generated by a2cgen
     do, but the sample me_module included in the unconfigured tree,
     'ccfx', does not.

     There are generic coprocessor register sets, intended only for
     use with the generic me_module.  Unfortunately, their masks
     include *all* ISAs --- even those for coprocessors that don't
     have such register sets.  This makes detecting the case where a
     coprocessor lacks a particular register set more complicated.

     So, here's the approach we take:

     - For CONFIG_NONE, we return the generic coprocessor register set.

     - For any other me_module, we search for a register set whose
       mask contains any of the me_module's coprocessor ISAs,
       specifically excluding the generic coprocessor register sets.  */

  CGEN_CPU_DESC desc = gdbarch_tdep (target_gdbarch ())->cpu_desc;
  const CGEN_HW_ENTRY *hw;

  if (me_module == CONFIG_NONE)
    hw = find_hw_entry_by_type (desc, generic_type);
  else
    {
      CGEN_BITSET *cop = &mep_config_map[me_module].cop_isa;
      CGEN_BITSET *core = &mep_config_map[me_module].core_isa;
      CGEN_BITSET *generic = &mep_config_map[CONFIG_NONE].core_isa;
      CGEN_BITSET *cop_and_core;

      /* The coprocessor ISAs include the ISA for the specific core which
	 has that coprocessor.  */
      cop_and_core = cgen_bitset_copy (cop);
      cgen_bitset_union (cop, core, cop_and_core);
      hw = find_hw_entry_by_prefix_and_isa (desc, prefix, cop_and_core, generic);
    }

  return hw;
}


/* Given a hardware table entry HW representing a register set, return
   a pointer to the keyword table with all the register names.  If HW
   is NULL, return NULL, to propage the "no such register set" info
   along.  */
static CGEN_KEYWORD *
register_set_keyword_table (const CGEN_HW_ENTRY *hw)
{
  if (! hw)
    return NULL;

  /* Check that HW is actually a keyword table.  */
  gdb_assert (hw->asm_type == CGEN_ASM_KEYWORD);

  /* The 'asm_data' field of a register set's hardware table entry
     refers to a keyword table.  */
  return (CGEN_KEYWORD *) hw->asm_data;
}


/* Given a keyword table KEYWORD and a register number REGNUM, return
   the name of the register, or "" if KEYWORD contains no register
   whose number is REGNUM.  */
static char *
register_name_from_keyword (CGEN_KEYWORD *keyword_table, int regnum)
{
  const CGEN_KEYWORD_ENTRY *entry
    = cgen_keyword_lookup_value (keyword_table, regnum);

  if (entry)
    {
      char *name = entry->name;

      /* The CGEN keyword entries for register names include the
         leading $, which appears in MeP assembly as well as in GDB.
         But we don't want to return that; GDB core code adds that
         itself.  */
      if (name[0] == '$')
        name++;

      return name;
    }
  else
    return "";
}

  
/* Masks for option bits in the OPT special-purpose register.  */
enum {
  MEP_OPT_DIV = 1 << 25,        /* 32-bit divide instruction option */
  MEP_OPT_MUL = 1 << 24,        /* 32-bit multiply instruction option */
  MEP_OPT_BIT = 1 << 23,        /* bit manipulation instruction option */
  MEP_OPT_SAT = 1 << 22,        /* saturation instruction option */
  MEP_OPT_CLP = 1 << 21,        /* clip instruction option */
  MEP_OPT_MIN = 1 << 20,        /* min/max instruction option */
  MEP_OPT_AVE = 1 << 19,        /* average instruction option */
  MEP_OPT_ABS = 1 << 18,        /* absolute difference instruction option */
  MEP_OPT_LDZ = 1 << 16,        /* leading zero instruction option */
  MEP_OPT_VL64 = 1 << 6,        /* 64-bit VLIW operation mode option */
  MEP_OPT_VL32 = 1 << 5,        /* 32-bit VLIW operation mode option */
  MEP_OPT_COP = 1 << 4,         /* coprocessor option */
  MEP_OPT_DSP = 1 << 2,         /* DSP option */
  MEP_OPT_UCI = 1 << 1,         /* UCI option */
  MEP_OPT_DBG = 1 << 0,         /* DBG function option */
};


/* Given the option_mask value for a particular entry in
   mep_config_map, produce the value the processor's OPT register
   would use to represent the same set of options.  */
static unsigned int
opt_from_option_mask (unsigned int option_mask)
{
  /* A table mapping OPT register bits onto CGEN config map option
     bits.  */
  struct {
    unsigned int opt_bit, option_mask_bit;
  } bits[] = {
    { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
    { MEP_OPT_MUL, 1 << CGEN_INSN_OPTIONAL_MUL_INSN },
    { MEP_OPT_DIV, 1 << CGEN_INSN_OPTIONAL_DIV_INSN },
    { MEP_OPT_DBG, 1 << CGEN_INSN_OPTIONAL_DEBUG_INSN },
    { MEP_OPT_LDZ, 1 << CGEN_INSN_OPTIONAL_LDZ_INSN },
    { MEP_OPT_ABS, 1 << CGEN_INSN_OPTIONAL_ABS_INSN },
    { MEP_OPT_AVE, 1 << CGEN_INSN_OPTIONAL_AVE_INSN },
    { MEP_OPT_MIN, 1 << CGEN_INSN_OPTIONAL_MINMAX_INSN },
    { MEP_OPT_CLP, 1 << CGEN_INSN_OPTIONAL_CLIP_INSN },
    { MEP_OPT_SAT, 1 << CGEN_INSN_OPTIONAL_SAT_INSN },
    { MEP_OPT_UCI, 1 << CGEN_INSN_OPTIONAL_UCI_INSN },
    { MEP_OPT_DSP, 1 << CGEN_INSN_OPTIONAL_DSP_INSN },
    { MEP_OPT_COP, 1 << CGEN_INSN_OPTIONAL_CP_INSN },
  };

  int i;
  unsigned int opt = 0;

  for (i = 0; i < (sizeof (bits) / sizeof (bits[0])); i++)
    if (option_mask & bits[i].option_mask_bit)
      opt |= bits[i].opt_bit;

  return opt;
}


/* Return the value the $OPT register would use to represent the set
   of options for ME_MODULE.  */
static unsigned int
me_module_opt (CONFIG_ATTR me_module)
{
  return opt_from_option_mask (mep_config_map[me_module].option_mask);
}


/* Return the width of ME_MODULE's coprocessor data bus, in bits.
   This is either 32 or 64.  */
static int
me_module_cop_data_bus_width (CONFIG_ATTR me_module)
{
  if (mep_config_map[me_module].option_mask
      & (1 << CGEN_INSN_OPTIONAL_CP64_INSN))
    return 64;
  else
    return 32;
}


/* Return true if ME_MODULE is big-endian, false otherwise.  */
static int
me_module_big_endian (CONFIG_ATTR me_module)
{
  return mep_config_map[me_module].big_endian;
}


/* Return the name of ME_MODULE, or NULL if it has no name.  */
static const char *
me_module_name (CONFIG_ATTR me_module)
{
  /* The default me_module has "" as its name, but it's easier for our
     callers to test for NULL.  */
  if (! mep_config_map[me_module].name
      || mep_config_map[me_module].name[0] == '\0')
    return NULL;
  else
    return mep_config_map[me_module].name;
}

/* Register set.  */


/* The MeP spec defines the following registers:
   16 general purpose registers (r0-r15) 
   32 control/special registers (csr0-csr31)
   32 coprocessor general-purpose registers (c0 -- c31)
   64 coprocessor control registers (ccr0 -- ccr63)

   For the raw registers, we assign numbers here explicitly, instead
   of letting the enum assign them for us; the numbers are a matter of
   external protocol, and shouldn't shift around as things are edited.

   We access the control/special registers via pseudoregisters, to
   enforce read-only portions that some registers have.

   We access the coprocessor general purpose and control registers via
   pseudoregisters, to make sure they appear in the proper order in
   the 'info all-registers' command (which uses the register number
   ordering), and also to allow them to be renamed and resized
   depending on the me_module in use.

   The MeP allows coprocessor general-purpose registers to be either
   32 or 64 bits long, depending on the configuration.  Since we don't
   want the format of the 'g' packet to vary from one core to another,
   the raw coprocessor GPRs are always 64 bits.  GDB doesn't allow the
   types of registers to change (see the implementation of
   register_type), so we have four banks of pseudoregisters for the
   coprocessor gprs --- 32-bit vs. 64-bit, and integer
   vs. floating-point --- and we show or hide them depending on the
   configuration.  */
enum
{
  MEP_FIRST_RAW_REGNUM = 0,

  MEP_FIRST_GPR_REGNUM = 0,
  MEP_R0_REGNUM = 0,
  MEP_R1_REGNUM = 1,
  MEP_R2_REGNUM = 2,
  MEP_R3_REGNUM = 3,
  MEP_R4_REGNUM = 4,
  MEP_R5_REGNUM = 5,
  MEP_R6_REGNUM = 6,
  MEP_R7_REGNUM = 7,
  MEP_R8_REGNUM = 8,
  MEP_R9_REGNUM = 9,
  MEP_R10_REGNUM = 10,
  MEP_R11_REGNUM = 11,
  MEP_R12_REGNUM = 12,
  MEP_FP_REGNUM = MEP_R8_REGNUM,
  MEP_R13_REGNUM = 13,
  MEP_TP_REGNUM = MEP_R13_REGNUM,	/* (r13) Tiny data pointer */
  MEP_R14_REGNUM = 14,
  MEP_GP_REGNUM = MEP_R14_REGNUM,	/* (r14) Global pointer */
  MEP_R15_REGNUM = 15,
  MEP_SP_REGNUM = MEP_R15_REGNUM,	/* (r15) Stack pointer */
  MEP_LAST_GPR_REGNUM = MEP_R15_REGNUM,

  /* The raw control registers.  These are the values as received via
     the remote protocol, directly from the target; we only let user
     code touch the via the pseudoregisters, which enforce read-only
     bits.  */
  MEP_FIRST_RAW_CSR_REGNUM = 16,
  MEP_RAW_PC_REGNUM    = 16,    /* Program counter */
  MEP_RAW_LP_REGNUM    = 17,    /* Link pointer */
  MEP_RAW_SAR_REGNUM   = 18,    /* Raw shift amount */
  MEP_RAW_CSR3_REGNUM  = 19,    /* csr3: reserved */
  MEP_RAW_RPB_REGNUM   = 20,    /* Raw repeat begin address */
  MEP_RAW_RPE_REGNUM   = 21,    /* Repeat end address */
  MEP_RAW_RPC_REGNUM   = 22,    /* Repeat count */
  MEP_RAW_HI_REGNUM    = 23, /* Upper 32 bits of result of 64 bit mult/div */
  MEP_RAW_LO_REGNUM    = 24, /* Lower 32 bits of result of 64 bit mult/div */
  MEP_RAW_CSR9_REGNUM  = 25,    /* csr3: reserved */
  MEP_RAW_CSR10_REGNUM = 26,    /* csr3: reserved */
  MEP_RAW_CSR11_REGNUM = 27,    /* csr3: reserved */
  MEP_RAW_MB0_REGNUM   = 28,    /* Raw modulo begin address 0 */
  MEP_RAW_ME0_REGNUM   = 29,    /* Raw modulo end address 0 */
  MEP_RAW_MB1_REGNUM   = 30,    /* Raw modulo begin address 1 */
  MEP_RAW_ME1_REGNUM   = 31,    /* Raw modulo end address 1 */
  MEP_RAW_PSW_REGNUM   = 32,    /* Raw program status word */
  MEP_RAW_ID_REGNUM    = 33,    /* Raw processor ID/revision */
  MEP_RAW_TMP_REGNUM   = 34,    /* Temporary */
  MEP_RAW_EPC_REGNUM   = 35,    /* Exception program counter */
  MEP_RAW_EXC_REGNUM   = 36,    /* Raw exception cause */
  MEP_RAW_CFG_REGNUM   = 37,    /* Raw processor configuration*/
  MEP_RAW_CSR22_REGNUM = 38,    /* csr3: reserved */
  MEP_RAW_NPC_REGNUM   = 39,    /* Nonmaskable interrupt PC */
  MEP_RAW_DBG_REGNUM   = 40,    /* Raw debug */
  MEP_RAW_DEPC_REGNUM  = 41,    /* Debug exception PC */
  MEP_RAW_OPT_REGNUM   = 42,    /* Raw options */
  MEP_RAW_RCFG_REGNUM  = 43,    /* Raw local ram config */
  MEP_RAW_CCFG_REGNUM  = 44,    /* Raw cache config */
  MEP_RAW_CSR29_REGNUM = 45,    /* csr3: reserved */
  MEP_RAW_CSR30_REGNUM = 46,    /* csr3: reserved */
  MEP_RAW_CSR31_REGNUM = 47,    /* csr3: reserved */
  MEP_LAST_RAW_CSR_REGNUM = MEP_RAW_CSR31_REGNUM,

  /* The raw coprocessor general-purpose registers.  These are all 64
     bits wide.  */
  MEP_FIRST_RAW_CR_REGNUM = 48,
  MEP_LAST_RAW_CR_REGNUM = MEP_FIRST_RAW_CR_REGNUM + 31,

  MEP_FIRST_RAW_CCR_REGNUM = 80,
  MEP_LAST_RAW_CCR_REGNUM = MEP_FIRST_RAW_CCR_REGNUM + 63,

  /* The module number register.  This is the index of the me_module
     of which the current target is an instance.  (This is not a real
     MeP-specified register; it's provided by SID.)  */
  MEP_MODULE_REGNUM,

  MEP_LAST_RAW_REGNUM = MEP_MODULE_REGNUM,

  MEP_NUM_RAW_REGS = MEP_LAST_RAW_REGNUM + 1,

  /* Pseudoregisters.  See mep_pseudo_register_read and
     mep_pseudo_register_write.  */
  MEP_FIRST_PSEUDO_REGNUM = MEP_NUM_RAW_REGS,

  /* We have a pseudoregister for every control/special register, to
     implement registers with read-only bits.  */
  MEP_FIRST_CSR_REGNUM = MEP_FIRST_PSEUDO_REGNUM,
  MEP_PC_REGNUM = MEP_FIRST_CSR_REGNUM, /* Program counter */
  MEP_LP_REGNUM,                /* Link pointer */
  MEP_SAR_REGNUM,               /* shift amount */
  MEP_CSR3_REGNUM,              /* csr3: reserved */
  MEP_RPB_REGNUM,               /* repeat begin address */
  MEP_RPE_REGNUM,               /* Repeat end address */
  MEP_RPC_REGNUM,               /* Repeat count */
  MEP_HI_REGNUM,  /* Upper 32 bits of the result of 64 bit mult/div */
  MEP_LO_REGNUM,  /* Lower 32 bits of the result of 64 bit mult/div */
  MEP_CSR9_REGNUM,              /* csr3: reserved */
  MEP_CSR10_REGNUM,             /* csr3: reserved */
  MEP_CSR11_REGNUM,             /* csr3: reserved */
  MEP_MB0_REGNUM,               /* modulo begin address 0 */
  MEP_ME0_REGNUM,               /* modulo end address 0 */
  MEP_MB1_REGNUM,               /* modulo begin address 1 */
  MEP_ME1_REGNUM,               /* modulo end address 1 */
  MEP_PSW_REGNUM,               /* program status word */
  MEP_ID_REGNUM,                /* processor ID/revision */
  MEP_TMP_REGNUM,               /* Temporary */
  MEP_EPC_REGNUM,               /* Exception program counter */
  MEP_EXC_REGNUM,               /* exception cause */
  MEP_CFG_REGNUM,               /* processor configuration*/
  MEP_CSR22_REGNUM,             /* csr3: reserved */
  MEP_NPC_REGNUM,               /* Nonmaskable interrupt PC */
  MEP_DBG_REGNUM,               /* debug */
  MEP_DEPC_REGNUM,              /* Debug exception PC */
  MEP_OPT_REGNUM,               /* options */
  MEP_RCFG_REGNUM,              /* local ram config */
  MEP_CCFG_REGNUM,              /* cache config */
  MEP_CSR29_REGNUM,             /* csr3: reserved */
  MEP_CSR30_REGNUM,             /* csr3: reserved */
  MEP_CSR31_REGNUM,             /* csr3: reserved */
  MEP_LAST_CSR_REGNUM = MEP_CSR31_REGNUM,

  /* The 32-bit integer view of the coprocessor GPR's.  */
  MEP_FIRST_CR32_REGNUM,
  MEP_LAST_CR32_REGNUM = MEP_FIRST_CR32_REGNUM + 31,

  /* The 32-bit floating-point view of the coprocessor GPR's.  */
  MEP_FIRST_FP_CR32_REGNUM,
  MEP_LAST_FP_CR32_REGNUM = MEP_FIRST_FP_CR32_REGNUM + 31,

  /* The 64-bit integer view of the coprocessor GPR's.  */
  MEP_FIRST_CR64_REGNUM,
  MEP_LAST_CR64_REGNUM = MEP_FIRST_CR64_REGNUM + 31,

  /* The 64-bit floating-point view of the coprocessor GPR's.  */
  MEP_FIRST_FP_CR64_REGNUM,
  MEP_LAST_FP_CR64_REGNUM = MEP_FIRST_FP_CR64_REGNUM + 31,

  MEP_FIRST_CCR_REGNUM,
  MEP_LAST_CCR_REGNUM = MEP_FIRST_CCR_REGNUM + 63,

  MEP_LAST_PSEUDO_REGNUM = MEP_LAST_CCR_REGNUM,

  MEP_NUM_PSEUDO_REGS = (MEP_LAST_PSEUDO_REGNUM - MEP_LAST_RAW_REGNUM),

  MEP_NUM_REGS = MEP_NUM_RAW_REGS + MEP_NUM_PSEUDO_REGS
};


#define IN_SET(set, n) \
  (MEP_FIRST_ ## set ## _REGNUM <= (n) && (n) <= MEP_LAST_ ## set ## _REGNUM)

#define IS_GPR_REGNUM(n)     (IN_SET (GPR,     (n)))
#define IS_RAW_CSR_REGNUM(n) (IN_SET (RAW_CSR, (n)))
#define IS_RAW_CR_REGNUM(n)  (IN_SET (RAW_CR,  (n)))
#define IS_RAW_CCR_REGNUM(n) (IN_SET (RAW_CCR, (n)))

#define IS_CSR_REGNUM(n)     (IN_SET (CSR,     (n)))
#define IS_CR32_REGNUM(n)    (IN_SET (CR32,    (n)))
#define IS_FP_CR32_REGNUM(n) (IN_SET (FP_CR32, (n)))
#define IS_CR64_REGNUM(n)    (IN_SET (CR64,    (n)))
#define IS_FP_CR64_REGNUM(n) (IN_SET (FP_CR64, (n)))
#define IS_CR_REGNUM(n)      (IS_CR32_REGNUM (n) || IS_FP_CR32_REGNUM (n) \
                              || IS_CR64_REGNUM (n) || IS_FP_CR64_REGNUM (n))
#define IS_CCR_REGNUM(n)     (IN_SET (CCR,     (n)))

#define IS_RAW_REGNUM(n)     (IN_SET (RAW,     (n)))
#define IS_PSEUDO_REGNUM(n)  (IN_SET (PSEUDO,  (n)))

#define NUM_REGS_IN_SET(set) \
  (MEP_LAST_ ## set ## _REGNUM - MEP_FIRST_ ## set ## _REGNUM + 1)

#define MEP_GPR_SIZE (4)        /* Size of a MeP general-purpose register.  */
#define MEP_PSW_SIZE (4)        /* Size of the PSW register.  */
#define MEP_LP_SIZE (4)         /* Size of the LP register.  */


/* Many of the control/special registers contain bits that cannot be
   written to; some are entirely read-only.  So we present them all as
   pseudoregisters.

   The following table describes the special properties of each CSR.  */
struct mep_csr_register
{
  /* The number of this CSR's raw register.  */
  int raw;

  /* The number of this CSR's pseudoregister.  */
  int pseudo;

  /* A mask of the bits that are writeable: if a bit is set here, then
     it can be modified; if the bit is clear, then it cannot.  */
  LONGEST writeable_bits;
};


/* mep_csr_registers[i] describes the i'th CSR.
   We just list the register numbers here explicitly to help catch
   typos.  */
#define CSR(name) MEP_RAW_ ## name ## _REGNUM, MEP_ ## name ## _REGNUM
struct mep_csr_register mep_csr_registers[] = {
  { CSR(PC),    0xffffffff },   /* manual says r/o, but we can write it */
  { CSR(LP),    0xffffffff },
  { CSR(SAR),   0x0000003f },
  { CSR(CSR3),  0xffffffff },
  { CSR(RPB),   0xfffffffe },
  { CSR(RPE),   0xffffffff },
  { CSR(RPC),   0xffffffff },
  { CSR(HI),    0xffffffff },
  { CSR(LO),    0xffffffff },
  { CSR(CSR9),  0xffffffff },
  { CSR(CSR10), 0xffffffff },
  { CSR(CSR11), 0xffffffff },
  { CSR(MB0),   0x0000ffff },
  { CSR(ME0),   0x0000ffff },
  { CSR(MB1),   0x0000ffff },
  { CSR(ME1),   0x0000ffff },
  { CSR(PSW),   0x000003ff },
  { CSR(ID),    0x00000000 },
  { CSR(TMP),   0xffffffff },
  { CSR(EPC),   0xffffffff },
  { CSR(EXC),   0x000030f0 },
  { CSR(CFG),   0x00c0001b },
  { CSR(CSR22), 0xffffffff },
  { CSR(NPC),   0xffffffff },
  { CSR(DBG),   0x00000580 },
  { CSR(DEPC),  0xffffffff },
  { CSR(OPT),   0x00000000 },
  { CSR(RCFG),  0x00000000 },
  { CSR(CCFG),  0x00000000 },
  { CSR(CSR29), 0xffffffff },
  { CSR(CSR30), 0xffffffff },
  { CSR(CSR31), 0xffffffff },
};


/* If R is the number of a raw register, then mep_raw_to_pseudo[R] is
   the number of the corresponding pseudoregister.  Otherwise,
   mep_raw_to_pseudo[R] == R.  */
static int mep_raw_to_pseudo[MEP_NUM_REGS];

/* If R is the number of a pseudoregister, then mep_pseudo_to_raw[R]
   is the number of the underlying raw register.  Otherwise
   mep_pseudo_to_raw[R] == R.  */
static int mep_pseudo_to_raw[MEP_NUM_REGS];

static void
mep_init_pseudoregister_maps (void)
{
  int i;

  /* Verify that mep_csr_registers covers all the CSRs, in order.  */
  gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (CSR));
  gdb_assert (ARRAY_SIZE (mep_csr_registers) == NUM_REGS_IN_SET (RAW_CSR));

  /* Verify that the raw and pseudo ranges have matching sizes.  */
  gdb_assert (NUM_REGS_IN_SET (RAW_CSR) == NUM_REGS_IN_SET (CSR));
  gdb_assert (NUM_REGS_IN_SET (RAW_CR)  == NUM_REGS_IN_SET (CR32));
  gdb_assert (NUM_REGS_IN_SET (RAW_CR)  == NUM_REGS_IN_SET (CR64));
  gdb_assert (NUM_REGS_IN_SET (RAW_CCR) == NUM_REGS_IN_SET (CCR));

  for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
    {
      struct mep_csr_register *r = &mep_csr_registers[i];

      gdb_assert (r->pseudo == MEP_FIRST_CSR_REGNUM + i);
      gdb_assert (r->raw    == MEP_FIRST_RAW_CSR_REGNUM + i);
    }

  /* Set up the initial  raw<->pseudo mappings.  */
  for (i = 0; i < MEP_NUM_REGS; i++)
    {
      mep_raw_to_pseudo[i] = i;
      mep_pseudo_to_raw[i] = i;
    }

  /* Add the CSR raw<->pseudo mappings.  */
  for (i = 0; i < ARRAY_SIZE (mep_csr_registers); i++)
    {
      struct mep_csr_register *r = &mep_csr_registers[i];

      mep_raw_to_pseudo[r->raw] = r->pseudo;
      mep_pseudo_to_raw[r->pseudo] = r->raw;
    }

  /* Add the CR raw<->pseudo mappings.  */
  for (i = 0; i < NUM_REGS_IN_SET (RAW_CR); i++)
    {
      int raw = MEP_FIRST_RAW_CR_REGNUM + i;
      int pseudo32 = MEP_FIRST_CR32_REGNUM + i;
      int pseudofp32 = MEP_FIRST_FP_CR32_REGNUM + i;
      int pseudo64 = MEP_FIRST_CR64_REGNUM + i;
      int pseudofp64 = MEP_FIRST_FP_CR64_REGNUM + i;

      /* Truly, the raw->pseudo mapping depends on the current module.
         But we use the raw->pseudo mapping when we read the debugging
         info; at that point, we don't know what module we'll actually
         be running yet.  So, we always supply the 64-bit register
         numbers; GDB knows how to pick a smaller value out of a
         larger register properly.  */
      mep_raw_to_pseudo[raw] = pseudo64;
      mep_pseudo_to_raw[pseudo32] = raw;
      mep_pseudo_to_raw[pseudofp32] = raw;
      mep_pseudo_to_raw[pseudo64] = raw;
      mep_pseudo_to_raw[pseudofp64] = raw;
    }

  /* Add the CCR raw<->pseudo mappings.  */
  for (i = 0; i < NUM_REGS_IN_SET (CCR); i++)
    {
      int raw = MEP_FIRST_RAW_CCR_REGNUM + i;
      int pseudo = MEP_FIRST_CCR_REGNUM + i;
      mep_raw_to_pseudo[raw] = pseudo;
      mep_pseudo_to_raw[pseudo] = raw;
    }
}


static int
mep_debug_reg_to_regnum (struct gdbarch *gdbarch, int debug_reg)
{
  /* The debug info uses the raw register numbers.  */
  return mep_raw_to_pseudo[debug_reg];
}


/* Return the size, in bits, of the coprocessor pseudoregister
   numbered PSEUDO.  */
static int
mep_pseudo_cr_size (int pseudo)
{
  if (IS_CR32_REGNUM (pseudo)
      || IS_FP_CR32_REGNUM (pseudo))
    return 32;
  else if (IS_CR64_REGNUM (pseudo)
           || IS_FP_CR64_REGNUM (pseudo))
    return 64;
  else
    gdb_assert_not_reached ("unexpected coprocessor pseudo register");
}


/* If the coprocessor pseudoregister numbered PSEUDO is a
   floating-point register, return non-zero; if it is an integer
   register, return zero.  */
static int
mep_pseudo_cr_is_float (int pseudo)
{
  return (IS_FP_CR32_REGNUM (pseudo)
          || IS_FP_CR64_REGNUM (pseudo));
}


/* Given a coprocessor GPR pseudoregister number, return its index
   within that register bank.  */
static int
mep_pseudo_cr_index (int pseudo)
{
  if (IS_CR32_REGNUM (pseudo))
    return pseudo - MEP_FIRST_CR32_REGNUM;
  else if (IS_FP_CR32_REGNUM (pseudo))
      return pseudo - MEP_FIRST_FP_CR32_REGNUM;
  else if (IS_CR64_REGNUM (pseudo))
      return pseudo - MEP_FIRST_CR64_REGNUM;
  else if (IS_FP_CR64_REGNUM (pseudo))
      return pseudo - MEP_FIRST_FP_CR64_REGNUM;
  else
    gdb_assert_not_reached ("unexpected coprocessor pseudo register");
}


/* Return the me_module index describing the current target.

   If the current target has registers (e.g., simulator, remote
   target), then this uses the value of the 'module' register, raw
   register MEP_MODULE_REGNUM.  Otherwise, this retrieves the value
   from the ELF header's e_flags field of the current executable
   file.  */
static CONFIG_ATTR
current_me_module (void)
{
  if (target_has_registers)
    {
      ULONGEST regval;
      regcache_cooked_read_unsigned (get_current_regcache (),
				     MEP_MODULE_REGNUM, &regval);
      return regval;
    }
  else
    return gdbarch_tdep (target_gdbarch ())->me_module;
}


/* Return the set of options for the current target, in the form that
   the OPT register would use.

   If the current target has registers (e.g., simulator, remote
   target), then this is the actual value of the OPT register.  If the
   current target does not have registers (e.g., an executable file),
   then use the 'module_opt' field we computed when we build the
   gdbarch object for this module.  */
static unsigned int
current_options (void)
{
  if (target_has_registers)
    {
      ULONGEST regval;
      regcache_cooked_read_unsigned (get_current_regcache (),
				     MEP_OPT_REGNUM, &regval);
      return regval;
    }
  else
    return me_module_opt (current_me_module ());
}


/* Return the width of the current me_module's coprocessor data bus,
   in bits.  This is either 32 or 64.  */
static int
current_cop_data_bus_width (void)
{
  return me_module_cop_data_bus_width (current_me_module ());
}


/* Return the keyword table of coprocessor general-purpose register
   names appropriate for the me_module we're dealing with.  */
static CGEN_KEYWORD *
current_cr_names (void)
{
  const CGEN_HW_ENTRY *hw
    = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);

  return register_set_keyword_table (hw);
}


/* Return non-zero if the coprocessor general-purpose registers are
   floating-point values, zero otherwise.  */
static int
current_cr_is_float (void)
{
  const CGEN_HW_ENTRY *hw
    = me_module_register_set (current_me_module (), "h-cr-", HW_H_CR);

  return CGEN_ATTR_CGEN_HW_IS_FLOAT_VALUE (CGEN_HW_ATTRS (hw));
}


/* Return the keyword table of coprocessor control register names
   appropriate for the me_module we're dealing with.  */
static CGEN_KEYWORD *
current_ccr_names (void)
{
  const CGEN_HW_ENTRY *hw
    = me_module_register_set (current_me_module (), "h-ccr-", HW_H_CCR);

  return register_set_keyword_table (hw);
}


static const char *
mep_register_name (struct gdbarch *gdbarch, int regnr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);  

  /* General-purpose registers.  */
  static const char *gpr_names[] = {
    "r0",   "r1",   "r2",   "r3",   /* 0 */
    "r4",   "r5",   "r6",   "r7",   /* 4 */
    "fp",   "r9",   "r10",  "r11",  /* 8 */
    "r12",  "tp",   "gp",   "sp"    /* 12 */
  };

  /* Special-purpose registers.  */
  static const char *csr_names[] = {
    "pc",   "lp",   "sar",  "",     /* 0  csr3: reserved */ 
    "rpb",  "rpe",  "rpc",  "hi",   /* 4 */
    "lo",   "",     "",     "",     /* 8  csr9-csr11: reserved */
    "mb0",  "me0",  "mb1",  "me1",  /* 12 */

    "psw",  "id",   "tmp",  "epc",  /* 16 */
    "exc",  "cfg",  "",     "npc",  /* 20  csr22: reserved */
    "dbg",  "depc", "opt",  "rcfg", /* 24 */
    "ccfg", "",     "",     ""      /* 28  csr29-csr31: reserved */
  };

  if (IS_GPR_REGNUM (regnr))
    return gpr_names[regnr - MEP_R0_REGNUM];
  else if (IS_CSR_REGNUM (regnr))
    {
      /* The 'hi' and 'lo' registers are only present on processors
         that have the 'MUL' or 'DIV' instructions enabled.  */
      if ((regnr == MEP_HI_REGNUM || regnr == MEP_LO_REGNUM)
          && (! (current_options () & (MEP_OPT_MUL | MEP_OPT_DIV))))
        return "";

      return csr_names[regnr - MEP_FIRST_CSR_REGNUM];
    }
  else if (IS_CR_REGNUM (regnr))
    {
      CGEN_KEYWORD *names;
      int cr_size;
      int cr_is_float;

      /* Does this module have a coprocessor at all?  */
      if (! (current_options () & MEP_OPT_COP))
        return "";

      names = current_cr_names ();
      if (! names)
        /* This module's coprocessor has no general-purpose registers.  */
        return "";

      cr_size = current_cop_data_bus_width ();
      if (cr_size != mep_pseudo_cr_size (regnr))
        /* This module's coprocessor's GPR's are of a different size.  */
        return "";

      cr_is_float = current_cr_is_float ();
      /* The extra ! operators ensure we get boolean equality, not
         numeric equality.  */
      if (! cr_is_float != ! mep_pseudo_cr_is_float (regnr))
        /* This module's coprocessor's GPR's are of a different type.  */
        return "";

      return register_name_from_keyword (names, mep_pseudo_cr_index (regnr));
    }
  else if (IS_CCR_REGNUM (regnr))
    {
      /* Does this module have a coprocessor at all?  */
      if (! (current_options () & MEP_OPT_COP))
        return "";

      {
        CGEN_KEYWORD *names = current_ccr_names ();

        if (! names)
          /* This me_module's coprocessor has no control registers.  */
          return "";

        return register_name_from_keyword (names, regnr-MEP_FIRST_CCR_REGNUM);
      }
    }

  /* It might be nice to give the 'module' register a name, but that
     would affect the output of 'info all-registers', which would
     disturb the test suites.  So we leave it invisible.  */
  else
    return NULL;
}


/* Custom register groups for the MeP.  */
static struct reggroup *mep_csr_reggroup; /* control/special */
static struct reggroup *mep_cr_reggroup;  /* coprocessor general-purpose */
static struct reggroup *mep_ccr_reggroup; /* coprocessor control */


static int
mep_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
                         struct reggroup *group)
{
  /* Filter reserved or unused register numbers.  */
  {
    const char *name = mep_register_name (gdbarch, regnum);

    if (! name || name[0] == '\0')
      return 0;
  }

  /* We could separate the GPRs and the CSRs.  Toshiba has approved of
     the existing behavior, so we'd want to run that by them.  */
  if (group == general_reggroup)
    return (IS_GPR_REGNUM (regnum)
            || IS_CSR_REGNUM (regnum));

  /* Everything is in the 'all' reggroup, except for the raw CSR's.  */
  else if (group == all_reggroup)
    return (IS_GPR_REGNUM (regnum)
            || IS_CSR_REGNUM (regnum)
            || IS_CR_REGNUM (regnum)
            || IS_CCR_REGNUM (regnum));

  /* All registers should be saved and restored, except for the raw
     CSR's.

     This is probably right if the coprocessor is something like a
     floating-point unit, but would be wrong if the coprocessor is
     something that does I/O, where register accesses actually cause
     externally-visible actions.  But I get the impression that the
     coprocessor isn't supposed to do things like that --- you'd use a
     hardware engine, perhaps.  */
  else if (group == save_reggroup || group == restore_reggroup)
    return (IS_GPR_REGNUM (regnum)
            || IS_CSR_REGNUM (regnum)
            || IS_CR_REGNUM (regnum)
            || IS_CCR_REGNUM (regnum));

  else if (group == mep_csr_reggroup)
    return IS_CSR_REGNUM (regnum);
  else if (group == mep_cr_reggroup)
    return IS_CR_REGNUM (regnum);
  else if (group == mep_ccr_reggroup)
    return IS_CCR_REGNUM (regnum);
  else
    return 0;
}


static struct type *
mep_register_type (struct gdbarch *gdbarch, int reg_nr)
{
  /* Coprocessor general-purpose registers may be either 32 or 64 bits
     long.  So for them, the raw registers are always 64 bits long (to
     keep the 'g' packet format fixed), and the pseudoregisters vary
     in length.  */
  if (IS_RAW_CR_REGNUM (reg_nr))
    return builtin_type (gdbarch)->builtin_uint64;

  /* Since GDB doesn't allow registers to change type, we have two
     banks of pseudoregisters for the coprocessor general-purpose
     registers: one that gives a 32-bit view, and one that gives a
     64-bit view.  We hide or show one or the other depending on the
     current module.  */
  if (IS_CR_REGNUM (reg_nr))
    {
      int size = mep_pseudo_cr_size (reg_nr);
      if (size == 32)
        {
          if (mep_pseudo_cr_is_float (reg_nr))
            return builtin_type (gdbarch)->builtin_float;
          else
            return builtin_type (gdbarch)->builtin_uint32;
        }
      else if (size == 64)
        {
          if (mep_pseudo_cr_is_float (reg_nr))
            return builtin_type (gdbarch)->builtin_double;
          else
            return builtin_type (gdbarch)->builtin_uint64;
        }
      else
        gdb_assert_not_reached ("unexpected cr size");
    }

  /* All other registers are 32 bits long.  */
  else
    return builtin_type (gdbarch)->builtin_uint32;
}


static CORE_ADDR
mep_read_pc (struct regcache *regcache)
{
  ULONGEST pc;
  regcache_cooked_read_unsigned (regcache, MEP_PC_REGNUM, &pc);
  return pc;
}

static enum register_status
mep_pseudo_cr32_read (struct gdbarch *gdbarch,
                      struct regcache *regcache,
                      int cookednum,
                      void *buf)
{
  enum register_status status;
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  /* Read the raw register into a 64-bit buffer, and then return the
     appropriate end of that buffer.  */
  int rawnum = mep_pseudo_to_raw[cookednum];
  gdb_byte buf64[8];

  gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
  gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
  status = regcache_raw_read (regcache, rawnum, buf64);
  if (status == REG_VALID)
    {
      /* Slow, but legible.  */
      store_unsigned_integer (buf, 4, byte_order,
			      extract_unsigned_integer (buf64, 8, byte_order));
    }
  return status;
}


static enum register_status
mep_pseudo_cr64_read (struct gdbarch *gdbarch,
                      struct regcache *regcache,
                      int cookednum,
                      void *buf)
{
  return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
}


static enum register_status
mep_pseudo_register_read (struct gdbarch *gdbarch,
                          struct regcache *regcache,
                          int cookednum,
                          gdb_byte *buf)
{
  if (IS_CSR_REGNUM (cookednum)
      || IS_CCR_REGNUM (cookednum))
    return regcache_raw_read (regcache, mep_pseudo_to_raw[cookednum], buf);
  else if (IS_CR32_REGNUM (cookednum)
           || IS_FP_CR32_REGNUM (cookednum))
    return mep_pseudo_cr32_read (gdbarch, regcache, cookednum, buf);
  else if (IS_CR64_REGNUM (cookednum)
           || IS_FP_CR64_REGNUM (cookednum))
    return mep_pseudo_cr64_read (gdbarch, regcache, cookednum, buf);
  else
    gdb_assert_not_reached ("unexpected pseudo register");
}


static void
mep_pseudo_csr_write (struct gdbarch *gdbarch,
                      struct regcache *regcache,
                      int cookednum,
                      const void *buf)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int size = register_size (gdbarch, cookednum);
  struct mep_csr_register *r
    = &mep_csr_registers[cookednum - MEP_FIRST_CSR_REGNUM];

  if (r->writeable_bits == 0)
    /* A completely read-only register; avoid the read-modify-
       write cycle, and juts ignore the entire write.  */
    ;
  else
    {
      /* A partially writeable register; do a read-modify-write cycle.  */
      ULONGEST old_bits;
      ULONGEST new_bits;
      ULONGEST mixed_bits;
          
      regcache_raw_read_unsigned (regcache, r->raw, &old_bits);
      new_bits = extract_unsigned_integer (buf, size, byte_order);
      mixed_bits = ((r->writeable_bits & new_bits)
                    | (~r->writeable_bits & old_bits));
      regcache_raw_write_unsigned (regcache, r->raw, mixed_bits);
    }
}
                      

static void
mep_pseudo_cr32_write (struct gdbarch *gdbarch,
                       struct regcache *regcache,
                       int cookednum,
                       const void *buf)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  /* Expand the 32-bit value into a 64-bit value, and write that to
     the pseudoregister.  */
  int rawnum = mep_pseudo_to_raw[cookednum];
  gdb_byte buf64[8];
  
  gdb_assert (TYPE_LENGTH (register_type (gdbarch, rawnum)) == sizeof (buf64));
  gdb_assert (TYPE_LENGTH (register_type (gdbarch, cookednum)) == 4);
  /* Slow, but legible.  */
  store_unsigned_integer (buf64, 8, byte_order,
			  extract_unsigned_integer (buf, 4, byte_order));
  regcache_raw_write (regcache, rawnum, buf64);
}


static void
mep_pseudo_cr64_write (struct gdbarch *gdbarch,
                     struct regcache *regcache,
                     int cookednum,
                     const void *buf)
{
  regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
}


static void
mep_pseudo_register_write (struct gdbarch *gdbarch,
                           struct regcache *regcache,
                           int cookednum,
                           const gdb_byte *buf)
{
  if (IS_CSR_REGNUM (cookednum))
    mep_pseudo_csr_write (gdbarch, regcache, cookednum, buf);
  else if (IS_CR32_REGNUM (cookednum)
           || IS_FP_CR32_REGNUM (cookednum))
    mep_pseudo_cr32_write (gdbarch, regcache, cookednum, buf);
  else if (IS_CR64_REGNUM (cookednum)
           || IS_FP_CR64_REGNUM (cookednum))
    mep_pseudo_cr64_write (gdbarch, regcache, cookednum, buf);
  else if (IS_CCR_REGNUM (cookednum))
    regcache_raw_write (regcache, mep_pseudo_to_raw[cookednum], buf);
  else
    gdb_assert_not_reached ("unexpected pseudo register");
}



/* Disassembly.  */

/* The mep disassembler needs to know about the section in order to
   work correctly.  */
static int
mep_gdb_print_insn (bfd_vma pc, disassemble_info * info)
{
  struct obj_section * s = find_pc_section (pc);

  if (s)
    {
      /* The libopcodes disassembly code uses the section to find the
         BFD, the BFD to find the ELF header, the ELF header to find
         the me_module index, and the me_module index to select the
         right instructions to print.  */
      info->section = s->the_bfd_section;
      info->arch = bfd_arch_mep;
	
      return print_insn_mep (pc, info);
    }
  
  return 0;
}


/* Prologue analysis.  */


/* The MeP has two classes of instructions: "core" instructions, which
   are pretty normal RISC chip stuff, and "coprocessor" instructions,
   which are mostly concerned with moving data in and out of
   coprocessor registers, and branching on coprocessor condition
   codes.  There's space in the instruction set for custom coprocessor
   instructions, too.

   Instructions can be 16 or 32 bits long; the top two bits of the
   first byte indicate the length.  The coprocessor instructions are
   mixed in with the core instructions, and there's no easy way to
   distinguish them; you have to completely decode them to tell one
   from the other.

   The MeP also supports a "VLIW" operation mode, where instructions
   always occur in fixed-width bundles.  The bundles are either 32
   bits or 64 bits long, depending on a fixed configuration flag.  You
   decode the first part of the bundle as normal; if it's a core
   instruction, and there's any space left in the bundle, the
   remainder of the bundle is a coprocessor instruction, which will
   execute in parallel with the core instruction.  If the first part
   of the bundle is a coprocessor instruction, it occupies the entire
   bundle.

   So, here are all the cases:

   - 32-bit VLIW mode:
     Every bundle is four bytes long, and naturally aligned, and can hold
     one or two instructions:
     - 16-bit core instruction; 16-bit coprocessor instruction
       These execute in parallel.
     - 32-bit core instruction
     - 32-bit coprocessor instruction

   - 64-bit VLIW mode:
     Every bundle is eight bytes long, and naturally aligned, and can hold
     one or two instructions:
     - 16-bit core instruction; 48-bit (!) coprocessor instruction
       These execute in parallel.
     - 32-bit core instruction; 32-bit coprocessor instruction
       These execute in parallel.
     - 64-bit coprocessor instruction

   Now, the MeP manual doesn't define any 48- or 64-bit coprocessor
   instruction, so I don't really know what's up there; perhaps these
   are always the user-defined coprocessor instructions.  */


/* Return non-zero if PC is in a VLIW code section, zero
   otherwise.  */
static int
mep_pc_in_vliw_section (CORE_ADDR pc)
{
  struct obj_section *s = find_pc_section (pc);
  if (s)
    return (s->the_bfd_section->flags & SEC_MEP_VLIW);
  return 0;
}


/* Set *INSN to the next core instruction at PC, and return the
   address of the next instruction.

   The MeP instruction encoding is endian-dependent.  16- and 32-bit
   instructions are encoded as one or two two-byte parts, and each
   part is byte-swapped independently.  Thus:

      void
      foo (void)
      {
        asm ("movu $1, 0x123456");
        asm ("sb $1,0x5678($2)");
        asm ("clip $1, 19");
      }

   compiles to this big-endian code:

       0:	d1 56 12 34 	movu $1,0x123456
       4:	c1 28 56 78 	sb $1,22136($2)
       8:	f1 01 10 98 	clip $1,0x13
       c:	70 02       	ret

   and this little-endian code:

       0:	56 d1 34 12 	movu $1,0x123456
       4:	28 c1 78 56 	sb $1,22136($2)
       8:	01 f1 98 10 	clip $1,0x13
       c:	02 70       	ret

   Instructions are returned in *INSN in an endian-independent form: a
   given instruction always appears in *INSN the same way, regardless
   of whether the instruction stream is big-endian or little-endian.

   *INSN's most significant 16 bits are the first (i.e., at lower
   addresses) 16 bit part of the instruction.  Its least significant
   16 bits are the second (i.e., higher-addressed) 16 bit part of the
   instruction, or zero for a 16-bit instruction.  Both 16-bit parts
   are fetched using the current endianness.

   So, the *INSN values for the instruction sequence above would be
   the following, in either endianness:

       0xd1561234       movu $1,0x123456     
       0xc1285678 	sb $1,22136($2)
       0xf1011098 	clip $1,0x13
       0x70020000      	ret

   (In a sense, it would be more natural to return 16-bit instructions
   in the least significant 16 bits of *INSN, but that would be
   ambiguous.  In order to tell whether you're looking at a 16- or a
   32-bit instruction, you have to consult the major opcode field ---
   the most significant four bits of the instruction's first 16-bit
   part.  But if we put 16-bit instructions at the least significant
   end of *INSN, then you don't know where to find the major opcode
   field until you know if it's a 16- or a 32-bit instruction ---
   which is where we started.)

   If PC points to a core / coprocessor bundle in a VLIW section, set
   *INSN to the core instruction, and return the address of the next
   bundle.  This has the effect of skipping the bundled coprocessor
   instruction.  That's okay, since coprocessor instructions aren't
   significant to prologue analysis --- for the time being,
   anyway.  */

static CORE_ADDR 
mep_get_insn (struct gdbarch *gdbarch, CORE_ADDR pc, unsigned long *insn)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int pc_in_vliw_section;
  int vliw_mode;
  int insn_len;
  gdb_byte buf[2];

  *insn = 0;

  /* Are we in a VLIW section?  */
  pc_in_vliw_section = mep_pc_in_vliw_section (pc);
  if (pc_in_vliw_section)
    {
      /* Yes, find out which bundle size.  */
      vliw_mode = current_options () & (MEP_OPT_VL32 | MEP_OPT_VL64);

      /* If PC is in a VLIW section, but the current core doesn't say
         that it supports either VLIW mode, then we don't have enough
         information to parse the instruction stream it contains.
         Since the "undifferentiated" standard core doesn't have
         either VLIW mode bit set, this could happen.

         But it shouldn't be an error to (say) set a breakpoint in a
         VLIW section, if you know you'll never reach it.  (Perhaps
         you have a script that sets a bunch of standard breakpoints.)

         So we'll just return zero here, and hope for the best.  */
      if (! (vliw_mode & (MEP_OPT_VL32 | MEP_OPT_VL64)))
        return 0;

      /* If both VL32 and VL64 are set, that's bogus, too.  */
      if (vliw_mode == (MEP_OPT_VL32 | MEP_OPT_VL64))
        return 0;
    }
  else
    vliw_mode = 0;

  read_memory (pc, buf, sizeof (buf));
  *insn = extract_unsigned_integer (buf, 2, byte_order) << 16;

  /* The major opcode --- the top four bits of the first 16-bit
     part --- indicates whether this instruction is 16 or 32 bits
     long.  All 32-bit instructions have a major opcode whose top
     two bits are 11; all the rest are 16-bit instructions.  */
  if ((*insn & 0xc0000000) == 0xc0000000)
    {
      /* Fetch the second 16-bit part of the instruction.  */
      read_memory (pc + 2, buf, sizeof (buf));
      *insn = *insn | extract_unsigned_integer (buf, 2, byte_order);
    }

  /* If we're in VLIW code, then the VLIW width determines the address
     of the next instruction.  */
  if (vliw_mode)
    {
      /* In 32-bit VLIW code, all bundles are 32 bits long.  We ignore the
         coprocessor half of a core / copro bundle.  */
      if (vliw_mode == MEP_OPT_VL32)
        insn_len = 4;

      /* In 64-bit VLIW code, all bundles are 64 bits long.  We ignore the
         coprocessor half of a core / copro bundle.  */
      else if (vliw_mode == MEP_OPT_VL64)
        insn_len = 8;

      /* We'd better be in either core, 32-bit VLIW, or 64-bit VLIW mode.  */
      else
        gdb_assert_not_reached ("unexpected vliw mode");
    }
  
  /* Otherwise, the top two bits of the major opcode are (again) what
     we need to check.  */
  else if ((*insn & 0xc0000000) == 0xc0000000)
    insn_len = 4;
  else
    insn_len = 2;

  return pc + insn_len;
}


/* Sign-extend the LEN-bit value N.  */
#define SEXT(n, len) ((((int) (n)) ^ (1 << ((len) - 1))) - (1 << ((len) - 1)))

/* Return the LEN-bit field at POS from I.  */
#define FIELD(i, pos, len) (((i) >> (pos)) & ((1 << (len)) - 1))

/* Like FIELD, but sign-extend the field's value.  */
#define SFIELD(i, pos, len) (SEXT (FIELD ((i), (pos), (len)), (len)))


/* Macros for decoding instructions.

   Remember that 16-bit instructions are placed in bits 16..31 of i,
   not at the least significant end; this means that the major opcode
   field is always in the same place, regardless of the width of the
   instruction.  As a reminder of this, we show the lower 16 bits of a
   16-bit instruction as xxxx_xxxx_xxxx_xxxx.  */

/* SB Rn,(Rm)		      0000_nnnn_mmmm_1000 */
/* SH Rn,(Rm)		      0000_nnnn_mmmm_1001 */
/* SW Rn,(Rm)		      0000_nnnn_mmmm_1010 */

/* SW Rn,disp16(Rm)	      1100_nnnn_mmmm_1010 dddd_dddd_dddd_dddd */
#define IS_SW(i)	      (((i) & 0xf00f0000) == 0xc00a0000)
/* SB Rn,disp16(Rm)	      1100_nnnn_mmmm_1000 dddd_dddd_dddd_dddd */
#define IS_SB(i)	      (((i) & 0xf00f0000) == 0xc0080000)
/* SH Rn,disp16(Rm)	      1100_nnnn_mmmm_1001 dddd_dddd_dddd_dddd */
#define IS_SH(i)	      (((i) & 0xf00f0000) == 0xc0090000)
#define SWBH_32_BASE(i)       (FIELD (i, 20, 4))
#define SWBH_32_SOURCE(i)     (FIELD (i, 24, 4))
#define SWBH_32_OFFSET(i)     (SFIELD (i, 0, 16))

/* SW Rn,disp7.align4(SP)     0100_nnnn_0ddd_dd10 xxxx_xxxx_xxxx_xxxx */
#define IS_SW_IMMD(i)	      (((i) & 0xf0830000) == 0x40020000)
#define SW_IMMD_SOURCE(i)     (FIELD (i, 24, 4))
#define SW_IMMD_OFFSET(i)     (FIELD (i, 18, 5) << 2)

/* SW Rn,(Rm)                 0000_nnnn_mmmm_1010 xxxx_xxxx_xxxx_xxxx */
#define IS_SW_REG(i)	      (((i) & 0xf00f0000) == 0x000a0000)
#define SW_REG_SOURCE(i)      (FIELD (i, 24, 4))
#define SW_REG_BASE(i)        (FIELD (i, 20, 4))

/* ADD3 Rl,Rn,Rm              1001_nnnn_mmmm_llll xxxx_xxxx_xxxx_xxxx */
#define IS_ADD3_16_REG(i)     (((i) & 0xf0000000) == 0x90000000)
#define ADD3_16_REG_SRC1(i)   (FIELD (i, 20, 4))               /* n */
#define ADD3_16_REG_SRC2(i)   (FIELD (i, 24, 4))               /* m */

/* ADD3 Rn,Rm,imm16           1100_nnnn_mmmm_0000 iiii_iiii_iiii_iiii */
#define IS_ADD3_32(i)	      (((i) & 0xf00f0000) == 0xc0000000)
#define ADD3_32_TARGET(i)     (FIELD (i, 24, 4))
#define ADD3_32_SOURCE(i)     (FIELD (i, 20, 4))
#define ADD3_32_OFFSET(i)     (SFIELD (i, 0, 16))

/* ADD3 Rn,SP,imm7.align4     0100_nnnn_0iii_ii00 xxxx_xxxx_xxxx_xxxx */
#define IS_ADD3_16(i)  	      (((i) & 0xf0830000) == 0x40000000)
#define ADD3_16_TARGET(i)     (FIELD (i, 24, 4))
#define ADD3_16_OFFSET(i)     (FIELD (i, 18, 5) << 2)

/* ADD Rn,imm6		      0110_nnnn_iiii_ii00 xxxx_xxxx_xxxx_xxxx */
#define IS_ADD(i) 	      (((i) & 0xf0030000) == 0x60000000)
#define ADD_TARGET(i)	      (FIELD (i, 24, 4))
#define ADD_OFFSET(i)         (SFIELD (i, 18, 6))

/* LDC Rn,imm5		      0111_nnnn_iiii_101I xxxx_xxxx_xxxx_xxxx
                              imm5 = I||i[7:4] */
#define IS_LDC(i)	      (((i) & 0xf00e0000) == 0x700a0000)
#define LDC_IMM(i)            ((FIELD (i, 16, 1) << 4) | FIELD (i, 20, 4))
#define LDC_TARGET(i)         (FIELD (i, 24, 4))

/* LW Rn,disp16(Rm)           1100_nnnn_mmmm_1110 dddd_dddd_dddd_dddd  */
#define IS_LW(i)              (((i) & 0xf00f0000) == 0xc00e0000)
#define LW_TARGET(i)          (FIELD (i, 24, 4))
#define LW_BASE(i)            (FIELD (i, 20, 4))
#define LW_OFFSET(i)          (SFIELD (i, 0, 16))

/* MOV Rn,Rm		      0000_nnnn_mmmm_0000 xxxx_xxxx_xxxx_xxxx */
#define IS_MOV(i)	      (((i) & 0xf00f0000) == 0x00000000)
#define MOV_TARGET(i)	      (FIELD (i, 24, 4))
#define MOV_SOURCE(i)	      (FIELD (i, 20, 4))

/* BRA disp12.align2	      1011_dddd_dddd_ddd0 xxxx_xxxx_xxxx_xxxx */
#define IS_BRA(i)	      (((i) & 0xf0010000) == 0xb0000000)
#define BRA_DISP(i)           (SFIELD (i, 17, 11) << 1)


/* This structure holds the results of a prologue analysis.  */
struct mep_prologue
{
  /* The architecture for which we generated this prologue info.  */
  struct gdbarch *gdbarch;

  /* The offset from the frame base to the stack pointer --- always
     zero or negative.

     Calling this a "size" is a bit misleading, but given that the
     stack grows downwards, using offsets for everything keeps one
     from going completely sign-crazy: you never change anything's
     sign for an ADD instruction; always change the second operand's
     sign for a SUB instruction; and everything takes care of
     itself.  */
  int frame_size;

  /* Non-zero if this function has initialized the frame pointer from
     the stack pointer, zero otherwise.  */
  int has_frame_ptr;

  /* If has_frame_ptr is non-zero, this is the offset from the frame
     base to where the frame pointer points.  This is always zero or
     negative.  */
  int frame_ptr_offset;

  /* The address of the first instruction at which the frame has been
     set up and the arguments are where the debug info says they are
     --- as best as we can tell.  */
  CORE_ADDR prologue_end;

  /* reg_offset[R] is the offset from the CFA at which register R is
     saved, or 1 if register R has not been saved.  (Real values are
     always zero or negative.)  */
  int reg_offset[MEP_NUM_REGS];
};

/* Return non-zero if VALUE is an incoming argument register.  */

static int
is_arg_reg (pv_t value)
{
  return (value.kind == pvk_register
          && MEP_R1_REGNUM <= value.reg && value.reg <= MEP_R4_REGNUM
          && value.k == 0);
}

/* Return non-zero if a store of REG's current value VALUE to ADDR is
   probably spilling an argument register to its stack slot in STACK.
   Such instructions should be included in the prologue, if possible.

   The store is a spill if:
   - the value being stored is REG's original value;
   - the value has not already been stored somewhere in STACK; and
   - ADDR is a stack slot's address (e.g., relative to the original
     value of the SP).  */
static int
is_arg_spill (struct gdbarch *gdbarch, pv_t value, pv_t addr,
	      struct pv_area *stack)
{
  return (is_arg_reg (value)
          && pv_is_register (addr, MEP_SP_REGNUM)
          && ! pv_area_find_reg (stack, gdbarch, value.reg, 0));
}


/* Function for finding saved registers in a 'struct pv_area'; we pass
   this to pv_area_scan.

   If VALUE is a saved register, ADDR says it was saved at a constant
   offset from the frame base, and SIZE indicates that the whole
   register was saved, record its offset in RESULT_UNTYPED.  */
static void
check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value)
{
  struct mep_prologue *result = (struct mep_prologue *) result_untyped;

  if (value.kind == pvk_register
      && value.k == 0
      && pv_is_register (addr, MEP_SP_REGNUM)
      && size == register_size (result->gdbarch, value.reg))
    result->reg_offset[value.reg] = addr.k;
}


/* Analyze a prologue starting at START_PC, going no further than
   LIMIT_PC.  Fill in RESULT as appropriate.  */
static void
mep_analyze_prologue (struct gdbarch *gdbarch,
		      CORE_ADDR start_pc, CORE_ADDR limit_pc,
                      struct mep_prologue *result)
{
  CORE_ADDR pc;
  unsigned long insn;
  int rn;
  int found_lp = 0;
  pv_t reg[MEP_NUM_REGS];
  struct pv_area *stack;
  struct cleanup *back_to;
  CORE_ADDR after_last_frame_setup_insn = start_pc;

  memset (result, 0, sizeof (*result));
  result->gdbarch = gdbarch;

  for (rn = 0; rn < MEP_NUM_REGS; rn++)
    {
      reg[rn] = pv_register (rn, 0);
      result->reg_offset[rn] = 1;
    }

  stack = make_pv_area (MEP_SP_REGNUM, gdbarch_addr_bit (gdbarch));
  back_to = make_cleanup_free_pv_area (stack);

  pc = start_pc;
  while (pc < limit_pc)
    {
      CORE_ADDR next_pc;
      pv_t pre_insn_fp, pre_insn_sp;

      next_pc = mep_get_insn (gdbarch, pc, &insn);

      /* A zero return from mep_get_insn means that either we weren't
         able to read the instruction from memory, or that we don't
         have enough information to be able to reliably decode it.  So
         we'll store here and hope for the best.  */
      if (! next_pc)
        break;

      /* Note the current values of the SP and FP, so we can tell if
         this instruction changed them, below.  */
      pre_insn_fp = reg[MEP_FP_REGNUM];
      pre_insn_sp = reg[MEP_SP_REGNUM];

      if (IS_ADD (insn))
        {
          int rn = ADD_TARGET (insn);
          CORE_ADDR imm6 = ADD_OFFSET (insn);

          reg[rn] = pv_add_constant (reg[rn], imm6);
        }
      else if (IS_ADD3_16 (insn))
	{
          int rn = ADD3_16_TARGET (insn);
          int imm7 = ADD3_16_OFFSET (insn);

          reg[rn] = pv_add_constant (reg[MEP_SP_REGNUM], imm7);
        }
      else if (IS_ADD3_32 (insn))
	{
          int rn = ADD3_32_TARGET (insn);
          int rm = ADD3_32_SOURCE (insn);
          int imm16 = ADD3_32_OFFSET (insn);

          reg[rn] = pv_add_constant (reg[rm], imm16);
	}
      else if (IS_SW_REG (insn))
        {
          int rn = SW_REG_SOURCE (insn);
          int rm = SW_REG_BASE (insn);

          /* If simulating this store would require us to forget
             everything we know about the stack frame in the name of
             accuracy, it would be better to just quit now.  */
          if (pv_area_store_would_trash (stack, reg[rm]))
            break;
          
          if (is_arg_spill (gdbarch, reg[rn], reg[rm], stack))
            after_last_frame_setup_insn = next_pc;

          pv_area_store (stack, reg[rm], 4, reg[rn]);
        }
      else if (IS_SW_IMMD (insn))
        {
          int rn = SW_IMMD_SOURCE (insn);
          int offset = SW_IMMD_OFFSET (insn);
          pv_t addr = pv_add_constant (reg[MEP_SP_REGNUM], offset);

          /* If simulating this store would require us to forget
             everything we know about the stack frame in the name of
             accuracy, it would be better to just quit now.  */
          if (pv_area_store_would_trash (stack, addr))
            break;

          if (is_arg_spill (gdbarch, reg[rn], addr, stack))
            after_last_frame_setup_insn = next_pc;

          pv_area_store (stack, addr, 4, reg[rn]);
        }
      else if (IS_MOV (insn))
	{
          int rn = MOV_TARGET (insn);
          int rm = MOV_SOURCE (insn);

          reg[rn] = reg[rm];

	  if (pv_is_register (reg[rm], rm) && is_arg_reg (reg[rm]))
	    after_last_frame_setup_insn = next_pc;
	}
      else if (IS_SB (insn) || IS_SH (insn) || IS_SW (insn))
	{
          int rn = SWBH_32_SOURCE (insn);
          int rm = SWBH_32_BASE (insn);
          int disp = SWBH_32_OFFSET (insn);
          int size = (IS_SB (insn) ? 1
                      : IS_SH (insn) ? 2
                      : (gdb_assert (IS_SW (insn)), 4));
          pv_t addr = pv_add_constant (reg[rm], disp);

          if (pv_area_store_would_trash (stack, addr))
            break;

          if (is_arg_spill (gdbarch, reg[rn], addr, stack))
            after_last_frame_setup_insn = next_pc;

          pv_area_store (stack, addr, size, reg[rn]);
	}
      else if (IS_LDC (insn))
	{
          int rn = LDC_TARGET (insn);
          int cr = LDC_IMM (insn) + MEP_FIRST_CSR_REGNUM;

          reg[rn] = reg[cr];
	}
      else if (IS_LW (insn))
        {
          int rn = LW_TARGET (insn);
          int rm = LW_BASE (insn);
          int offset = LW_OFFSET (insn);
          pv_t addr = pv_add_constant (reg[rm], offset);

          reg[rn] = pv_area_fetch (stack, addr, 4);
        }
      else if (IS_BRA (insn) && BRA_DISP (insn) > 0)
	{
	  /* When a loop appears as the first statement of a function
	     body, gcc 4.x will use a BRA instruction to branch to the
	     loop condition checking code.  This BRA instruction is
	     marked as part of the prologue.  We therefore set next_pc
	     to this branch target and also stop the prologue scan.
	     The instructions at and beyond the branch target should
	     no longer be associated with the prologue.
	     
	     Note that we only consider forward branches here.  We
	     presume that a forward branch is being used to skip over
	     a loop body.
	     
	     A backwards branch is covered by the default case below.
	     If we were to encounter a backwards branch, that would
	     most likely mean that we've scanned through a loop body.
	     We definitely want to stop the prologue scan when this
	     happens and that is precisely what is done by the default
	     case below.  */
	  next_pc = pc + BRA_DISP (insn);
	  after_last_frame_setup_insn = next_pc;
	  break;
	}
      else
        /* We've hit some instruction we don't know how to simulate.
           Strictly speaking, we should set every value we're
           tracking to "unknown".  But we'll be optimistic, assume
           that we have enough information already, and stop
           analysis here.  */
        break;

      /* If this instruction changed the FP or decreased the SP (i.e.,
         allocated more stack space), then this may be a good place to
         declare the prologue finished.  However, there are some
         exceptions:

         - If the instruction just changed the FP back to its original
           value, then that's probably a restore instruction.  The
           prologue should definitely end before that.  

         - If the instruction increased the value of the SP (that is,
           shrunk the frame), then it's probably part of a frame
           teardown sequence, and the prologue should end before that.  */

      if (! pv_is_identical (reg[MEP_FP_REGNUM], pre_insn_fp))
        {
          if (! pv_is_register_k (reg[MEP_FP_REGNUM], MEP_FP_REGNUM, 0))
            after_last_frame_setup_insn = next_pc;
        }
      else if (! pv_is_identical (reg[MEP_SP_REGNUM], pre_insn_sp))
        {
          /* The comparison of constants looks odd, there, because .k
             is unsigned.  All it really means is that the new value
             is lower than it was before the instruction.  */
          if (pv_is_register (pre_insn_sp, MEP_SP_REGNUM)
              && pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM)
              && ((pre_insn_sp.k - reg[MEP_SP_REGNUM].k)
                  < (reg[MEP_SP_REGNUM].k - pre_insn_sp.k)))
            after_last_frame_setup_insn = next_pc;
        }

      pc = next_pc;
    }

  /* Is the frame size (offset, really) a known constant?  */
  if (pv_is_register (reg[MEP_SP_REGNUM], MEP_SP_REGNUM))
    result->frame_size = reg[MEP_SP_REGNUM].k;

  /* Was the frame pointer initialized?  */
  if (pv_is_register (reg[MEP_FP_REGNUM], MEP_SP_REGNUM))
    {
      result->has_frame_ptr = 1;
      result->frame_ptr_offset = reg[MEP_FP_REGNUM].k;
    }

  /* Record where all the registers were saved.  */
  pv_area_scan (stack, check_for_saved, (void *) result);

  result->prologue_end = after_last_frame_setup_insn;

  do_cleanups (back_to);
}


static CORE_ADDR
mep_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  const char *name;
  CORE_ADDR func_addr, func_end;
  struct mep_prologue p;

  /* Try to find the extent of the function that contains PC.  */
  if (! find_pc_partial_function (pc, &name, &func_addr, &func_end))
    return pc;

  mep_analyze_prologue (gdbarch, pc, func_end, &p);
  return p.prologue_end;
}



/* Breakpoints.  */

static const unsigned char *
mep_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
{
  static unsigned char breakpoint[] = { 0x70, 0x32 };
  *lenptr = sizeof (breakpoint);
  return breakpoint;
}



/* Frames and frame unwinding.  */


static struct mep_prologue *
mep_analyze_frame_prologue (struct frame_info *this_frame,
                            void **this_prologue_cache)
{
  if (! *this_prologue_cache)
    {
      CORE_ADDR func_start, stop_addr;

      *this_prologue_cache 
        = FRAME_OBSTACK_ZALLOC (struct mep_prologue);

      func_start = get_frame_func (this_frame);
      stop_addr = get_frame_pc (this_frame);

      /* If we couldn't find any function containing the PC, then
         just initialize the prologue cache, but don't do anything.  */
      if (! func_start)
        stop_addr = func_start;

      mep_analyze_prologue (get_frame_arch (this_frame),
			    func_start, stop_addr, *this_prologue_cache);
    }

  return *this_prologue_cache;
}


/* Given the next frame and a prologue cache, return this frame's
   base.  */
static CORE_ADDR
mep_frame_base (struct frame_info *this_frame,
                void **this_prologue_cache)
{
  struct mep_prologue *p
    = mep_analyze_frame_prologue (this_frame, this_prologue_cache);

  /* In functions that use alloca, the distance between the stack
     pointer and the frame base varies dynamically, so we can't use
     the SP plus static information like prologue analysis to find the
     frame base.  However, such functions must have a frame pointer,
     to be able to restore the SP on exit.  So whenever we do have a
     frame pointer, use that to find the base.  */
  if (p->has_frame_ptr)
    {
      CORE_ADDR fp
        = get_frame_register_unsigned (this_frame, MEP_FP_REGNUM);
      return fp - p->frame_ptr_offset;
    }
  else
    {
      CORE_ADDR sp
        = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
      return sp - p->frame_size;
    }
}


static void
mep_frame_this_id (struct frame_info *this_frame,
                   void **this_prologue_cache,
                   struct frame_id *this_id)
{
  *this_id = frame_id_build (mep_frame_base (this_frame, this_prologue_cache),
                             get_frame_func (this_frame));
}


static struct value *
mep_frame_prev_register (struct frame_info *this_frame,
                         void **this_prologue_cache, int regnum)
{
  struct mep_prologue *p
    = mep_analyze_frame_prologue (this_frame, this_prologue_cache);

  /* There are a number of complications in unwinding registers on the
     MeP, having to do with core functions calling VLIW functions and
     vice versa.

     The least significant bit of the link register, LP.LTOM, is the
     VLIW mode toggle bit: it's set if a core function called a VLIW
     function, or vice versa, and clear when the caller and callee
     were both in the same mode.

     So, if we're asked to unwind the PC, then we really want to
     unwind the LP and clear the least significant bit.  (Real return
     addresses are always even.)  And if we want to unwind the program
     status word (PSW), we need to toggle PSW.OM if LP.LTOM is set.

     Tweaking the register values we return in this way means that the
     bits in BUFFERP[] are not the same as the bits you'd find at
     ADDRP in the inferior, so we make sure lvalp is not_lval when we
     do this.  */
  if (regnum == MEP_PC_REGNUM)
    {
      struct value *value;
      CORE_ADDR lp;
      value = mep_frame_prev_register (this_frame, this_prologue_cache,
				       MEP_LP_REGNUM);
      lp = value_as_long (value);
      release_value (value);
      value_free (value);

      return frame_unwind_got_constant (this_frame, regnum, lp & ~1);
    }
  else
    {
      CORE_ADDR frame_base = mep_frame_base (this_frame, this_prologue_cache);
      struct value *value;

      /* Our caller's SP is our frame base.  */
      if (regnum == MEP_SP_REGNUM)
	return frame_unwind_got_constant (this_frame, regnum, frame_base);

      /* If prologue analysis says we saved this register somewhere,
         return a description of the stack slot holding it.  */
      if (p->reg_offset[regnum] != 1)
	value = frame_unwind_got_memory (this_frame, regnum,
					 frame_base + p->reg_offset[regnum]);

      /* Otherwise, presume we haven't changed the value of this
         register, and get it from the next frame.  */
      else
	value = frame_unwind_got_register (this_frame, regnum, regnum);

      /* If we need to toggle the operating mode, do so.  */
      if (regnum == MEP_PSW_REGNUM)
        {
	  CORE_ADDR psw, lp;

	  psw = value_as_long (value);
	  release_value (value);
	  value_free (value);

          /* Get the LP's value, too.  */
	  value = get_frame_register_value (this_frame, MEP_LP_REGNUM);
	  lp = value_as_long (value);
	  release_value (value);
	  value_free (value);

          /* If LP.LTOM is set, then toggle PSW.OM.  */
	  if (lp & 0x1)
	    psw ^= 0x1000;

	  return frame_unwind_got_constant (this_frame, regnum, psw);
        }

      return value;
    }
}


static const struct frame_unwind mep_frame_unwind = {
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  mep_frame_this_id,
  mep_frame_prev_register,
  NULL,
  default_frame_sniffer
};


/* Our general unwinding function can handle unwinding the PC.  */
static CORE_ADDR
mep_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  return frame_unwind_register_unsigned (next_frame, MEP_PC_REGNUM);
}


/* Our general unwinding function can handle unwinding the SP.  */
static CORE_ADDR
mep_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  return frame_unwind_register_unsigned (next_frame, MEP_SP_REGNUM);
}



/* Return values.  */


static int
mep_use_struct_convention (struct type *type)
{
  return (TYPE_LENGTH (type) > MEP_GPR_SIZE);
}


static void
mep_extract_return_value (struct gdbarch *arch,
                          struct type *type,
                          struct regcache *regcache,
                          gdb_byte *valbuf)
{
  int byte_order = gdbarch_byte_order (arch);

  /* Values that don't occupy a full register appear at the less
     significant end of the value.  This is the offset to where the
     value starts.  */
  int offset;

  /* Return values > MEP_GPR_SIZE bytes are returned in memory,
     pointed to by R0.  */
  gdb_assert (TYPE_LENGTH (type) <= MEP_GPR_SIZE);

  if (byte_order == BFD_ENDIAN_BIG)
    offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
  else
    offset = 0;

  /* Return values that do fit in a single register are returned in R0.  */
  regcache_cooked_read_part (regcache, MEP_R0_REGNUM,
                             offset, TYPE_LENGTH (type),
                             valbuf);
}


static void
mep_store_return_value (struct gdbarch *arch,
                        struct type *type,
                        struct regcache *regcache,
                        const gdb_byte *valbuf)
{
  int byte_order = gdbarch_byte_order (arch);

  /* Values that fit in a single register go in R0.  */
  if (TYPE_LENGTH (type) <= MEP_GPR_SIZE)
    {
      /* Values that don't occupy a full register appear at the least
         significant end of the value.  This is the offset to where the
         value starts.  */
      int offset;

      if (byte_order == BFD_ENDIAN_BIG)
        offset = MEP_GPR_SIZE - TYPE_LENGTH (type);
      else
        offset = 0;

      regcache_cooked_write_part (regcache, MEP_R0_REGNUM,
                                  offset, TYPE_LENGTH (type),
                                  valbuf);
    }

  /* Return values larger than a single register are returned in
     memory, pointed to by R0.  Unfortunately, we can't count on R0
     pointing to the return buffer, so we raise an error here.  */
  else
    error (_("\
GDB cannot set return values larger than four bytes; the Media Processor's\n\
calling conventions do not provide enough information to do this.\n\
Try using the 'return' command with no argument."));
}

static enum return_value_convention
mep_return_value (struct gdbarch *gdbarch, struct value *function,
		  struct type *type, struct regcache *regcache,
		  gdb_byte *readbuf, const gdb_byte *writebuf)
{
  if (mep_use_struct_convention (type))
    {
      if (readbuf)
	{
	  ULONGEST addr;
	  /* Although the address of the struct buffer gets passed in R1, it's
	     returned in R0.  Fetch R0's value and then read the memory
	     at that address.  */
	  regcache_raw_read_unsigned (regcache, MEP_R0_REGNUM, &addr);
	  read_memory (addr, readbuf, TYPE_LENGTH (type));
	}
      if (writebuf)
	{
	  /* Return values larger than a single register are returned in
	     memory, pointed to by R0.  Unfortunately, we can't count on R0
	     pointing to the return buffer, so we raise an error here.  */
	  error (_("\
GDB cannot set return values larger than four bytes; the Media Processor's\n\
calling conventions do not provide enough information to do this.\n\
Try using the 'return' command with no argument."));
	}
      return RETURN_VALUE_ABI_RETURNS_ADDRESS;
    }

  if (readbuf)
    mep_extract_return_value (gdbarch, type, regcache, readbuf);
  if (writebuf)
    mep_store_return_value (gdbarch, type, regcache, writebuf);

  return RETURN_VALUE_REGISTER_CONVENTION;
}


/* Inferior calls.  */


static CORE_ADDR
mep_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
{
  /* Require word alignment.  */
  return sp & -4;
}


/* From "lang_spec2.txt":

   4.2 Calling conventions

   4.2.1 Core register conventions

   - Parameters should be evaluated from left to right, and they
     should be held in $1,$2,$3,$4 in order.  The fifth parameter or
     after should be held in the stack.  If the size is larger than 4
     bytes in the first four parameters, the pointer should be held in
     the registers instead.  If the size is larger than 4 bytes in the
     fifth parameter or after, the pointer should be held in the stack.

   - Return value of a function should be held in register $0.  If the
     size of return value is larger than 4 bytes, $1 should hold the
     pointer pointing memory that would hold the return value.  In this
     case, the first parameter should be held in $2, the second one in
     $3, and the third one in $4, and the forth parameter or after
     should be held in the stack.

   [This doesn't say so, but arguments shorter than four bytes are
   passed in the least significant end of a four-byte word when
   they're passed on the stack.]  */


/* Traverse the list of ARGC arguments ARGV; for every ARGV[i] too
   large to fit in a register, save it on the stack, and place its
   address in COPY[i].  SP is the initial stack pointer; return the
   new stack pointer.  */
static CORE_ADDR
push_large_arguments (CORE_ADDR sp, int argc, struct value **argv,
                      CORE_ADDR copy[])
{
  int i;

  for (i = 0; i < argc; i++)
    {
      unsigned arg_len = TYPE_LENGTH (value_type (argv[i]));

      if (arg_len > MEP_GPR_SIZE)
        {
          /* Reserve space for the copy, and then round the SP down, to
             make sure it's all aligned properly.  */
          sp = (sp - arg_len) & -4;
          write_memory (sp, value_contents (argv[i]), arg_len);
          copy[i] = sp;
        }
    }

  return sp;
}


static CORE_ADDR
mep_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
                     struct regcache *regcache, CORE_ADDR bp_addr,
                     int argc, struct value **argv, CORE_ADDR sp,
                     int struct_return,
                     CORE_ADDR struct_addr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR *copy = (CORE_ADDR *) alloca (argc * sizeof (copy[0]));
  CORE_ADDR func_addr = find_function_addr (function, NULL);
  int i;

  /* The number of the next register available to hold an argument.  */
  int arg_reg;

  /* The address of the next stack slot available to hold an argument.  */
  CORE_ADDR arg_stack;

  /* The address of the end of the stack area for arguments.  This is
     just for error checking.  */
  CORE_ADDR arg_stack_end;
  
  sp = push_large_arguments (sp, argc, argv, copy);

  /* Reserve space for the stack arguments, if any.  */
  arg_stack_end = sp;
  if (argc + (struct_addr ? 1 : 0) > 4)
    sp -= ((argc + (struct_addr ? 1 : 0)) - 4) * MEP_GPR_SIZE;

  arg_reg = MEP_R1_REGNUM;
  arg_stack = sp;

  /* If we're returning a structure by value, push the pointer to the
     buffer as the first argument.  */
  if (struct_return)
    {
      regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
      arg_reg++;
    }

  for (i = 0; i < argc; i++)
    {
      ULONGEST value;

      /* Arguments that fit in a GPR get expanded to fill the GPR.  */
      if (TYPE_LENGTH (value_type (argv[i])) <= MEP_GPR_SIZE)
        value = extract_unsigned_integer (value_contents (argv[i]),
                                          TYPE_LENGTH (value_type (argv[i])),
					  byte_order);

      /* Arguments too large to fit in a GPR get copied to the stack,
         and we pass a pointer to the copy.  */
      else
        value = copy[i];

      /* We use $1 -- $4 for passing arguments, then use the stack.  */
      if (arg_reg <= MEP_R4_REGNUM)
        {
          regcache_cooked_write_unsigned (regcache, arg_reg, value);
          arg_reg++;
        }
      else
        {
          gdb_byte buf[MEP_GPR_SIZE];
          store_unsigned_integer (buf, MEP_GPR_SIZE, byte_order, value);
          write_memory (arg_stack, buf, MEP_GPR_SIZE);
          arg_stack += MEP_GPR_SIZE;
        }
    }

  gdb_assert (arg_stack <= arg_stack_end);

  /* Set the return address.  */
  regcache_cooked_write_unsigned (regcache, MEP_LP_REGNUM, bp_addr);

  /* Update the stack pointer.  */
  regcache_cooked_write_unsigned (regcache, MEP_SP_REGNUM, sp);
  
  return sp;
}


static struct frame_id
mep_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
  CORE_ADDR sp = get_frame_register_unsigned (this_frame, MEP_SP_REGNUM);
  return frame_id_build (sp, get_frame_pc (this_frame));
}



/* Initialization.  */


static struct gdbarch *
mep_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;

  /* Which me_module are we building a gdbarch object for?  */
  CONFIG_ATTR me_module;

  /* If we have a BFD in hand, figure out which me_module it was built
     for.  Otherwise, use the no-particular-me_module code.  */
  if (info.abfd)
    {
      /* The way to get the me_module code depends on the object file
         format.  At the moment, we only know how to handle ELF.  */
      if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
        me_module = elf_elfheader (info.abfd)->e_flags & EF_MEP_INDEX_MASK;
      else
        me_module = CONFIG_NONE;
    }
  else
    me_module = CONFIG_NONE;

  /* If we're setting the architecture from a file, check the
     endianness of the file against that of the me_module.  */
  if (info.abfd)
    {
      /* The negations on either side make the comparison treat all
         non-zero (true) values as equal.  */
      if (! bfd_big_endian (info.abfd) != ! me_module_big_endian (me_module))
        {
          const char *module_name = me_module_name (me_module);
          const char *module_endianness
            = me_module_big_endian (me_module) ? "big" : "little";
          const char *file_name = bfd_get_filename (info.abfd);
          const char *file_endianness
            = bfd_big_endian (info.abfd) ? "big" : "little";
          
          fputc_unfiltered ('\n', gdb_stderr);
          if (module_name)
            warning (_("the MeP module '%s' is %s-endian, but the executable\n"
		       "%s is %s-endian."),
                     module_name, module_endianness,
                     file_name, file_endianness);
          else
            warning (_("the selected MeP module is %s-endian, but the "
		       "executable\n"
		       "%s is %s-endian."),
                     module_endianness, file_name, file_endianness);
        }
    }

  /* Find a candidate among the list of architectures we've created
     already.  info->bfd_arch_info needs to match, but we also want
     the right me_module: the ELF header's e_flags field needs to
     match as well.  */
  for (arches = gdbarch_list_lookup_by_info (arches, &info); 
       arches != NULL;
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
    if (gdbarch_tdep (arches->gdbarch)->me_module == me_module)
      return arches->gdbarch;

  tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
  gdbarch = gdbarch_alloc (&info, tdep);

  /* Get a CGEN CPU descriptor for this architecture.  */
  {
    const char *mach_name = info.bfd_arch_info->printable_name;
    enum cgen_endian endian = (info.byte_order == BFD_ENDIAN_BIG
                               ? CGEN_ENDIAN_BIG
                               : CGEN_ENDIAN_LITTLE);

    tdep->cpu_desc = mep_cgen_cpu_open (CGEN_CPU_OPEN_BFDMACH, mach_name,
                                        CGEN_CPU_OPEN_ENDIAN, endian,
                                        CGEN_CPU_OPEN_END);
  }

  tdep->me_module = me_module;

  /* Register set.  */
  set_gdbarch_read_pc (gdbarch, mep_read_pc);
  set_gdbarch_num_regs (gdbarch, MEP_NUM_RAW_REGS);
  set_gdbarch_pc_regnum (gdbarch, MEP_PC_REGNUM);
  set_gdbarch_sp_regnum (gdbarch, MEP_SP_REGNUM);
  set_gdbarch_register_name (gdbarch, mep_register_name);
  set_gdbarch_register_type (gdbarch, mep_register_type);
  set_gdbarch_num_pseudo_regs (gdbarch, MEP_NUM_PSEUDO_REGS);
  set_gdbarch_pseudo_register_read (gdbarch, mep_pseudo_register_read);
  set_gdbarch_pseudo_register_write (gdbarch, mep_pseudo_register_write);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);
  set_gdbarch_stab_reg_to_regnum (gdbarch, mep_debug_reg_to_regnum);

  set_gdbarch_register_reggroup_p (gdbarch, mep_register_reggroup_p);
  reggroup_add (gdbarch, all_reggroup);
  reggroup_add (gdbarch, general_reggroup);
  reggroup_add (gdbarch, save_reggroup);
  reggroup_add (gdbarch, restore_reggroup);
  reggroup_add (gdbarch, mep_csr_reggroup);
  reggroup_add (gdbarch, mep_cr_reggroup);
  reggroup_add (gdbarch, mep_ccr_reggroup);

  /* Disassembly.  */
  set_gdbarch_print_insn (gdbarch, mep_gdb_print_insn); 

  /* Breakpoints.  */
  set_gdbarch_breakpoint_from_pc (gdbarch, mep_breakpoint_from_pc);
  set_gdbarch_decr_pc_after_break (gdbarch, 0);
  set_gdbarch_skip_prologue (gdbarch, mep_skip_prologue);

  /* Frames and frame unwinding.  */
  frame_unwind_append_unwinder (gdbarch, &mep_frame_unwind);
  set_gdbarch_unwind_pc (gdbarch, mep_unwind_pc);
  set_gdbarch_unwind_sp (gdbarch, mep_unwind_sp);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_frame_args_skip (gdbarch, 0);

  /* Return values.  */
  set_gdbarch_return_value (gdbarch, mep_return_value);
  
  /* Inferior function calls.  */
  set_gdbarch_frame_align (gdbarch, mep_frame_align);
  set_gdbarch_push_dummy_call (gdbarch, mep_push_dummy_call);
  set_gdbarch_dummy_id (gdbarch, mep_dummy_id);

  return gdbarch;
}

/* Provide a prototype to silence -Wmissing-prototypes.  */
extern initialize_file_ftype _initialize_mep_tdep;

void
_initialize_mep_tdep (void)
{
  mep_csr_reggroup = reggroup_new ("csr", USER_REGGROUP);
  mep_cr_reggroup  = reggroup_new ("cr", USER_REGGROUP); 
  mep_ccr_reggroup = reggroup_new ("ccr", USER_REGGROUP);

  register_gdbarch_init (bfd_arch_mep, mep_gdbarch_init);

  mep_init_pseudoregister_maps ();
}