summaryrefslogtreecommitdiff
path: root/gdb/memattr.c
blob: a2aac07492700e54424653709afd86bda3ac677e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
/* Memory attributes support, for GDB.

   Copyright (C) 2001-2015 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "command.h"
#include "gdbcmd.h"
#include "memattr.h"
#include "target.h"
#include "target-dcache.h"
#include "value.h"
#include "language.h"
#include "vec.h"
#include "breakpoint.h"
#include "cli/cli-utils.h"

const struct mem_attrib default_mem_attrib =
{
  MEM_RW,			/* mode */
  MEM_WIDTH_UNSPECIFIED,
  0,				/* hwbreak */
  0,				/* cache */
  0,				/* verify */
  -1 /* Flash blocksize not specified.  */
};

const struct mem_attrib unknown_mem_attrib =
{
  MEM_NONE,			/* mode */
  MEM_WIDTH_UNSPECIFIED,
  0,				/* hwbreak */
  0,				/* cache */
  0,				/* verify */
  -1 /* Flash blocksize not specified.  */
};


VEC(mem_region_s) *mem_region_list, *target_mem_region_list;
static int mem_number = 0;

/* If this flag is set, the memory region list should be automatically
   updated from the target.  If it is clear, the list is user-controlled
   and should be left alone.  */
static int mem_use_target = 1;

/* If this flag is set, we have tried to fetch the target memory regions
   since the last time it was invalidated.  If that list is still
   empty, then the target can't supply memory regions.  */
static int target_mem_regions_valid;

/* If this flag is set, gdb will assume that memory ranges not
   specified by the memory map have type MEM_NONE, and will
   emit errors on all accesses to that memory.  */
static int inaccessible_by_default = 1;

static void
show_inaccessible_by_default (struct ui_file *file, int from_tty,
			      struct cmd_list_element *c,
			      const char *value)
{
  if (inaccessible_by_default)
    fprintf_filtered (file, _("Unknown memory addresses will "
			      "be treated as inaccessible.\n"));
  else
    fprintf_filtered (file, _("Unknown memory addresses "
			      "will be treated as RAM.\n"));          
}


/* Predicate function which returns true if LHS should sort before RHS
   in a list of memory regions, useful for VEC_lower_bound.  */

static int
mem_region_lessthan (const struct mem_region *lhs,
		     const struct mem_region *rhs)
{
  return lhs->lo < rhs->lo;
}

/* A helper function suitable for qsort, used to sort a
   VEC(mem_region_s) by starting address.  */

int
mem_region_cmp (const void *untyped_lhs, const void *untyped_rhs)
{
  const struct mem_region *lhs = untyped_lhs;
  const struct mem_region *rhs = untyped_rhs;

  if (lhs->lo < rhs->lo)
    return -1;
  else if (lhs->lo == rhs->lo)
    return 0;
  else
    return 1;
}

/* Allocate a new memory region, with default settings.  */

void
mem_region_init (struct mem_region *newobj)
{
  memset (newobj, 0, sizeof (struct mem_region));
  newobj->enabled_p = 1;
  newobj->attrib = default_mem_attrib;
}

/* This function should be called before any command which would
   modify the memory region list.  It will handle switching from
   a target-provided list to a local list, if necessary.  */

static void
require_user_regions (int from_tty)
{
  struct mem_region *m;
  int ix, length;

  /* If we're already using a user-provided list, nothing to do.  */
  if (!mem_use_target)
    return;

  /* Switch to a user-provided list (possibly a copy of the current
     one).  */
  mem_use_target = 0;

  /* If we don't have a target-provided region list yet, then
     no need to warn.  */
  if (mem_region_list == NULL)
    return;

  /* Otherwise, let the user know how to get back.  */
  if (from_tty)
    warning (_("Switching to manual control of memory regions; use "
	       "\"mem auto\" to fetch regions from the target again."));

  /* And create a new list for the user to modify.  */
  length = VEC_length (mem_region_s, target_mem_region_list);
  mem_region_list = VEC_alloc (mem_region_s, length);
  for (ix = 0; VEC_iterate (mem_region_s, target_mem_region_list, ix, m); ix++)
    VEC_quick_push (mem_region_s, mem_region_list, m);
}

/* This function should be called before any command which would
   read the memory region list, other than those which call
   require_user_regions.  It will handle fetching the
   target-provided list, if necessary.  */

static void
require_target_regions (void)
{
  if (mem_use_target && !target_mem_regions_valid)
    {
      target_mem_regions_valid = 1;
      target_mem_region_list = target_memory_map ();
      mem_region_list = target_mem_region_list;
    }
}

static void
create_mem_region (CORE_ADDR lo, CORE_ADDR hi,
		   const struct mem_attrib *attrib)
{
  struct mem_region newobj;
  int i, ix;

  /* lo == hi is a useless empty region.  */
  if (lo >= hi && hi != 0)
    {
      printf_unfiltered (_("invalid memory region: low >= high\n"));
      return;
    }

  mem_region_init (&newobj);
  newobj.lo = lo;
  newobj.hi = hi;

  ix = VEC_lower_bound (mem_region_s, mem_region_list, &newobj,
			mem_region_lessthan);

  /* Check for an overlapping memory region.  We only need to check
     in the vicinity - at most one before and one after the
     insertion point.  */
  for (i = ix - 1; i < ix + 1; i++)
    {
      struct mem_region *n;

      if (i < 0)
	continue;
      if (i >= VEC_length (mem_region_s, mem_region_list))
	continue;

      n = VEC_index (mem_region_s, mem_region_list, i);

      if ((lo >= n->lo && (lo < n->hi || n->hi == 0)) 
	  || (hi > n->lo && (hi <= n->hi || n->hi == 0))
	  || (lo <= n->lo && ((hi >= n->hi && n->hi != 0) || hi == 0)))
	{
	  printf_unfiltered (_("overlapping memory region\n"));
	  return;
	}
    }

  newobj.number = ++mem_number;
  newobj.attrib = *attrib;
  VEC_safe_insert (mem_region_s, mem_region_list, ix, &newobj);
}

/*
 * Look up the memory region cooresponding to ADDR.
 */
struct mem_region *
lookup_mem_region (CORE_ADDR addr)
{
  static struct mem_region region;
  struct mem_region *m;
  CORE_ADDR lo;
  CORE_ADDR hi;
  int ix;

  require_target_regions ();

  /* First we initialize LO and HI so that they describe the entire
     memory space.  As we process the memory region chain, they are
     redefined to describe the minimal region containing ADDR.  LO
     and HI are used in the case where no memory region is defined
     that contains ADDR.  If a memory region is disabled, it is
     treated as if it does not exist.  The initial values for LO
     and HI represent the bottom and top of memory.  */

  lo = 0;
  hi = 0;

  /* Either find memory range containing ADDRESS, or set LO and HI
     to the nearest boundaries of an existing memory range.
     
     If we ever want to support a huge list of memory regions, this
     check should be replaced with a binary search (probably using
     VEC_lower_bound).  */
  for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
    {
      if (m->enabled_p == 1)
	{
	  /* If the address is in the memory region, return that
	     memory range.  */
	  if (addr >= m->lo && (addr < m->hi || m->hi == 0))
	    return m;

	  /* This (correctly) won't match if m->hi == 0, representing
	     the top of the address space, because CORE_ADDR is unsigned;
	     no value of LO is less than zero.  */
	  if (addr >= m->hi && lo < m->hi)
	    lo = m->hi;

	  /* This will never set HI to zero; if we're here and ADDR
	     is at or below M, and the region starts at zero, then ADDR
	     would have been in the region.  */
	  if (addr <= m->lo && (hi == 0 || hi > m->lo))
	    hi = m->lo;
	}
    }

  /* Because no region was found, we must cons up one based on what
     was learned above.  */
  region.lo = lo;
  region.hi = hi;

  /* When no memory map is defined at all, we always return 
     'default_mem_attrib', so that we do not make all memory 
     inaccessible for targets that don't provide a memory map.  */
  if (inaccessible_by_default && !VEC_empty (mem_region_s, mem_region_list))
    region.attrib = unknown_mem_attrib;
  else
    region.attrib = default_mem_attrib;

  return &region;
}

/* Invalidate any memory regions fetched from the target.  */

void
invalidate_target_mem_regions (void)
{
  if (!target_mem_regions_valid)
    return;

  target_mem_regions_valid = 0;
  VEC_free (mem_region_s, target_mem_region_list);
  if (mem_use_target)
    mem_region_list = NULL;
}

/* Clear memory region list.  */

static void
mem_clear (void)
{
  VEC_free (mem_region_s, mem_region_list);
}


static void
mem_command (char *args, int from_tty)
{
  CORE_ADDR lo, hi;
  char *tok;
  struct mem_attrib attrib;

  if (!args)
    error_no_arg (_("No mem"));

  /* For "mem auto", switch back to using a target provided list.  */
  if (strcmp (args, "auto") == 0)
    {
      if (mem_use_target)
	return;

      if (mem_region_list != target_mem_region_list)
	{
	  mem_clear ();
	  mem_region_list = target_mem_region_list;
	}

      mem_use_target = 1;
      return;
    }

  require_user_regions (from_tty);

  tok = strtok (args, " \t");
  if (!tok)
    error (_("no lo address"));
  lo = parse_and_eval_address (tok);

  tok = strtok (NULL, " \t");
  if (!tok)
    error (_("no hi address"));
  hi = parse_and_eval_address (tok);

  attrib = default_mem_attrib;
  while ((tok = strtok (NULL, " \t")) != NULL)
    {
      if (strcmp (tok, "rw") == 0)
	attrib.mode = MEM_RW;
      else if (strcmp (tok, "ro") == 0)
	attrib.mode = MEM_RO;
      else if (strcmp (tok, "wo") == 0)
	attrib.mode = MEM_WO;

      else if (strcmp (tok, "8") == 0)
	attrib.width = MEM_WIDTH_8;
      else if (strcmp (tok, "16") == 0)
	{
	  if ((lo % 2 != 0) || (hi % 2 != 0))
	    error (_("region bounds not 16 bit aligned"));
	  attrib.width = MEM_WIDTH_16;
	}
      else if (strcmp (tok, "32") == 0)
	{
	  if ((lo % 4 != 0) || (hi % 4 != 0))
	    error (_("region bounds not 32 bit aligned"));
	  attrib.width = MEM_WIDTH_32;
	}
      else if (strcmp (tok, "64") == 0)
	{
	  if ((lo % 8 != 0) || (hi % 8 != 0))
	    error (_("region bounds not 64 bit aligned"));
	  attrib.width = MEM_WIDTH_64;
	}

#if 0
      else if (strcmp (tok, "hwbreak") == 0)
	attrib.hwbreak = 1;
      else if (strcmp (tok, "swbreak") == 0)
	attrib.hwbreak = 0;
#endif

      else if (strcmp (tok, "cache") == 0)
	attrib.cache = 1;
      else if (strcmp (tok, "nocache") == 0)
	attrib.cache = 0;

#if 0
      else if (strcmp (tok, "verify") == 0)
	attrib.verify = 1;
      else if (strcmp (tok, "noverify") == 0)
	attrib.verify = 0;
#endif

      else
	error (_("unknown attribute: %s"), tok);
    }

  create_mem_region (lo, hi, &attrib);
}


static void
mem_info_command (char *args, int from_tty)
{
  struct mem_region *m;
  struct mem_attrib *attrib;
  int ix;

  if (mem_use_target)
    printf_filtered (_("Using memory regions provided by the target.\n"));
  else
    printf_filtered (_("Using user-defined memory regions.\n"));

  require_target_regions ();

  if (!mem_region_list)
    {
      printf_unfiltered (_("There are no memory regions defined.\n"));
      return;
    }

  printf_filtered ("Num ");
  printf_filtered ("Enb ");
  printf_filtered ("Low Addr   ");
  if (gdbarch_addr_bit (target_gdbarch ()) > 32)
    printf_filtered ("        ");
  printf_filtered ("High Addr  ");
  if (gdbarch_addr_bit (target_gdbarch ()) > 32)
    printf_filtered ("        ");
  printf_filtered ("Attrs ");
  printf_filtered ("\n");

  for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
    {
      char *tmp;

      printf_filtered ("%-3d %-3c\t",
		       m->number,
		       m->enabled_p ? 'y' : 'n');
      if (gdbarch_addr_bit (target_gdbarch ()) <= 32)
	tmp = hex_string_custom (m->lo, 8);
      else
	tmp = hex_string_custom (m->lo, 16);
      
      printf_filtered ("%s ", tmp);

      if (gdbarch_addr_bit (target_gdbarch ()) <= 32)
	{
	  if (m->hi == 0)
	    tmp = "0x100000000";
	  else
	    tmp = hex_string_custom (m->hi, 8);
	}
      else
	{
	  if (m->hi == 0)
	    tmp = "0x10000000000000000";
	  else
	    tmp = hex_string_custom (m->hi, 16);
	}

      printf_filtered ("%s ", tmp);

      /* Print a token for each attribute.

       * FIXME: Should we output a comma after each token?  It may
       * make it easier for users to read, but we'd lose the ability
       * to cut-and-paste the list of attributes when defining a new
       * region.  Perhaps that is not important.
       *
       * FIXME: If more attributes are added to GDB, the output may
       * become cluttered and difficult for users to read.  At that
       * time, we may want to consider printing tokens only if they
       * are different from the default attribute.  */

      attrib = &m->attrib;
      switch (attrib->mode)
	{
	case MEM_RW:
	  printf_filtered ("rw ");
	  break;
	case MEM_RO:
	  printf_filtered ("ro ");
	  break;
	case MEM_WO:
	  printf_filtered ("wo ");
	  break;
	case MEM_FLASH:
	  printf_filtered ("flash blocksize 0x%x ", attrib->blocksize);
	  break;
	}

      switch (attrib->width)
	{
	case MEM_WIDTH_8:
	  printf_filtered ("8 ");
	  break;
	case MEM_WIDTH_16:
	  printf_filtered ("16 ");
	  break;
	case MEM_WIDTH_32:
	  printf_filtered ("32 ");
	  break;
	case MEM_WIDTH_64:
	  printf_filtered ("64 ");
	  break;
	case MEM_WIDTH_UNSPECIFIED:
	  break;
	}

#if 0
      if (attrib->hwbreak)
	printf_filtered ("hwbreak");
      else
	printf_filtered ("swbreak");
#endif

      if (attrib->cache)
	printf_filtered ("cache ");
      else
	printf_filtered ("nocache ");

#if 0
      if (attrib->verify)
	printf_filtered ("verify ");
      else
	printf_filtered ("noverify ");
#endif

      printf_filtered ("\n");

      gdb_flush (gdb_stdout);
    }
}


/* Enable the memory region number NUM.  */

static void
mem_enable (int num)
{
  struct mem_region *m;
  int ix;

  for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
    if (m->number == num)
      {
	m->enabled_p = 1;
	return;
      }
  printf_unfiltered (_("No memory region number %d.\n"), num);
}

static void
mem_enable_command (char *args, int from_tty)
{
  int num;
  struct mem_region *m;
  int ix;

  require_user_regions (from_tty);

  target_dcache_invalidate ();

  if (args == NULL || *args == '\0')
    { /* Enable all mem regions.  */
      for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
	m->enabled_p = 1;
    }
  else
    {
      struct get_number_or_range_state state;

      init_number_or_range (&state, args);
      while (!state.finished)
	{
	  num = get_number_or_range (&state);
	  mem_enable (num);
	}
    }
}


/* Disable the memory region number NUM.  */

static void
mem_disable (int num)
{
  struct mem_region *m;
  int ix;

  for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
    if (m->number == num)
      {
	m->enabled_p = 0;
	return;
      }
  printf_unfiltered (_("No memory region number %d.\n"), num);
}

static void
mem_disable_command (char *args, int from_tty)
{
  int num;
  struct mem_region *m;
  int ix;

  require_user_regions (from_tty);

  target_dcache_invalidate ();

  if (args == NULL || *args == '\0')
    {
      for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
	m->enabled_p = 0;
    }
  else
    {
      struct get_number_or_range_state state;

      init_number_or_range (&state, args);
      while (!state.finished)
	{
	  num = get_number_or_range (&state);
	  mem_disable (num);
	}
    }
}

/* Delete the memory region number NUM.  */

static void
mem_delete (int num)
{
  struct mem_region *m;
  int ix;

  if (!mem_region_list)
    {
      printf_unfiltered (_("No memory region number %d.\n"), num);
      return;
    }

  for (ix = 0; VEC_iterate (mem_region_s, mem_region_list, ix, m); ix++)
    if (m->number == num)
      break;

  if (m == NULL)
    {
      printf_unfiltered (_("No memory region number %d.\n"), num);
      return;
    }

  VEC_ordered_remove (mem_region_s, mem_region_list, ix);
}

static void
mem_delete_command (char *args, int from_tty)
{
  int num;
  struct get_number_or_range_state state;

  require_user_regions (from_tty);

  target_dcache_invalidate ();

  if (args == NULL || *args == '\0')
    {
      if (query (_("Delete all memory regions? ")))
	mem_clear ();
      dont_repeat ();
      return;
    }

  init_number_or_range (&state, args);
  while (!state.finished)
    {
      num = get_number_or_range (&state);
      mem_delete (num);
    }

  dont_repeat ();
}

static void
dummy_cmd (char *args, int from_tty)
{
}

extern initialize_file_ftype _initialize_mem; /* -Wmissing-prototype */

static struct cmd_list_element *mem_set_cmdlist;
static struct cmd_list_element *mem_show_cmdlist;

void
_initialize_mem (void)
{
  add_com ("mem", class_vars, mem_command, _("\
Define attributes for memory region or reset memory region handling to\n\
target-based.\n\
Usage: mem auto\n\
       mem <lo addr> <hi addr> [<mode> <width> <cache>],\n\
where <mode>  may be rw (read/write), ro (read-only) or wo (write-only),\n\
      <width> may be 8, 16, 32, or 64, and\n\
      <cache> may be cache or nocache"));

  add_cmd ("mem", class_vars, mem_enable_command, _("\
Enable memory region.\n\
Arguments are the code numbers of the memory regions to enable.\n\
Usage: enable mem <code number>...\n\
Do \"info mem\" to see current list of code numbers."), &enablelist);

  add_cmd ("mem", class_vars, mem_disable_command, _("\
Disable memory region.\n\
Arguments are the code numbers of the memory regions to disable.\n\
Usage: disable mem <code number>...\n\
Do \"info mem\" to see current list of code numbers."), &disablelist);

  add_cmd ("mem", class_vars, mem_delete_command, _("\
Delete memory region.\n\
Arguments are the code numbers of the memory regions to delete.\n\
Usage: delete mem <code number>...\n\
Do \"info mem\" to see current list of code numbers."), &deletelist);

  add_info ("mem", mem_info_command,
	    _("Memory region attributes"));

  add_prefix_cmd ("mem", class_vars, dummy_cmd, _("\
Memory regions settings"),
		  &mem_set_cmdlist, "set mem ",
		  0/* allow-unknown */, &setlist);
  add_prefix_cmd ("mem", class_vars, dummy_cmd, _("\
Memory regions settings"),
		  &mem_show_cmdlist, "show mem  ",
		  0/* allow-unknown */, &showlist);

  add_setshow_boolean_cmd ("inaccessible-by-default", no_class,
				  &inaccessible_by_default, _("\
Set handling of unknown memory regions."), _("\
Show handling of unknown memory regions."), _("\
If on, and some memory map is defined, debugger will emit errors on\n\
accesses to memory not defined in the memory map. If off, accesses to all\n\
memory addresses will be allowed."),
				NULL,
				show_inaccessible_by_default,
				&mem_set_cmdlist,
				&mem_show_cmdlist);
}