summaryrefslogtreecommitdiff
path: root/gdb/m68hc11-tdep.c
blob: e059796158ee422473eeefa7bccafa45d2e89e58 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
/* Target-dependent code for Motorola 68HC11
   Copyright (C) 1999, 2000 Free Software Foundation, Inc.
   Contributed by Stephane Carrez, stcarrez@worldnet.fr

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */


#include "defs.h"
#include "frame.h"
#include "obstack.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "gdb_string.h"
#include "value.h"
#include "inferior.h"
#include "dis-asm.h"  
#include "symfile.h"
#include "objfiles.h"
#include "arch-utils.h"

#include "target.h"
#include "opcode/m68hc11.h"

/* Register numbers of various important registers.
   Note that some of these values are "real" register numbers,
   and correspond to the general registers of the machine,
   and some are "phony" register numbers which are too large
   to be actual register numbers as far as the user is concerned
   but do serve to get the desired values when passed to read_register.  */

#define HARD_X_REGNUM 	0
#define HARD_D_REGNUM	1
#define HARD_Y_REGNUM   2
#define HARD_SP_REGNUM 	3
#define HARD_PC_REGNUM 	4

#define HARD_A_REGNUM   5
#define HARD_B_REGNUM   6
#define HARD_CCR_REGNUM 7
#define M68HC11_LAST_HARD_REG (HARD_CCR_REGNUM)

/* Z is replaced by X or Y by gcc during machine reorg.
   ??? There is no way to get it and even know whether
   it's in X or Y or in ZS.  */
#define SOFT_Z_REGNUM        8

/* Soft registers.  These registers are special.  There are treated
   like normal hard registers by gcc and gdb (ie, within dwarf2 info).
   They are physically located in memory.  */
#define SOFT_FP_REGNUM       9
#define SOFT_TMP_REGNUM     10
#define SOFT_ZS_REGNUM      11
#define SOFT_XY_REGNUM      12
#define SOFT_D1_REGNUM      13
#define SOFT_D32_REGNUM     (SOFT_D1_REGNUM+31)
#define M68HC11_MAX_SOFT_REGS 32

#define M68HC11_NUM_REGS        (8)
#define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
#define M68HC11_ALL_REGS        (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)

#define M68HC11_REG_SIZE    (2)

struct gdbarch_tdep
  {
    /* from the elf header */
    int elf_flags;
  };

struct frame_extra_info
{
  int frame_reg;
  CORE_ADDR return_pc;
  CORE_ADDR dummy;
  int frameless;
  int size;
};

/* Table of registers for 68HC11.  This includes the hard registers
   and the soft registers used by GCC.  */
static char *
m68hc11_register_names[] =
{
  "x",    "d",    "y",    "sp",   "pc",   "a",    "b",
  "ccr",  "z",    "frame","tmp",  "zs",   "xy",
  "d1",   "d2",   "d3",   "d4",   "d5",   "d6",   "d7",
  "d8",   "d9",   "d10",  "d11",  "d12",  "d13",  "d14",
  "d15",  "d16",  "d17",  "d18",  "d19",  "d20",  "d21",
  "d22",  "d23",  "d24",  "d25",  "d26",  "d27",  "d28",
  "d29",  "d30",  "d31",  "d32"
};

struct m68hc11_soft_reg 
{
  const char *name;
  CORE_ADDR   addr;
};

static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];

#define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr

static int soft_min_addr;
static int soft_max_addr;
static int soft_reg_initialized = 0;

/* Stack pointer correction value.  For 68hc11, the stack pointer points
   to the next push location.  An offset of 1 must be applied to obtain
   the address where the last value is saved.  For 68hc12, the stack
   pointer points to the last value pushed.  No offset is necessary.  */
static int stack_correction = 1;

/* Look in the symbol table for the address of a pseudo register
   in memory.  If we don't find it, pretend the register is not used
   and not available.  */
static void
m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
{
  struct minimal_symbol *msymbol;

  msymbol = lookup_minimal_symbol (name, NULL, NULL);
  if (msymbol)
    {
      reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
      reg->name = xstrdup (name);

      /* Keep track of the address range for soft registers.  */
      if (reg->addr < (CORE_ADDR) soft_min_addr)
        soft_min_addr = reg->addr;
      if (reg->addr > (CORE_ADDR) soft_max_addr)
        soft_max_addr = reg->addr;
    }
  else
    {
      reg->name = 0;
      reg->addr = 0;
    }
}

/* Initialize the table of soft register addresses according
   to the symbol table.  */
  static void
m68hc11_initialize_register_info (void)
{
  int i;

  if (soft_reg_initialized)
    return;
  
  soft_min_addr = INT_MAX;
  soft_max_addr = 0;
  for (i = 0; i < M68HC11_ALL_REGS; i++)
    {
      soft_regs[i].name = 0;
    }
  
  m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
  m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
  m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
  soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
  m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");

  for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
    {
      char buf[10];

      sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
      m68hc11_get_register_info (&soft_regs[i], buf);
    }

  if (soft_regs[SOFT_FP_REGNUM].name == 0)
    {
      warning ("No frame soft register found in the symbol table.\n");
      warning ("Stack backtrace will not work.\n");
    }
  soft_reg_initialized = 1;
}

/* Given an address in memory, return the soft register number if
   that address corresponds to a soft register.  Returns -1 if not.  */
static int
m68hc11_which_soft_register (CORE_ADDR addr)
{
  int i;
  
  if (addr < soft_min_addr || addr > soft_max_addr)
    return -1;
  
  for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
    {
      if (soft_regs[i].name && soft_regs[i].addr == addr)
        return i;
    }
  return -1;
}

/* Fetch a pseudo register.  The 68hc11 soft registers are treated like
   pseudo registers.  They are located in memory.  Translate the register
   fetch into a memory read.  */
void
m68hc11_fetch_pseudo_register (int regno)
{
  char buf[MAX_REGISTER_RAW_SIZE];

  m68hc11_initialize_register_info ();
  
  /* Fetch a soft register: translate into a memory read.  */
  if (soft_regs[regno].name)
    {
      target_read_memory (soft_regs[regno].addr, buf, 2);
    }
  else
    {
      memset (buf, 0, 2);
    }
  supply_register (regno, buf);
}

/* Store a pseudo register.  Translate the register store
   into a memory write.  */
static void
m68hc11_store_pseudo_register (int regno)
{
  m68hc11_initialize_register_info ();

  /* Store a soft register: translate into a memory write.  */
  if (soft_regs[regno].name)
    {
      char buf[MAX_REGISTER_RAW_SIZE];

      read_register_gen (regno, buf);
      target_write_memory (soft_regs[regno].addr, buf, 2);
    }
}

static char *
m68hc11_register_name (int reg_nr)
{
  if (reg_nr < 0)
    return NULL;
  if (reg_nr >= M68HC11_ALL_REGS)
    return NULL;

  /* If we don't know the address of a soft register, pretend it
     does not exist.  */
  if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
    return NULL;
  return m68hc11_register_names[reg_nr];
}

static unsigned char *
m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
  static unsigned char breakpoint[] = {0x0};
  
  *lenptr = sizeof (breakpoint);
  return breakpoint;
}

/* Immediately after a function call, return the saved pc before the frame
   is setup.  */

static CORE_ADDR
m68hc11_saved_pc_after_call (struct frame_info *frame)
{
  CORE_ADDR addr;
  
  addr = read_register (HARD_SP_REGNUM) + stack_correction;
  addr &= 0x0ffff;
  return read_memory_integer (addr, 2) & 0x0FFFF;
}

static CORE_ADDR
m68hc11_frame_saved_pc (struct frame_info *frame)
{
  return frame->extra_info->return_pc;
}

static CORE_ADDR
m68hc11_frame_args_address (struct frame_info *frame)
{
  return frame->frame;
}

static CORE_ADDR
m68hc11_frame_locals_address (struct frame_info *frame)
{
  return frame->frame;
}

/* Discard from the stack the innermost frame, restoring all saved
   registers.  */

static void
m68hc11_pop_frame (void)
{
  register struct frame_info *frame = get_current_frame ();
  register CORE_ADDR fp, sp;
  register int regnum;

  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
    generic_pop_dummy_frame ();
  else
    {
      fp = FRAME_FP (frame);
      FRAME_INIT_SAVED_REGS (frame);

      /* Copy regs from where they were saved in the frame.  */
      for (regnum = 0; regnum < M68HC11_ALL_REGS; regnum++)
	if (frame->saved_regs[regnum])
	  write_register (regnum,
                          read_memory_integer (frame->saved_regs[regnum], 2));

      write_register (HARD_PC_REGNUM, frame->extra_info->return_pc);
      sp = fp + frame->extra_info->size;
      write_register (HARD_SP_REGNUM, sp);
    }
  flush_cached_frames ();
}

/* Analyze the function prologue to find some information
   about the function:
    - the PC of the first line (for m68hc11_skip_prologue)
    - the offset of the previous frame saved address (from current frame)
    - the soft registers which are pushed.  */
static void
m68hc11_guess_from_prologue (CORE_ADDR pc, CORE_ADDR fp,
                             CORE_ADDR *first_line,
                             int *frame_offset, CORE_ADDR *pushed_regs)
{
  CORE_ADDR save_addr;
  CORE_ADDR func_end;
  unsigned char op0, op1, op2;
  int add_sp_mode;
  int sp_adjust = 0;
  int size;
  int found_frame_point;
  int saved_reg;
  CORE_ADDR first_pc;
  
  first_pc = get_pc_function_start (pc);
  size = 0;

  m68hc11_initialize_register_info ();
  if (first_pc == 0)
    {
      *frame_offset = 0;
      *first_line   = pc;
      return;
    }

#define OP_PAGE2 (0x18)
#define OP_LDX  (0xde)
#define OP_LDY  (0xde)
#define OP_PSHX (0x3c)
#define OP_PSHY (0x3c)
#define OP_STS  (0x9f)
#define OP_TSX  (0x30)
#define OP_TSY  (0x30)
#define OP_XGDX (0x8f)
#define OP_XGDY (0x8f)
#define OP_ADDD (0xc3)
#define OP_TXS  (0x35)
#define OP_TYS  (0x35)
#define OP_DES  (0x34)

  /* The 68hc11 stack is as follows:


     |           |
     +-----------+
     |           |
     | args      |
     |           |
     +-----------+
     | PC-return |
     +-----------+
     | Old frame |
     +-----------+
     |           |
     | Locals    |
     |           |
     +-----------+ <--- current frame
     |           |

     With most processors (like 68K) the previous frame can be computed
     easily because it is always at a fixed offset (see link/unlink).
     That is, locals are accessed with negative offsets, arguments are
     accessed with positive ones.  Since 68hc11 only supports offsets
     in the range [0..255], the frame is defined at the bottom of
     locals (see picture).

     The purpose of the analysis made here is to find out the size
     of locals in this function.  An alternative to this is to use
     DWARF2 info.  This would be better but I don't know how to
     access dwarf2 debug from this function.
     
     Walk from the function entry point to the point where we save
     the frame.  While walking instructions, compute the size of bytes
     which are pushed.  This gives us the index to access the previous
     frame.

     We limit the search to 128 bytes so that the algorithm is bounded
     in case of random and wrong code.  We also stop and abort if
     we find an instruction which is not supposed to appear in the
     prologue (as generated by gcc 2.95, 2.96).
  */
  pc = first_pc;
  func_end = pc + 128;
  add_sp_mode = 0;
  found_frame_point = 0;
  while (pc + 2 < func_end)
    {
      op0 = read_memory_unsigned_integer (pc, 1);
      op1 = read_memory_unsigned_integer (pc + 1, 1);
      op2 = read_memory_unsigned_integer (pc + 2, 1);
      
      /* ldx *frame */
      if (op0 == OP_LDX && op1 == M68HC11_FP_ADDR)
        {
          pc += 2;
        }

      /* ldy *frame */
      else if (op0 == OP_PAGE2 && op1 == OP_LDY
               && op2 == M68HC11_FP_ADDR)
        {
          pc += 3;
        }

      /* pshx */
      else if (op0 == OP_PSHX)
        {
          pc += 1;
          size += 2;
        }

      /* pshy */
      else if (op0 == OP_PAGE2 && op1 == OP_PSHX)
        {
          pc += 2;
          size += 2;
        }

      /* sts *frame */
      else if (op0 == OP_STS && op1 == M68HC11_FP_ADDR)
        {
          found_frame_point = 1;
          pc += 2;
          break;
        }
      else if (op0 == OP_TSX && op1 == OP_XGDX)
        {
          add_sp_mode  = 1;
          pc += 2;
        }
      /* des to allocate 1 byte on the stack */
      else if (op0 == OP_DES)
        {
          pc += 1;
          size += 1;
        }
      else if (op0 == OP_PAGE2 && op1 == OP_TSY && op2 == OP_PAGE2)
        {
          op0 = read_memory_unsigned_integer (pc + 3, 1);
          if (op0 != OP_XGDY)
            break;
          
          add_sp_mode  = 2;
          pc += 4;
        }
      else if (add_sp_mode && op0 == OP_ADDD)
        {
          sp_adjust = read_memory_unsigned_integer (pc + 1, 2);
          if (sp_adjust & 0x8000)
            sp_adjust |= 0xffff0000L;

          sp_adjust = -sp_adjust;
          add_sp_mode |= 4;
          pc += 3;
        }
      else if (add_sp_mode == (1 | 4) && op0 == OP_XGDX
               && op1 == OP_TXS)
        {
          size += sp_adjust;
          pc += 2;
          add_sp_mode = 0;
        }
      else if (add_sp_mode == (2 | 4) && op0 == OP_PAGE2
               && op1 == OP_XGDY && op2 == OP_PAGE2)
        {
          op0 = read_memory_unsigned_integer (pc + 3, 1);
          if (op0 != OP_TYS)
            break;

          size += sp_adjust;
          pc += 4;
          add_sp_mode = 0;
        }
      else
        {
          break;
        }
    }

  if (found_frame_point == 0)
    {
      *frame_offset = 0;
    }
  else
    {
      *frame_offset = size;
    }

  /* Now, look forward to see how many registers are pushed on the stack.
     We look only for soft registers so there must be a first LDX *REG
     before a PSHX.  */
  saved_reg = -1;
  save_addr = fp;
  while (pc + 2 < func_end)
    {
      op0 = read_memory_unsigned_integer (pc, 1);
      op1 = read_memory_unsigned_integer (pc + 1, 1);
      op2 = read_memory_unsigned_integer (pc + 2, 1);
      if (op0 == OP_LDX)
        {
          saved_reg = m68hc11_which_soft_register (op1);
          if (saved_reg < 0 || saved_reg == SOFT_FP_REGNUM)
            break;
          
          pc += 2;
        }
      else if (op0 == OP_PAGE2 && op1 == OP_LDY)
        {
          saved_reg = m68hc11_which_soft_register (op2);
          if (saved_reg < 0 || saved_reg == SOFT_FP_REGNUM)
            break;
          
          pc += 3;
        }
      else if (op0 == OP_PSHX)
        {
          /* If there was no load, this is a push for a function call.  */
          if (saved_reg < 0 || saved_reg >= M68HC11_ALL_REGS)
            break;

          /* Keep track of the address where that register is saved
             on the stack.  */
          save_addr -= 2;
          if (pushed_regs)
            pushed_regs[saved_reg] = save_addr;

          pc += 1;
          saved_reg = -1;
        }
      else if (op0 == OP_PAGE2 && op1 == OP_PSHY)
        {
          if (saved_reg < 0 || saved_reg >= M68HC11_ALL_REGS)
            break;
          
          /* Keep track of the address where that register is saved
             on the stack.  */
          save_addr -= 2;
          if (pushed_regs)
            pushed_regs[saved_reg] = save_addr;

          pc += 2;
          saved_reg = -1;
        }
      else
        {
          break;
        }
    }
  *first_line  = pc;
}

static CORE_ADDR
m68hc11_skip_prologue (CORE_ADDR pc)
{
  CORE_ADDR func_addr, func_end;
  struct symtab_and_line sal;
  int frame_offset;

  /* If we have line debugging information, then the end of the
     prologue should be the first assembly instruction of the
     first source line.  */
  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    {
      sal = find_pc_line (func_addr, 0);
      if (sal.end && sal.end < func_end)
	return sal.end;
    }

  m68hc11_guess_from_prologue (pc, 0, &pc, &frame_offset, 0);
  return pc;
}

/* Given a GDB frame, determine the address of the calling function's frame.
   This will be used to create a new GDB frame struct, and then
   INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
*/

static CORE_ADDR
m68hc11_frame_chain (struct frame_info *frame)
{
  CORE_ADDR addr;

  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
    return frame->frame;	/* dummy frame same as caller's frame */

  if (frame->extra_info->return_pc == 0
      || inside_entry_file (frame->extra_info->return_pc))
    return (CORE_ADDR) 0;

  if (frame->frame == 0)
    {
      return (CORE_ADDR) 0;
    }

  addr = frame->frame + frame->extra_info->size + stack_correction - 2;
  addr = read_memory_unsigned_integer (addr, 2) & 0x0FFFF;
  if (addr == 0)
    {
      return (CORE_ADDR) 0;
    }
    
  return addr;
}  

/* Put here the code to store, into a struct frame_saved_regs, the
   addresses of the saved registers of frame described by FRAME_INFO.
   This includes special registers such as pc and fp saved in special
   ways in the stack frame.   sp is even more special: the address we
   return for it IS the sp for the next frame.  */
static void
m68hc11_frame_init_saved_regs (struct frame_info *fi)
{
  CORE_ADDR pc;
  CORE_ADDR addr;
  
  if (fi->saved_regs == NULL)
    frame_saved_regs_zalloc (fi);
  else
    memset (fi->saved_regs, 0, sizeof (fi->saved_regs));

  pc = fi->pc;
  m68hc11_guess_from_prologue (pc, fi->frame, &pc, &fi->extra_info->size,
                               fi->saved_regs);

  addr = fi->frame + fi->extra_info->size + stack_correction;
  fi->saved_regs[SOFT_FP_REGNUM] = addr - 2;
  fi->saved_regs[HARD_SP_REGNUM] = addr;
  fi->saved_regs[HARD_PC_REGNUM] = fi->saved_regs[HARD_SP_REGNUM];
}

static void
m68hc11_init_extra_frame_info (int fromleaf, struct frame_info *fi)
{
  CORE_ADDR addr;

  fi->extra_info = (struct frame_extra_info *)
    frame_obstack_alloc (sizeof (struct frame_extra_info));
  
  if (fi->next)
    fi->pc = FRAME_SAVED_PC (fi->next);
  
  m68hc11_frame_init_saved_regs (fi);

  if (fromleaf)
    {
      fi->extra_info->return_pc = m68hc11_saved_pc_after_call (fi);
    }
  else
    {
      addr = fi->frame + fi->extra_info->size + stack_correction;
      addr = read_memory_unsigned_integer (addr, 2) & 0x0ffff;
      fi->extra_info->return_pc = addr;
#if 0
      printf ("Pc@0x%04x, FR 0x%04x, size %d, read ret @0x%04x -> 0x%04x\n",
              fi->pc,
              fi->frame, fi->size,
              addr & 0x0ffff,
              fi->return_pc);
#endif
    }
}

/* Same as 'info reg' but prints the registers in a different way.  */
static void
show_regs (char *args, int from_tty)
{
  int ccr = read_register (HARD_CCR_REGNUM);
  int i;
  int nr;
  
  printf_filtered ("PC=%04x SP=%04x FP=%04x CCR=%02x %c%c%c%c%c%c%c%c\n",
		   (int) read_register (HARD_PC_REGNUM),
		   (int) read_register (HARD_SP_REGNUM),
		   (int) read_register (SOFT_FP_REGNUM),
		   ccr,
		   ccr & M6811_S_BIT ? 'S' : '-',
		   ccr & M6811_X_BIT ? 'X' : '-',
		   ccr & M6811_H_BIT ? 'H' : '-',
		   ccr & M6811_I_BIT ? 'I' : '-',
		   ccr & M6811_N_BIT ? 'N' : '-',
		   ccr & M6811_Z_BIT ? 'Z' : '-',
		   ccr & M6811_V_BIT ? 'V' : '-',
		   ccr & M6811_C_BIT ? 'C' : '-');

  printf_filtered ("D=%04x IX=%04x IY=%04x\n",
		   (int) read_register (HARD_D_REGNUM),
		   (int) read_register (HARD_X_REGNUM),
		   (int) read_register (HARD_Y_REGNUM));

  nr = 0;
  for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
    {
      /* Skip registers which are not defined in the symbol table.  */
      if (soft_regs[i].name == 0)
        continue;
      
      printf_filtered ("D%d=%04x",
                       i - SOFT_D1_REGNUM + 1,
                       (int) read_register (i));
      nr++;
      if ((nr % 8) == 7)
        printf_filtered ("\n");
      else
        printf_filtered (" ");
    }
  if (nr && (nr % 8) != 7)
    printf_filtered ("\n");
}

static CORE_ADDR
m68hc11_stack_align (CORE_ADDR addr)
{
  return ((addr + 1) & -2);
}

static CORE_ADDR
m68hc11_push_arguments (int nargs,
                        value_ptr *args,
                        CORE_ADDR sp,
                        int struct_return,
                        CORE_ADDR struct_addr)
{
  int stack_alloc;
  int argnum;
  int first_stack_argnum;
  int stack_offset;
  struct type *type;
  char *val;
  int len;
  
  stack_alloc = 0;
  first_stack_argnum = 0;
  if (struct_return)
    {
      /* The struct is allocated on the stack and gdb used the stack
         pointer for the address of that struct.  We must apply the
         stack offset on the address.  */
      write_register (HARD_D_REGNUM, struct_addr + stack_correction);
    }
  else if (nargs > 0)
    {
      type = VALUE_TYPE (args[0]);
      len = TYPE_LENGTH (type);
      
      /* First argument is passed in D and X registers.  */
      if (len <= 4)
        {
          LONGEST v = extract_unsigned_integer (VALUE_CONTENTS (args[0]), len);
          first_stack_argnum = 1;
          write_register (HARD_D_REGNUM, v);
          if (len > 2)
            {
              v >>= 16;
              write_register (HARD_X_REGNUM, v);
            }
        }
    }
  for (argnum = first_stack_argnum; argnum < nargs; argnum++)
    {
      type = VALUE_TYPE (args[argnum]);
      stack_alloc += (TYPE_LENGTH (type) + 1) & -2;
    }
  sp -= stack_alloc;

  stack_offset = stack_correction;
  for (argnum = first_stack_argnum; argnum < nargs; argnum++)
    {
      type = VALUE_TYPE (args[argnum]);
      len = TYPE_LENGTH (type);

      val = (char*) VALUE_CONTENTS (args[argnum]);
      write_memory (sp + stack_offset, val, len);
      stack_offset += len;
      if (len & 1)
        {
          static char zero = 0;

          write_memory (sp + stack_offset, &zero, 1);
          stack_offset++;
        }
    }
  return sp;
}


/* Return a location where we can set a breakpoint that will be hit
   when an inferior function call returns.  */
CORE_ADDR
m68hc11_call_dummy_address (void)
{
  return entry_point_address ();
}

static struct type *
m68hc11_register_virtual_type (int reg_nr)
{
  return builtin_type_uint16;
}

static void
m68hc11_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
{
  /* The struct address computed by gdb is on the stack.
     It uses the stack pointer so we must apply the stack
     correction offset.  */
  write_register (HARD_D_REGNUM, addr + stack_correction);
}

static void
m68hc11_store_return_value (struct type *type, char *valbuf)
{
  int len;

  len = TYPE_LENGTH (type);

  /* First argument is passed in D and X registers.  */
  if (len <= 4)
    {
      LONGEST v = extract_unsigned_integer (valbuf, len);

      write_register (HARD_D_REGNUM, v);
      if (len > 2)
        {
          v >>= 16;
          write_register (HARD_X_REGNUM, v);
        }
    }
  else
    error ("return of value > 4 is not supported.");
}


/* Given a return value in `regbuf' with a type `type', 
   extract and copy its value into `valbuf'.  */

static void
m68hc11_extract_return_value (struct type *type,
                              char *regbuf,
                              char *valbuf)
{
  int len = TYPE_LENGTH (type);
  
  switch (len)
    {
    case 1:
      memcpy (valbuf, &regbuf[HARD_D_REGNUM * 2 + 1], len);
      break;
  
    case 2:
      memcpy (valbuf, &regbuf[HARD_D_REGNUM * 2], len);
      break;
      
    case 3:
      memcpy (&valbuf[0], &regbuf[HARD_X_REGNUM * 2 + 1], 1);
      memcpy (&valbuf[1], &regbuf[HARD_D_REGNUM * 2], 2);
      break;
      
    case 4:
      memcpy (&valbuf[0], &regbuf[HARD_X_REGNUM * 2], 2);
      memcpy (&valbuf[2], &regbuf[HARD_D_REGNUM * 2], 2);
      break;

    default:
      error ("bad size for return value");
    }
}

/* Should call_function allocate stack space for a struct return?  */
static int
m68hc11_use_struct_convention (int gcc_p, struct type *type)
{
  return (TYPE_CODE (type) == TYPE_CODE_STRUCT
          || TYPE_CODE (type) == TYPE_CODE_UNION
          || TYPE_LENGTH (type) > 4);
}

static int
m68hc11_return_value_on_stack (struct type *type)
{
  return TYPE_LENGTH (type) > 4;
}

/* Extract from an array REGBUF containing the (raw) register state
   the address in which a function should return its structure value,
   as a CORE_ADDR (or an expression that can be used as one).  */
static CORE_ADDR
m68hc11_extract_struct_value_address (char *regbuf)
{
  return extract_address (&regbuf[HARD_D_REGNUM * 2],
                          REGISTER_RAW_SIZE (HARD_D_REGNUM));
}

/* Function: push_return_address (pc)
   Set up the return address for the inferior function call.
   Needed for targets where we don't actually execute a JSR/BSR instruction */

static CORE_ADDR
m68hc11_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
{
  char valbuf[2];
  
  pc = CALL_DUMMY_ADDRESS ();
  sp -= 2;
  store_unsigned_integer (valbuf, 2, pc);
  write_memory (sp + stack_correction, valbuf, 2);
  return sp;
}

/* Index within `registers' of the first byte of the space for
   register N.  */
static int
m68hc11_register_byte (int reg_nr)
{
  return (reg_nr * M68HC11_REG_SIZE);
}

static int
m68hc11_register_raw_size (int reg_nr)
{
  return M68HC11_REG_SIZE;
}

static struct gdbarch *
m68hc11_gdbarch_init (struct gdbarch_info info,
                      struct gdbarch_list *arches)
{
  static LONGEST m68hc11_call_dummy_words[] =
  {0};
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  int elf_flags;

  /* Extract the elf_flags if available */
  elf_flags = 0;

  soft_reg_initialized = 0;
  
  /* try to find a pre-existing architecture */
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
       arches != NULL;
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
    {
      /* MIPS needs to be pedantic about which ABI the object is
         using. */
      if (gdbarch_tdep (current_gdbarch)->elf_flags != elf_flags)
	continue;
      return arches->gdbarch;
    }

  /* Need a new architecture. Fill in a target specific vector.  */
  tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
  gdbarch = gdbarch_alloc (&info, tdep);
  tdep->elf_flags = elf_flags;

  /* Initially set everything according to the ABI.  */
  set_gdbarch_short_bit (gdbarch, 16);
  set_gdbarch_int_bit (gdbarch, 32);
  set_gdbarch_float_bit (gdbarch, 32);
  set_gdbarch_double_bit (gdbarch, 64);
  set_gdbarch_long_double_bit (gdbarch, 64);
  set_gdbarch_long_bit (gdbarch, 32);
  set_gdbarch_ptr_bit (gdbarch, 16);
  set_gdbarch_long_long_bit (gdbarch, 64);

  /* Set register info.  */
  set_gdbarch_fp0_regnum (gdbarch, -1);
  set_gdbarch_max_register_raw_size (gdbarch, 2);
  set_gdbarch_max_register_virtual_size (gdbarch, 2);
  set_gdbarch_register_raw_size (gdbarch, m68hc11_register_raw_size);
  set_gdbarch_register_virtual_size (gdbarch, m68hc11_register_raw_size);
  set_gdbarch_register_byte (gdbarch, m68hc11_register_byte);
  set_gdbarch_frame_init_saved_regs (gdbarch, m68hc11_frame_init_saved_regs);
  set_gdbarch_frame_args_skip (gdbarch, 0);

  set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
  set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
  set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
  set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
  set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
  set_gdbarch_write_sp (gdbarch, generic_target_write_sp);

  set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
  set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
  set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
  set_gdbarch_fp_regnum (gdbarch, SOFT_FP_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
  set_gdbarch_register_name (gdbarch, m68hc11_register_name);
  set_gdbarch_register_size (gdbarch, 2);
  set_gdbarch_register_bytes (gdbarch, M68HC11_ALL_REGS * 2);
  set_gdbarch_register_virtual_type (gdbarch, m68hc11_register_virtual_type);
  set_gdbarch_fetch_pseudo_register (gdbarch, m68hc11_fetch_pseudo_register);
  set_gdbarch_store_pseudo_register (gdbarch, m68hc11_store_pseudo_register);

  set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
  set_gdbarch_call_dummy_length (gdbarch, 0);
  set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
  set_gdbarch_call_dummy_address (gdbarch, m68hc11_call_dummy_address);
  set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); /*???*/
  set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
  set_gdbarch_call_dummy_start_offset (gdbarch, 0);
  set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
  set_gdbarch_call_dummy_words (gdbarch, m68hc11_call_dummy_words);
  set_gdbarch_sizeof_call_dummy_words (gdbarch,
                                       sizeof (m68hc11_call_dummy_words));
  set_gdbarch_call_dummy_p (gdbarch, 1);
  set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
  set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
  set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
  set_gdbarch_extract_return_value (gdbarch, m68hc11_extract_return_value);
  set_gdbarch_push_arguments (gdbarch, m68hc11_push_arguments);
  set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
  set_gdbarch_push_return_address (gdbarch, m68hc11_push_return_address);
  set_gdbarch_return_value_on_stack (gdbarch, m68hc11_return_value_on_stack);

  set_gdbarch_store_struct_return (gdbarch, m68hc11_store_struct_return);
  set_gdbarch_store_return_value (gdbarch, m68hc11_store_return_value);
  set_gdbarch_extract_struct_value_address (gdbarch,
                                            m68hc11_extract_struct_value_address);
  set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);


  set_gdbarch_frame_chain (gdbarch, m68hc11_frame_chain);
  set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
  set_gdbarch_frame_saved_pc (gdbarch, m68hc11_frame_saved_pc);
  set_gdbarch_frame_args_address (gdbarch, m68hc11_frame_args_address);
  set_gdbarch_frame_locals_address (gdbarch, m68hc11_frame_locals_address);
  set_gdbarch_saved_pc_after_call (gdbarch, m68hc11_saved_pc_after_call);
  set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);

  set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
  set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);

  set_gdbarch_store_struct_return (gdbarch, m68hc11_store_struct_return);
  set_gdbarch_store_return_value (gdbarch, m68hc11_store_return_value);
  set_gdbarch_extract_struct_value_address
    (gdbarch, m68hc11_extract_struct_value_address);
  set_gdbarch_use_struct_convention (gdbarch, m68hc11_use_struct_convention);
  set_gdbarch_init_extra_frame_info (gdbarch, m68hc11_init_extra_frame_info);
  set_gdbarch_pop_frame (gdbarch, m68hc11_pop_frame);
  set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_decr_pc_after_break (gdbarch, 0);
  set_gdbarch_function_start_offset (gdbarch, 0);
  set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
  set_gdbarch_stack_align (gdbarch, m68hc11_stack_align);

  set_gdbarch_believe_pcc_promotion (gdbarch, 1);
  set_gdbarch_ieee_float (gdbarch, 1);

  return gdbarch;
}

void
_initialize_m68hc11_tdep (void)
{
  register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
  if (!tm_print_insn)		/* Someone may have already set it */
    tm_print_insn = print_insn_m68hc11;

  add_com ("regs", class_vars, show_regs, "Print all registers");
}