summaryrefslogtreecommitdiff
path: root/gdb/m68hc11-tdep.c
blob: 4c2d50511fd44a15d2da0c081448ff7e388d61e5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
/* Target-dependent code for Motorola 68HC11
   Copyright (C) 1999, 2000 Free Software Foundation, Inc.
   Contributed by Stephane Carrez, stcarrez@worldnet.fr

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

#if 0
/* FIXME: This is from tm-m68hc1.h */

#define GDB_TARGET_IS_M6811

/* Define the bit, byte, and word ordering of the machine.  */

#define TARGET_BYTE_ORDER	BIG_ENDIAN

/* Offset from address of function to start of its code.
   Zero on most machines.  */

#define FUNCTION_START_OFFSET 0

#ifdef __STDC__			/* Forward decls for prototypes */
struct frame_info;
struct frame_saved_regs;
struct type;
struct value;
#endif

/* Advance PC across any function entry prologue instructions
   to reach some "real" code.  */

extern CORE_ADDR m68hc11_skip_prologue ();
#define SKIP_PROLOGUE(ip) \
    m68hc11_skip_prologue (ip)


/* Stack grows downward.  */

#define INNER_THAN(lhs,rhs) ((lhs) < (rhs))

/* For a breakpoint, use "test".  This is also the breakpoint
   instruction on the 68HC12.  */
#define BREAKPOINT {0x0}

/* If your kernel resets the pc after the trap happens you may need to
   define this before including this file.  */
#define DECR_PC_AFTER_BREAK 0

extern char *m68hc11_register_names[];
#define REGISTER_NAME(i) m68hc11_register_names[i]

#define REGISTER_SIZE   2

/* Register numbers of various important registers.
   Note that some of these values are "real" register numbers,
   and correspond to the general registers of the machine,
   and some are "phony" register numbers which are too large
   to be actual register numbers as far as the user is concerned
   but do serve to get the desired values when passed to read_register.  */

#define X_REGNUM 	0
#define D_REGNUM	1
#define Y_REGNUM        2
#define SP_REGNUM 	3
#define PC_REGNUM 	4
#define A_REGNUM        5
#define B_REGNUM        6
#define PSW_REGNUM 	7
#define Z_REGNUM        8
#define FP_REGNUM       9
#define TMP_REGNUM     10
#define ZS_REGNUM      11
#define XY_REGNUM      12
#define ZD1_REGNUM     13
#define ZD32_REGNUM    (ZD1_REGNUM+31)

#define NUM_REGS       (ZD32_REGNUM+1)

#include "opcode/m68hc11.h"

/* Say how much memory is needed to store a copy of the register set */
#define REGISTER_BYTES    ((NUM_REGS)*2)

/* Index within `registers' of the first byte of the space for
   register N.  */

#define REGISTER_BYTE(N)  ((N) * 2)

/* Number of bytes of storage in the actual machine representation
   for register N.  */

#define REGISTER_RAW_SIZE(N) (2)

/* Number of bytes of storage in the program's representation
   for register N.  */

#define REGISTER_VIRTUAL_SIZE(N) (2)

/* Largest value REGISTER_RAW_SIZE can have.  */

#define MAX_REGISTER_RAW_SIZE 8

/* Largest value REGISTER_VIRTUAL_SIZE can have.  */

#define MAX_REGISTER_VIRTUAL_SIZE 8

/* Return the GDB type object for the "standard" data type
   of data in register N.  */

#define REGISTER_VIRTUAL_TYPE(N) builtin_type_uint16

/* Store the address of the place in which to copy the structure the
   subroutine will return.  This is called from call_function. 

   We store structs through a pointer passed in D */

#define STORE_STRUCT_RETURN(ADDR, SP) \
    { write_register (D_REGNUM, (ADDR));  }


/* Write into appropriate registers a function return value
   of type TYPE, given in virtual format.  

   Things always get returned in D/X */

#define STORE_RETURN_VALUE(TYPE,VALBUF) \
  write_register_bytes (REGISTER_BYTE (D_REGNUM), VALBUF, TYPE_LENGTH (TYPE))


/* Extract from an array REGBUF containing the (raw) register state
   the address in which a function should return its structure value,
   as a CORE_ADDR (or an expression that can be used as one).  */

#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(CORE_ADDR *)(REGBUF))


/* Define other aspects of the stack frame. 
   we keep a copy of the worked out return pc lying around, since it
   is a useful bit of info */

#define EXTRA_FRAME_INFO \
    int frame_reg; \
    CORE_ADDR return_pc; \
    CORE_ADDR dummy; \
    int frameless; \
    int size;

/* There's a mess in stack frame creation.  See comments in blockframe.c
   near reference to INIT_FRAME_PC_FIRST.  */

#define	INIT_FRAME_PC(fromleaf, prev)	/* nada */

#define INIT_FRAME_PC_FIRST(fromleaf, prev) \
  (prev)->pc = ((fromleaf) ? SAVED_PC_AFTER_CALL ((prev)->next) : \
	      (prev)->next ? FRAME_SAVED_PC ((prev)->next) : read_pc ());

#define INIT_EXTRA_FRAME_INFO(fromleaf, fi) \
    m68hc11_init_extra_frame_info (fromleaf, fi)

extern void m68hc11_init_extra_frame_info (int fromleaf,
                                           struct frame_info * fi);

/* A macro that tells us whether the function invocation represented
   by FI does not have a frame on the stack associated with it.  If it
   does not, FRAMELESS is set to 1, else 0.  */

#define FRAMELESS_FUNCTION_INVOCATION(FI) \
  frameless_look_for_prologue (FI)

#define FRAME_CHAIN(FRAME)       m68hc11_frame_chain (FRAME)
#define FRAME_CHAIN_VALID(chain,frame)	\
      ((chain) != 0 && (frame) != 0)
#define FRAME_SAVED_PC(FRAME)    ((FRAME)->return_pc)
#define FRAME_ARGS_ADDRESS(fi)   (fi)->frame
#define FRAME_LOCALS_ADDRESS(fi) (fi)->frame

#define SAVED_PC_AFTER_CALL(frame) m68hc11_saved_pc_after_call (frame)

/* Set VAL to the number of args passed to frame described by FI.
   Can set VAL to -1, meaning no way to tell.  */
/* We can't tell how many args there are */

#define FRAME_NUM_ARGS(fi) (-1)

/* Return number of bytes at start of arglist that are not really args.  */

#define FRAME_ARGS_SKIP 0


/* Put here the code to store, into a struct frame_saved_regs,
   the addresses of the saved registers of frame described by FRAME_INFO.
   This includes special registers such as pc and fp saved in special
   ways in the stack frame.  sp is even more special:
   the address we return for it IS the sp for the next frame.  */

#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs)	    \
   m68hc11_frame_find_saved_regs (frame_info, &(frame_saved_regs))

extern void m68hc11_frame_find_saved_regs (struct frame_info *,
                                           struct frame_saved_regs *);

#define CALL_DUMMY		{ 0 }
#define PUSH_DUMMY_FRAME
#define CALL_DUMMY_START_OFFSET	0
#define CALL_DUMMY_BREAKPOINT_OFFSET (0)

extern CORE_ADDR m68hc11_call_dummy_address (void);
#define CALL_DUMMY_ADDRESS() m68hc11_call_dummy_address ()

#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, args, type, gcc_p) \
sp = m68hc11_fix_call_dummy (dummyname, pc, fun, nargs, args, type, gcc_p)

extern CORE_ADDR m68hc11_fix_call_dummy (char *, CORE_ADDR, CORE_ADDR,
                                         int, struct value **,
                                         struct type *, int);
#define PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr) \
    sp = m68hc11_push_arguments ((nargs), (args), (sp), \
                                 (struct_return), (struct_addr))
extern CORE_ADDR m68hc11_push_arguments (int, struct value **,
                                         CORE_ADDR, int, CORE_ADDR);


/* Extract from an array REGBUF containing the (raw) register state
   a function return value of type TYPE, and copy that, in virtual format,
   into VALBUF.  */

#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
m68hc11_extract_return_value(TYPE, REGBUF, VALBUF)
extern void m68hc11_extract_return_value (struct type *, char *, char *);


/* Discard from the stack the innermost frame,
   restoring all saved registers.  */
#define POP_FRAME m68hc11_pop_frame();
extern void m68hc11_pop_frame (void);


/* Number of bits in the appropriate type.  */

#define TARGET_INT_BIT         (2 * TARGET_CHAR_BIT)
#define TARGET_PTR_BIT         (2 * TARGET_CHAR_BIT)
#define TARGET_DOUBLE_BIT      (4 * TARGET_CHAR_BIT)
#define TARGET_LONG_DOUBLE_BIT (8 * TARGET_CHAR_BIT)

#endif

#include "defs.h"
#include "frame.h"
#include "obstack.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "gdb_string.h"
#include "value.h"
#include "inferior.h"
#include "dis-asm.h"  
#include "symfile.h"
#include "objfiles.h"

/* NOTE: This port is not finished. Several operations are not implemented
   and will raise an error. Most of these functions concern the calling
   of a function by GDB itself (command 'call') and retrieving data pushed
   on the stack.  */

void m68hc11_frame_find_saved_regs (struct frame_info *fi,
                                    struct frame_saved_regs *fsr);
static void m68hc11_pop_dummy_frame (struct frame_info *fi);

/* Table of registers for 68HC11.  This includes the hard registers
   and the pseudo hard registers used by GCC.  */
char*
m68hc11_register_names[] =
{
  "x",    "d",    "y",    "sp",   "pc",   "a",    "b",
  "ccr",  "z",    "frame","tmp",  "zs",   "xy",
  "ZD1",  "ZD2",  "ZD3",  "ZD4",  "ZD5",  "ZD6",  "ZD7",
  "ZD8",  "ZD9",  "ZD10", "ZD11", "ZD12", "ZD13", "ZD14",
  "ZD15", "ZD16", "ZD17", "ZD18", "ZD19", "ZD20", "ZD21",
  "ZD22", "ZD23", "ZD24", "ZD25", "ZD26", "ZD27", "ZD28",
  "ZD29", "ZD30", "ZD31", "ZD32"
};

static int reg_last    = 32 * 2 + 6;
static int frame_index = 6;

/* Raise an error for operations which are not yet provided.  */
static void
m68hc11_not_yet (const char *operation)
{
  error ("Operation '%s' is not yet implemented\n", operation);
}

/* Immediately after a function call, return the saved pc before the frame
   is setup.  For sun3's, we check for the common case of being inside of a
   system call, and if so, we know that Sun pushes the call # on the stack
   prior to doing the trap. */

CORE_ADDR
m68hc11_saved_pc_after_call (struct frame_info *frame)
{
  unsigned addr = frame->frame + 1 + 2;

  addr = read_register (SP_REGNUM) + 1;
  addr &= 0x0ffff;
  return read_memory_integer (addr, 2) & 0x0FFFF;
}

/* Discard from the stack the innermost frame, restoring all saved
   registers.  */

void
m68hc11_pop_frame (void)
{
  m68hc11_not_yet ("m68hc11_pop_frame");
}

/* Analyze the function prologue to find some information
   about the function:
    - the PC of the first line (for m68hc11_skip_prologue)
    - the offset of the previous frame saved address (from current frame)
    - the soft registers which are pushed.  */
static void
m68hc11_guess_from_prologue (CORE_ADDR pc, CORE_ADDR* first_line,
                             int* frame_offset, int* pushed_regs)
{
  CORE_ADDR func_end;
  unsigned char op0, op1, op2;
  int add_sp_mode;
  int sp_adjust;
  int size;
  int found_frame_point;
  int found_load;
  CORE_ADDR first_pc;
  int reg_saved;
  
  first_pc = get_pc_function_start (pc);
  size = 0;

  if (first_pc == 0)
    {
      *frame_offset = 0;
      *pushed_regs  = 0;
      *first_line   = pc;
      return;
    }

#define OP_PAGE2 (0x18)
#define OP_LDX  (0xde)
#define OP_LDY  (0xde)
#define OP_PSHX (0x3c)
#define OP_PSHY (0x3c)
#define OP_STS  (0x9f)
#define OP_TSX  (0x30)
#define OP_TSY  (0x30)
#define OP_XGDX (0x8f)
#define OP_XGDY (0x8f)
#define OP_ADDD (0xc3)
#define OP_TXS  (0x35)
#define OP_TYS  (0x35)

  /* The 68hc11 stack is as follows:


     |           |
     +-----------+
     |           |
     | args      |
     |           |
     +-----------+
     | PC-return |
     +-----------+
     | Old frame |
     +-----------+
     |           |
     | Locals    |
     |           |
     +-----------+ <--- current frame
     |           |

     With most processors (like 68K) the previous frame can be computed
     easily because it is always at a fixed offset (see link/unlink).
     That is, locals are accessed with negative offsets, arguments are
     accessed with positive ones.  Since 68hc11 only supports offsets
     in the range [0..255], the frame is defined at the bottom of
     locals (see picture).

     The purpose of the analysis made here is to find out the size
     of locals in this function.  An alternative to this is to use
     DWARF2 info.  This would be better but I don't know how to
     access dwarf2 debug from this function.
     
     Walk from the function entry point to the point where we save
     the frame.  While walking instructions, compute the size of bytes
     which are pushed.  This gives us the index to access the previous
     frame.

     We limit the search to 128 bytes so that the algorithm is bounded
     in case of random and wrong code.  We also stop and abort if
     we find an instruction which is not supposed to appear in the
     prologue (as generated by gcc 2.95, 2.96).
  */
  pc = first_pc;
  func_end = pc + 128;
  add_sp_mode = 0;
  found_frame_point = 0;
  while (pc + 2 < func_end)
    {
      op0 = read_memory_unsigned_integer (pc, 1);
      op1 = read_memory_unsigned_integer (pc + 1, 1);
      op2 = read_memory_unsigned_integer (pc + 2, 1);
      
      /* ldx *frame */
      if (op0 == OP_LDX && op1 == frame_index)
        {
          pc += 2;
        }

      /* ldy *frame */
      else if (op0 == OP_PAGE2 && op1 == OP_LDY && op2 == frame_index)
        {
          pc += 3;
        }

      /* pshx */
      else if (op0 == OP_PSHX)
        {
          pc += 1;
          size += 2;
        }

      /* pshy */
      else if (op0 == OP_PAGE2 && op1 == OP_PSHX)
        {
          pc += 2;
          size += 2;
        }

      /* sts *frame */
      else if (op0 == OP_STS && op1 == frame_index)
        {
          found_frame_point = 1;
          pc += 2;
          break;
        }
      else if (op0 == OP_TSX && op1 == OP_XGDX)
        {
          add_sp_mode  = 1;
          pc += 2;
        }
      else if (op0 == OP_PAGE2 && op1 == OP_TSY && op2 == OP_PAGE2)
        {
          op0 = read_memory_unsigned_integer (pc + 3, 1);
          if (op0 != OP_XGDY)
            break;
          
          add_sp_mode  = 2;
          pc += 4;
        }
      else if (add_sp_mode && op0 == OP_ADDD)
        {
          sp_adjust = read_memory_unsigned_integer (pc + 1, 2);
          if (sp_adjust & 0x8000)
            sp_adjust |= 0xffff0000L;

          sp_adjust = -sp_adjust;
          add_sp_mode |= 4;
          pc += 3;
        }
      else if (add_sp_mode == (1 | 4) && op0 == OP_XGDX
               && op1 == OP_TXS)
        {
          size += sp_adjust;
          pc += 2;
          add_sp_mode = 0;
        }
      else if (add_sp_mode == (2 | 4) && op0 == OP_PAGE2
               && op1 == OP_XGDY && op2 == OP_PAGE2)
        {
          op0 = read_memory_unsigned_integer (pc + 3, 1);
          if (op0 != OP_TYS)
            break;

          size += sp_adjust;
          pc += 4;
          add_sp_mode = 0;
        }
      else
        {
          break;
        }
    }

  if (found_frame_point == 0)
    {
      *frame_offset = 0;
    }
  else
    {
      *frame_offset = size;
    }

  /* Now, look forward to see how many registers are pushed on the stack.
     We look only for soft registers so there must be a first LDX *REG
     before a PSHX.  */
  reg_saved = 0;
  found_load = 0;
  while (pc + 2 < func_end)
    {
      op0 = read_memory_unsigned_integer (pc, 1);
      op1 = read_memory_unsigned_integer (pc + 1, 1);
      op2 = read_memory_unsigned_integer (pc + 2, 1);
      if (op0 == OP_LDX && op1 > frame_index && op1 <= reg_last)
        {
          found_load = 1;
          pc += 2;
        }
      else if (op0 == OP_PAGE2 && op1 == OP_LDY
               && op2 > frame_index && op2 < reg_last)
        {
          found_load = 1;
          pc += 3;
        }
      else if (op0 == OP_PSHX)
        {
          /* If there was no load, this is a push for a function call.  */
          if (found_load == 0)
            break;
          
          reg_saved += 2;
          pc += 1;
          found_load = 0;
        }
      else if (op0 == OP_PAGE2 && op1 == OP_PSHY)
        {
          if (found_load == 0)
            break;
          
          reg_saved += 2;
          pc += 2;
          found_load = 0;
        }
      else
        {
          break;
        }
    }
  *pushed_regs = reg_saved;
  *first_line  = pc;
}


CORE_ADDR
m68hc11_skip_prologue (CORE_ADDR pc)
{
  CORE_ADDR func_addr, func_end;
  struct symtab_and_line sal;
  int frame_offset;
  int pushed_args;

  /* If we have line debugging information, then the end of the.  */
  /* prologue should be the first assembly instruction of the
     first source line.  */
  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    {
      sal = find_pc_line (func_addr, 0);
      if (sal.end && sal.end < func_end)
	return sal.end;
    }

  m68hc11_guess_from_prologue (pc, &pc, &frame_offset, &pushed_args);
  return pc;
}

/* Given a GDB frame, determine the address of the calling function's frame.
   This will be used to create a new GDB frame struct, and then
   INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
*/

CORE_ADDR
m68hc11_frame_chain (struct frame_info *frame)
{
  unsigned addr;

  if (frame->return_pc == 0 || inside_entry_file(frame->return_pc))
    return (CORE_ADDR)0;

  if (frame->frame == 0)
    {
      return (CORE_ADDR) 0;
    }

  addr = frame->frame + frame->size + 1 - 2;
  addr = read_memory_unsigned_integer (addr, 2) & 0x0FFFF;
  if (addr == 0)
    {
      return (CORE_ADDR)0;
    }
    
  return addr;
}  

/* Put here the code to store, into a struct frame_saved_regs, the
   addresses of the saved registers of frame described by FRAME_INFO.
   This includes special registers such as pc and fp saved in special
   ways in the stack frame.   sp is even more special: the address we
   return for it IS the sp for the next frame.  */
void
m68hc11_frame_find_saved_regs (struct frame_info *fi,
                               struct frame_saved_regs *fsr)
{
  CORE_ADDR pc;
  int saved;
  
  pc = fi->pc;
  memset (fsr, 0, sizeof (*fsr));
  m68hc11_guess_from_prologue (pc, &pc, &fi->size, &saved);
}

void
m68hc11_init_extra_frame_info (int fromleaf, struct frame_info *fi)
{
  unsigned addr;
  struct frame_saved_regs dummy;

  m68hc11_frame_find_saved_regs (fi, &dummy);

  if (fromleaf)
    {
      fi->return_pc = m68hc11_saved_pc_after_call (fi);
    }
  else
    {
      addr = fi->frame + fi->size + 1;
      fi->return_pc = read_memory_unsigned_integer (addr, 2) & 0x0ffff;

#if 0
      printf ("Pc@0x%04x, FR 0x%04x, size %d, read ret @0x%04x -> 0x%04x\n",
              fi->pc,
              fi->frame, fi->size,
              addr & 0x0ffff,
              fi->return_pc);
#endif
    }
}

/* Same as 'info reg' but prints the registers in a different way.  */
static void
show_regs (char *args, int from_tty)
{
  int ccr = read_register (PSW_REGNUM);
  int i;
    
  printf_filtered ("PC=%04x SP=%04x FP=%04x CCR=%02x %c%c%c%c%c%c%c%c\n",
		   read_register (PC_REGNUM),
		   read_register (SP_REGNUM),
		   read_register (FP_REGNUM),
		   ccr,
		   ccr & M6811_S_BIT ? 'S' : '-',
		   ccr & M6811_X_BIT ? 'X' : '-',
		   ccr & M6811_H_BIT ? 'H' : '-',
		   ccr & M6811_I_BIT ? 'I' : '-',
		   ccr & M6811_N_BIT ? 'N' : '-',
		   ccr & M6811_Z_BIT ? 'Z' : '-',
		   ccr & M6811_V_BIT ? 'V' : '-',
		   ccr & M6811_C_BIT ? 'C' : '-');

  printf_filtered ("D=%04x IX=%04x IY=%04x\n",
		   read_register (D_REGNUM),
		   read_register (X_REGNUM),
		   read_register (Y_REGNUM));
  for (i = ZD1_REGNUM; i <= ZD32_REGNUM; i++)
    {
      printf_filtered ("ZD%d=%04x",
                       i - ZD1_REGNUM + 1,
                       read_register (i));
      if (((i - ZD1_REGNUM) % 8) == 7)
        printf_filtered ("\n");
      else
        printf_filtered (" ");
    }
}

CORE_ADDR
m68hc11_fix_call_dummy (char *dummyname,
                        CORE_ADDR start_sp,
                        CORE_ADDR fun,
                        int nargs,
                        value_ptr *args,
                        struct type *type,
                        int gcc_p)
{
  m68hc11_not_yet ("m68hc11_fix_call_dummy");
  return 0;
}

static void
m68hc11_pop_dummy_frame (struct frame_info *fi)
{
  m68hc11_not_yet ("m68hc11_pop_dummy_frame");
}


CORE_ADDR
m68hc11_push_arguments (int nargs,
                        value_ptr *args,
                        CORE_ADDR sp,
                        int struct_return,
                        CORE_ADDR struct_addr)
{
  m68hc11_not_yet ("m68hc11_push_arguments");
  return 0;
}


CORE_ADDR
m68hc11_call_dummy_address (void)
{
  m68hc11_not_yet ("m68hc11_call_dummy_address");
  return 0;  
}

/* Given a return value in `regbuf' with a type `valtype', 
   extract and copy its value into `valbuf'.  */

void
m68hc11_extract_return_value (struct type *valtype,
                              char *regbuf,
                              char *valbuf)
{
  m68hc11_not_yet ("m68hc11_extract_return_value");
}

void
_initialize_m68hc11_tdep (void)
{
  tm_print_insn = print_insn_m68hc11;

  add_com ("regs", class_vars, show_regs, "Print all registers");
}