summaryrefslogtreecommitdiff
path: root/gdb/m32r-tdep.c
blob: c9dd5dfa9b7d22c20fb18cfc6ff237b236f6bc14 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
/* Target-dependent code for the Mitsubishi m32r for GDB, the GNU debugger.
   Copyright 1996, Free Software Foundation, Inc.

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "obstack.h"
#include "target.h"
#include "value.h"
#include "bfd.h"
#include "gdb_string.h"
#include "gdbcore.h"
#include "symfile.h"

/* Function: frame_find_saved_regs
   Return the frame_saved_regs structure for the frame.
   Doesn't really work for dummy frames, but it does pass back
   an empty frame_saved_regs, so I guess that's better than total failure */

void 
m32r_frame_find_saved_regs PARAMS ((struct frame_info *fi, 
				    struct frame_saved_regs *regaddr))
{
  memcpy(regaddr, &fi->fsr, sizeof(struct frame_saved_regs));
}

/* Function: skip_prologue
   Find end of function prologue */

CORE_ADDR
m32r_skip_prologue (pc)
     CORE_ADDR pc;
{
  CORE_ADDR func_addr, func_end;
  struct symtab_and_line sal;

  /* See what the symbol table says */

  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    {
      sal = find_pc_line (func_addr, 0);

      if (sal.line != 0 && sal.end < func_end)
	return sal.end;
      else
	/* Either there's no line info, or the line after the prologue is after
	   the end of the function.  In this case, there probably isn't a
	   prologue.  */
	return pc;
    }

  /* We can't find the start of this function, so there's nothing we can do. */
  return pc;
}

/* Function: scan_prologue
   This function decodes the target function prologue to determine
   1) the size of the stack frame, and 2) which registers are saved on it.
   It saves the offsets of saved regs in the frame_saved_regs argument,
   and returns the frame size.  */

static unsigned long
m32r_scan_prologue (fi, fsr)
     struct frame_info *fi;
     struct frame_saved_regs *fsr;
{
  struct symtab_and_line sal;
  CORE_ADDR prologue_start, prologue_end, current_pc;
  unsigned long framesize;

  /* this code essentially duplicates skip_prologue, 
     but we need the start address below.  */

  if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
    {
      sal = find_pc_line (prologue_start, 0);

      if (sal.line == 0)		/* no line info, use current PC */
	if (prologue_start != entry_point_address ())
	  prologue_end = fi->pc;
	else
	  return 0;			/* _start has no frame or prologue */
      else if (sal.end < prologue_end)	/* next line begins after fn end */
	prologue_end = sal.end;		/* (probably means no prologue)  */
    }
  else
    prologue_end = prologue_start + 40; /* We're in the boondocks: allow for */
					/* 16 pushes, an add, and "mv fp,sp" */

  prologue_end = min (prologue_end, fi->pc);

  /* Now, search the prologue looking for instructions that setup fp, save
     rp (and other regs), adjust sp and such. */ 

  framesize = 0;
  for (current_pc = prologue_start; current_pc < prologue_end; current_pc += 2)
    {
      int insn;
      int regno;

      insn = read_memory_unsigned_integer (current_pc, 2);
      if (insn & 0x8000)			/* Four byte instruction? */
	current_pc += 2;

      if ((insn & 0xf0ff) == 0x207f) {		/* st reg, @-sp */
	framesize += 4;
	regno = ((insn >> 8) & 0xf);
	if (fsr)				/* save_regs offset */
	  fsr->regs[regno] = framesize;
      }
      else if ((insn >> 8) == 0x4f)  		/* addi sp, xx */
	/* add 8 bit sign-extended offset */
	framesize += -((char) (insn & 0xff));
      else if (insn == 0x8faf)			/* add3 sp, sp, xxxx */
	/* add 16 bit sign-extended offset */
	framesize += -((short) read_memory_unsigned_integer (current_pc, 2));
      else if (((insn >> 8) == 0xe4) &&	    /* ld24 r4, xxxxxx ;  sub sp, r4 */
	       read_memory_unsigned_integer (current_pc + 2, 2) == 0x0f24)
	{ /* subtract 24 bit sign-extended negative-offset */
	  insn = read_memory_unsigned_integer (current_pc - 2, 4);
	  if (insn & 0x00800000)	/* sign extend */
	    insn  |= 0xff000000;	/* negative */
	  else
	    insn  &= 0x00ffffff;	/* positive */
	  framesize += insn;
	}
      else if (insn == 0x1d8f) {	/* mv fp, sp */
	fi->using_frame_pointer = 1;	/* fp is now valid */
	break;				/* end of stack adjustments */
      }
      else
	break;				/* anything else isn't prologue */
    }
  return framesize;
}

/* Function: init_extra_frame_info
   This function actually figures out the frame address for a given pc and
   sp.  This is tricky on the m32r because we sometimes don't use an explicit
   frame pointer, and the previous stack pointer isn't necessarily recorded
   on the stack.  The only reliable way to get this info is to
   examine the prologue.  */

void
m32r_init_extra_frame_info (fi)
     struct frame_info *fi;
{
  int reg;

  if (fi->next)
    fi->pc = FRAME_SAVED_PC (fi->next);

  memset (fi->fsr.regs, '\000', sizeof fi->fsr.regs);

  if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
    {
      /* We need to setup fi->frame here because run_stack_dummy gets it wrong
	 by assuming it's always FP.  */
      fi->frame = generic_read_register_dummy (fi->pc, fi->frame, SP_REGNUM);
      fi->framesize = 0;
      return;
    }
  else 
    {
      fi->using_frame_pointer = 0;
      fi->framesize = m32r_scan_prologue (fi, &fi->fsr);

      if (!fi->next)
	if (fi->using_frame_pointer)
	  fi->frame = read_register (FP_REGNUM);
	else
	  fi->frame = read_register (SP_REGNUM);
      else 	/* fi->next means this is not the innermost frame */
	if (fi->using_frame_pointer)		    /* we have an FP */
	  if (fi->next->fsr.regs[FP_REGNUM] != 0)   /* caller saved our FP */
	    fi->frame = read_memory_integer (fi->next->fsr.regs[FP_REGNUM], 4);
      for (reg = 0; reg < NUM_REGS; reg++)
	if (fi->fsr.regs[reg] != 0)
	  fi->fsr.regs[reg] = fi->frame + fi->framesize - fi->fsr.regs[reg];
    }
}

/* Function: find_callers_reg
   Find REGNUM on the stack.  Otherwise, it's in an active register.  One thing
   we might want to do here is to check REGNUM against the clobber mask, and
   somehow flag it as invalid if it isn't saved on the stack somewhere.  This
   would provide a graceful failure mode when trying to get the value of
   caller-saves registers for an inner frame.  */

CORE_ADDR
m32r_find_callers_reg (fi, regnum)
     struct frame_info *fi;
     int regnum;
{
  for (; fi; fi = fi->next)
    if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
      return generic_read_register_dummy (fi->pc, fi->frame, regnum);
    else if (fi->fsr.regs[regnum] != 0)
      return read_memory_integer (fi->fsr.regs[regnum], 
				  REGISTER_RAW_SIZE(regnum));
  return read_register (regnum);
}

/* Function: frame_chain
   Given a GDB frame, determine the address of the calling function's frame.
   This will be used to create a new GDB frame struct, and then
   INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
   For m32r, we save the frame size when we initialize the frame_info.  */

CORE_ADDR
m32r_frame_chain (fi)
     struct frame_info *fi;
{
  CORE_ADDR fn_start, callers_pc, fp;

  /* is this a dummy frame? */
  if (PC_IN_CALL_DUMMY(fi->pc, fi->frame, fi->frame))
    return fi->frame;	/* dummy frame same as caller's frame */

  /* is caller-of-this a dummy frame? */
  callers_pc = FRAME_SAVED_PC(fi);  /* find out who called us: */
  fp = m32r_find_callers_reg (fi, FP_REGNUM);
  if (PC_IN_CALL_DUMMY(callers_pc, fp, fp))	
    return fp;		/* dummy frame's frame may bear no relation to ours */

  if (find_pc_partial_function (fi->pc, 0, &fn_start, 0))
    if (fn_start == entry_point_address ())
      return 0;		/* in _start fn, don't chain further */
  return fi->frame + fi->framesize;
}

/* Function: push_return_address (pc)
   Set up the return address for the inferior function call.
   Necessary for targets that don't actually execute a JSR/BSR instruction 
   (ie. when using an empty CALL_DUMMY) */

CORE_ADDR
m32r_push_return_address (pc, sp)
     CORE_ADDR pc;
     CORE_ADDR sp;
{
#if CALL_DUMMY_LOCATION != AT_ENTRY_POINT
  pc = pc - CALL_DUMMY_START_OFFSET + CALL_DUMMY_BREAKPOINT_OFFSET;
#else
  pc = CALL_DUMMY_ADDRESS ();
#endif
  write_register (RP_REGNUM, pc);
  return sp;
}


/* Function: pop_frame
   Discard from the stack the innermost frame,
   restoring all saved registers.  */

struct frame_info *
m32r_pop_frame (frame)
     struct frame_info *frame;
{
  int regnum;

  if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
    generic_pop_dummy_frame ();
  else
    {
      for (regnum = 0; regnum < NUM_REGS; regnum++)
	if (frame->fsr.regs[regnum] != 0)
	  write_register (regnum, 
			  read_memory_integer (frame->fsr.regs[regnum], 4));

      write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
      write_register (SP_REGNUM, read_register (FP_REGNUM));
      if (read_register (PSW_REGNUM) & 0x80)
	write_register (SPU_REGNUM, read_register (SP_REGNUM));
      else
	write_register (SPI_REGNUM, read_register (SP_REGNUM));
    }
  flush_cached_frames ();
  return NULL;
}

/* Function: frame_saved_pc
   Find the caller of this frame.  We do this by seeing if RP_REGNUM is saved
   in the stack anywhere, otherwise we get it from the registers. */

CORE_ADDR
m32r_frame_saved_pc (fi)
     struct frame_info *fi;
{
  if (PC_IN_CALL_DUMMY(fi->pc, fi->frame, fi->frame))
    return generic_read_register_dummy(fi->pc, fi->frame, PC_REGNUM);
  else
    return m32r_find_callers_reg (fi, RP_REGNUM);
}

/* Function: push_arguments
   Setup the function arguments for calling a function in the inferior.

   On the Mitsubishi M32R architecture, there are four registers (R0 to R3)
   which are dedicated for passing function arguments.  Up to the first 
   four arguments (depending on size) may go into these registers.
   The rest go on the stack.

   Arguments that are smaller than 4 bytes will still take up a whole
   register or a whole 32-bit word on the stack, and will be
   right-justified in the register or the stack word.  This includes
   chars, shorts, and small aggregate types.
 
   Arguments of 8 bytes size are split between two registers, if 
   available.  If only one register is available, the argument will 
   be split between the register and the stack.  Otherwise it is
   passed entirely on the stack.  Aggregate types with sizes between
   4 and 8 bytes are passed entirely on the stack, and are left-justified
   within the double-word (as opposed to aggregates smaller than 4 bytes
   which are right-justified).

   Aggregates of greater than 8 bytes are first copied onto the stack, 
   and then a pointer to the copy is passed in the place of the normal
   argument (either in a register if available, or on the stack).

   Functions that must return an aggregate type can return it in the 
   normal return value registers (R0 and R1) if its size is 8 bytes or
   less.  For larger return values, the caller must allocate space for 
   the callee to copy the return value to.  A pointer to this space is
   passed as an implicit first argument, always in R0. */

CORE_ADDR
m32r_push_arguments (nargs, args, sp, struct_return, struct_addr)
     int nargs;
     value_ptr *args;
     CORE_ADDR sp;
     unsigned char struct_return;
     CORE_ADDR struct_addr;
{
  int stack_offset, stack_alloc;
  int argreg;
  int argnum;
  struct type *type;
  CORE_ADDR regval;
  char *val;
  char valbuf[4];
  int len;
  int odd_sized_struct;

  /* first force sp to a 4-byte alignment */
  sp = sp & ~3;

  argreg = ARG0_REGNUM;  
  /* The "struct return pointer" pseudo-argument goes in R0 */
  if (struct_return)
      write_register (argreg++, struct_addr);
 
  /* Now make sure there's space on the stack */
  for (argnum = 0, stack_alloc = 0;
       argnum < nargs; argnum++)
    stack_alloc += ((TYPE_LENGTH(VALUE_TYPE(args[argnum])) + 3) & ~3);
  sp -= stack_alloc;    /* make room on stack for args */
 
 
  /* Now load as many as possible of the first arguments into
     registers, and push the rest onto the stack.  There are 16 bytes
     in four registers available.  Loop thru args from first to last.  */
 
  argreg = ARG0_REGNUM;
  for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
    {
      type = VALUE_TYPE (args[argnum]);
      len  = TYPE_LENGTH (type);
      memset(valbuf, 0, sizeof(valbuf));
      if (len < 4)
        { /* value gets right-justified in the register or stack word */
          memcpy(valbuf + (4 - len),
                 (char *) VALUE_CONTENTS (args[argnum]), len);
          val = valbuf;
        }
      else
        val = (char *) VALUE_CONTENTS (args[argnum]);
 
      if (len > 4 && (len & 3) != 0)
        odd_sized_struct = 1;           /* such structs go entirely on stack */
      else
        odd_sized_struct = 0;
      while (len > 0)
        {
          if (argreg > ARGLAST_REGNUM || odd_sized_struct)
            {				/* must go on the stack */
              write_memory (sp + stack_offset, val, 4);
              stack_offset += 4;
            }
          /* NOTE WELL!!!!!  This is not an "else if" clause!!!
             That's because some *&^%$ things get passed on the stack
             AND in the registers!   */
          if (argreg <= ARGLAST_REGNUM)
            {				/* there's room in a register */
              regval = extract_address (val, REGISTER_RAW_SIZE(argreg));
              write_register (argreg++, regval);
            }
          /* Store the value 4 bytes at a time.  This means that things
             larger than 4 bytes may go partly in registers and partly
             on the stack.  */
          len -= REGISTER_RAW_SIZE(argreg);
          val += REGISTER_RAW_SIZE(argreg);
        }
    }
  return sp;
}

/* Function: fix_call_dummy 
   If there is real CALL_DUMMY code (eg. on the stack), this function
   has the responsability to insert the address of the actual code that
   is the target of the target function call.  */

int
m32r_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
     char *dummy;
     CORE_ADDR pc;
     CORE_ADDR fun;
     int nargs;
     value_ptr *args;
     struct type *type;
     int gcc_p;
{
  /* ld24 r8, <(imm24) fun> */
  *(unsigned long *) (dummy) = (fun & 0x00ffffff) | 0xe8000000;
}

/* Function: get_saved_register
   Just call the generic_get_saved_register function.  */

void
get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
     char *raw_buffer;
     int *optimized;
     CORE_ADDR *addrp;
     struct frame_info *frame;
     int regnum;
     enum lval_type *lval;
{
  generic_get_saved_register (raw_buffer, optimized, addrp, 
			      frame, regnum, lval);
}


/* Function: m32r_write_sp
   Because SP is really a read-only register that mirrors either SPU or SPI,
   we must actually write one of those two as well, depending on PSW. */

void
m32r_write_sp (val)
     CORE_ADDR val;
{
  unsigned long psw = read_register (PSW_REGNUM);

  if (psw & 0x80)	/* stack mode: user or interrupt */
    write_register (SPU_REGNUM, val);
  else
    write_register (SPI_REGNUM, val);
  write_register (SP_REGNUM, val);
}

void
_initialize_m32r_tdep ()
{
  tm_print_insn = print_insn_m32r;
}