summaryrefslogtreecommitdiff
path: root/gdb/m32c-tdep.c
blob: 657c6b7930f3018ac5274e2388d1032e6d343ecb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
/* Renesas M32C target-dependent code for GDB, the GNU debugger.

   Copyright (C) 2004-2019 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "elf-bfd.h"
#include "elf/m32c.h"
#include "gdb/sim-m32c.h"
#include "dis-asm.h"
#include "gdbtypes.h"
#include "regcache.h"
#include "arch-utils.h"
#include "frame.h"
#include "frame-unwind.h"
#include "dwarf2-frame.h"
#include "dwarf2expr.h"
#include "symtab.h"
#include "gdbcore.h"
#include "value.h"
#include "reggroups.h"
#include "prologue-value.h"
#include "target.h"
#include "objfiles.h"


/* The m32c tdep structure.  */

static struct reggroup *m32c_dma_reggroup;

struct m32c_reg;

/* The type of a function that moves the value of REG between CACHE or
   BUF --- in either direction.  */
typedef enum register_status (m32c_write_reg_t) (struct m32c_reg *reg,
						 struct regcache *cache,
						 const gdb_byte *buf);

typedef enum register_status (m32c_read_reg_t) (struct m32c_reg *reg,
						readable_regcache *cache,
						gdb_byte *buf);

struct m32c_reg
{
  /* The name of this register.  */
  const char *name;

  /* Its type.  */
  struct type *type;

  /* The architecture this register belongs to.  */
  struct gdbarch *arch;

  /* Its GDB register number.  */
  int num;

  /* Its sim register number.  */
  int sim_num;

  /* Its DWARF register number, or -1 if it doesn't have one.  */
  int dwarf_num;

  /* Register group memberships.  */
  unsigned int general_p : 1;
  unsigned int dma_p : 1;
  unsigned int system_p : 1;
  unsigned int save_restore_p : 1;

  /* Functions to read its value from a regcache, and write its value
     to a regcache.  */
  m32c_read_reg_t *read;
  m32c_write_reg_t *write;

  /* Data for READ and WRITE functions.  The exact meaning depends on
     the specific functions selected; see the comments for those
     functions.  */
  struct m32c_reg *rx, *ry;
  int n;
};


/* An overestimate of the number of raw and pseudoregisters we will
   have.  The exact answer depends on the variant of the architecture
   at hand, but we can use this to declare statically allocated
   arrays, and bump it up when needed.  */
#define M32C_MAX_NUM_REGS (75)

/* The largest assigned DWARF register number.  */
#define M32C_MAX_DWARF_REGNUM (40)


struct gdbarch_tdep
{
  /* All the registers for this variant, indexed by GDB register
     number, and the number of registers present.  */
  struct m32c_reg regs[M32C_MAX_NUM_REGS];

  /* The number of valid registers.  */
  int num_regs;

  /* Interesting registers.  These are pointers into REGS.  */
  struct m32c_reg *pc, *flg;
  struct m32c_reg *r0, *r1, *r2, *r3, *a0, *a1;
  struct m32c_reg *r2r0, *r3r2r1r0, *r3r1r2r0;
  struct m32c_reg *sb, *fb, *sp;

  /* A table indexed by DWARF register numbers, pointing into
     REGS.  */
  struct m32c_reg *dwarf_regs[M32C_MAX_DWARF_REGNUM + 1];

  /* Types for this architecture.  We can't use the builtin_type_foo
     types, because they're not initialized when building a gdbarch
     structure.  */
  struct type *voyd, *ptr_voyd, *func_voyd;
  struct type *uint8, *uint16;
  struct type *int8, *int16, *int32, *int64;

  /* The types for data address and code address registers.  */
  struct type *data_addr_reg_type, *code_addr_reg_type;

  /* The number of bytes a return address pushed by a 'jsr' instruction
     occupies on the stack.  */
  int ret_addr_bytes;

  /* The number of bytes an address register occupies on the stack
     when saved by an 'enter' or 'pushm' instruction.  */
  int push_addr_bytes;
};


/* Types.  */

static void
make_types (struct gdbarch *arch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
  unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
  int data_addr_reg_bits, code_addr_reg_bits;
  char type_name[50];

#if 0
  /* This is used to clip CORE_ADDR values, so this value is
     appropriate both on the m32c, where pointers are 32 bits long,
     and on the m16c, where pointers are sixteen bits long, but there
     may be code above the 64k boundary.  */
  set_gdbarch_addr_bit (arch, 24);
#else
  /* GCC uses 32 bits for addrs in the dwarf info, even though
     only 16/24 bits are used.  Setting addr_bit to 24 causes
     errors in reading the dwarf addresses.  */
  set_gdbarch_addr_bit (arch, 32);
#endif

  set_gdbarch_int_bit (arch, 16);
  switch (mach)
    {
    case bfd_mach_m16c:
      data_addr_reg_bits = 16;
      code_addr_reg_bits = 24;
      set_gdbarch_ptr_bit (arch, 16);
      tdep->ret_addr_bytes = 3;
      tdep->push_addr_bytes = 2;
      break;

    case bfd_mach_m32c:
      data_addr_reg_bits = 24;
      code_addr_reg_bits = 24;
      set_gdbarch_ptr_bit (arch, 32);
      tdep->ret_addr_bytes = 4;
      tdep->push_addr_bytes = 4;
      break;

    default:
      gdb_assert_not_reached ("unexpected mach");
    }

  /* The builtin_type_mumble variables are sometimes uninitialized when
     this is called, so we avoid using them.  */
  tdep->voyd = arch_type (arch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
  tdep->ptr_voyd
    = arch_pointer_type (arch, gdbarch_ptr_bit (arch), NULL, tdep->voyd);
  tdep->func_voyd = lookup_function_type (tdep->voyd);

  xsnprintf (type_name, sizeof (type_name), "%s_data_addr_t",
	     gdbarch_bfd_arch_info (arch)->printable_name);
  tdep->data_addr_reg_type
    = arch_pointer_type (arch, data_addr_reg_bits, type_name, tdep->voyd);

  xsnprintf (type_name, sizeof (type_name), "%s_code_addr_t",
	     gdbarch_bfd_arch_info (arch)->printable_name);
  tdep->code_addr_reg_type
    = arch_pointer_type (arch, code_addr_reg_bits, type_name, tdep->func_voyd);

  tdep->uint8  = arch_integer_type (arch,  8, 1, "uint8_t");
  tdep->uint16 = arch_integer_type (arch, 16, 1, "uint16_t");
  tdep->int8   = arch_integer_type (arch,  8, 0, "int8_t");
  tdep->int16  = arch_integer_type (arch, 16, 0, "int16_t");
  tdep->int32  = arch_integer_type (arch, 32, 0, "int32_t");
  tdep->int64  = arch_integer_type (arch, 64, 0, "int64_t");
}



/* Register set.  */

static const char *
m32c_register_name (struct gdbarch *gdbarch, int num)
{
  return gdbarch_tdep (gdbarch)->regs[num].name;
}


static struct type *
m32c_register_type (struct gdbarch *arch, int reg_nr)
{
  return gdbarch_tdep (arch)->regs[reg_nr].type;
}


static int
m32c_register_sim_regno (struct gdbarch *gdbarch, int reg_nr)
{
  return gdbarch_tdep (gdbarch)->regs[reg_nr].sim_num;
}


static int
m32c_debug_info_reg_to_regnum (struct gdbarch *gdbarch, int reg_nr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  if (0 <= reg_nr && reg_nr <= M32C_MAX_DWARF_REGNUM
      && tdep->dwarf_regs[reg_nr])
    return tdep->dwarf_regs[reg_nr]->num;
  else
    /* The DWARF CFI code expects to see -1 for invalid register
       numbers.  */
    return -1;
}


static int
m32c_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
			  struct reggroup *group)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  struct m32c_reg *reg = &tdep->regs[regnum];

  /* The anonymous raw registers aren't in any groups.  */
  if (! reg->name)
    return 0;

  if (group == all_reggroup)
    return 1;

  if (group == general_reggroup
      && reg->general_p)
    return 1;

  if (group == m32c_dma_reggroup
      && reg->dma_p)
    return 1;

  if (group == system_reggroup
      && reg->system_p)
    return 1;

  /* Since the m32c DWARF register numbers refer to cooked registers, not
     raw registers, and frame_pop depends on the save and restore groups
     containing registers the DWARF CFI will actually mention, our save
     and restore groups are cooked registers, not raw registers.  (This is
     why we can't use the default reggroup function.)  */
  if ((group == save_reggroup
       || group == restore_reggroup)
      && reg->save_restore_p)
    return 1;

  return 0;
}


/* Register move functions.  We declare them here using
   m32c_{read,write}_reg_t to check the types.  */
static m32c_read_reg_t m32c_raw_read;
static m32c_read_reg_t m32c_banked_read;
static m32c_read_reg_t m32c_sb_read;
static m32c_read_reg_t m32c_part_read;
static m32c_read_reg_t m32c_cat_read;
static m32c_read_reg_t m32c_r3r2r1r0_read;

static m32c_write_reg_t m32c_raw_write;
static m32c_write_reg_t m32c_banked_write;
static m32c_write_reg_t m32c_sb_write;
static m32c_write_reg_t m32c_part_write;
static m32c_write_reg_t m32c_cat_write;
static m32c_write_reg_t m32c_r3r2r1r0_write;

/* Copy the value of the raw register REG from CACHE to BUF.  */
static enum register_status
m32c_raw_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
{
  return cache->raw_read (reg->num, buf);
}


/* Copy the value of the raw register REG from BUF to CACHE.  */
static enum register_status
m32c_raw_write (struct m32c_reg *reg, struct regcache *cache,
		const gdb_byte *buf)
{
  cache->raw_write (reg->num, buf);

  return REG_VALID;
}


/* Return the value of the 'flg' register in CACHE.  */
static int
m32c_read_flg (readable_regcache *cache)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (cache->arch ());
  ULONGEST flg;

  cache->raw_read (tdep->flg->num, &flg);
  return flg & 0xffff;
}


/* Evaluate the real register number of a banked register.  */
static struct m32c_reg *
m32c_banked_register (struct m32c_reg *reg, readable_regcache *cache)
{
  return ((m32c_read_flg (cache) & reg->n) ? reg->ry : reg->rx);
}


/* Move the value of a banked register from CACHE to BUF.
   If the value of the 'flg' register in CACHE has any of the bits
   masked in REG->n set, then read REG->ry.  Otherwise, read
   REG->rx.  */
static enum register_status
m32c_banked_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
{
  struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
  return cache->raw_read (bank_reg->num, buf);
}


/* Move the value of a banked register from BUF to CACHE.
   If the value of the 'flg' register in CACHE has any of the bits
   masked in REG->n set, then write REG->ry.  Otherwise, write
   REG->rx.  */
static enum register_status
m32c_banked_write (struct m32c_reg *reg, struct regcache *cache,
		   const gdb_byte *buf)
{
  struct m32c_reg *bank_reg = m32c_banked_register (reg, cache);
  cache->raw_write (bank_reg->num, buf);

  return REG_VALID;
}


/* Move the value of SB from CACHE to BUF.  On bfd_mach_m32c, SB is a
   banked register; on bfd_mach_m16c, it's not.  */
static enum register_status
m32c_sb_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
{
  if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
    return m32c_raw_read (reg->rx, cache, buf);
  else
    return m32c_banked_read (reg, cache, buf);
}


/* Move the value of SB from BUF to CACHE.  On bfd_mach_m32c, SB is a
   banked register; on bfd_mach_m16c, it's not.  */
static enum register_status
m32c_sb_write (struct m32c_reg *reg, struct regcache *cache, const gdb_byte *buf)
{
  if (gdbarch_bfd_arch_info (reg->arch)->mach == bfd_mach_m16c)
    m32c_raw_write (reg->rx, cache, buf);
  else
    m32c_banked_write (reg, cache, buf);

  return REG_VALID;
}


/* Assuming REG uses m32c_part_read and m32c_part_write, set *OFFSET_P
   and *LEN_P to the offset and length, in bytes, of the part REG
   occupies in its underlying register.  The offset is from the
   lower-addressed end, regardless of the architecture's endianness.
   (The M32C family is always little-endian, but let's keep those
   assumptions out of here.)  */
static void
m32c_find_part (struct m32c_reg *reg, int *offset_p, int *len_p)
{
  /* The length of the containing register, of which REG is one part.  */
  int containing_len = TYPE_LENGTH (reg->rx->type);

  /* The length of one "element" in our imaginary array.  */
  int elt_len = TYPE_LENGTH (reg->type);

  /* The offset of REG's "element" from the least significant end of
     the containing register.  */
  int elt_offset = reg->n * elt_len;

  /* If we extend off the end, trim the length of the element.  */
  if (elt_offset + elt_len > containing_len)
    {
      elt_len = containing_len - elt_offset;
      /* We shouldn't be declaring partial registers that go off the
	 end of their containing registers.  */
      gdb_assert (elt_len > 0);
    }

  /* Flip the offset around if we're big-endian.  */
  if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
    elt_offset = TYPE_LENGTH (reg->rx->type) - elt_offset - elt_len;

  *offset_p = elt_offset;
  *len_p = elt_len;
}


/* Move the value of a partial register (r0h, intbl, etc.) from CACHE
   to BUF.  Treating the value of the register REG->rx as an array of
   REG->type values, where higher indices refer to more significant
   bits, read the value of the REG->n'th element.  */
static enum register_status
m32c_part_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
{
  int offset, len;

  memset (buf, 0, TYPE_LENGTH (reg->type));
  m32c_find_part (reg, &offset, &len);
  return cache->cooked_read_part (reg->rx->num, offset, len, buf);
}


/* Move the value of a banked register from BUF to CACHE.
   Treating the value of the register REG->rx as an array of REG->type
   values, where higher indices refer to more significant bits, write
   the value of the REG->n'th element.  */
static enum register_status
m32c_part_write (struct m32c_reg *reg, struct regcache *cache,
		 const gdb_byte *buf)
{
  int offset, len;

  m32c_find_part (reg, &offset, &len);
  cache->cooked_write_part (reg->rx->num, offset, len, buf);

  return REG_VALID;
}


/* Move the value of REG from CACHE to BUF.  REG's value is the
   concatenation of the values of the registers REG->rx and REG->ry,
   with REG->rx contributing the more significant bits.  */
static enum register_status
m32c_cat_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
{
  int high_bytes = TYPE_LENGTH (reg->rx->type);
  int low_bytes  = TYPE_LENGTH (reg->ry->type);
  enum register_status status;

  gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);

  if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
    {
      status = cache->cooked_read (reg->rx->num, buf);
      if (status == REG_VALID)
	status = cache->cooked_read (reg->ry->num, buf + high_bytes);
    }
  else
    {
      status = cache->cooked_read (reg->rx->num, buf + low_bytes);
      if (status == REG_VALID)
	status = cache->cooked_read (reg->ry->num, buf);
    }
  return status;
}


/* Move the value of REG from CACHE to BUF.  REG's value is the
   concatenation of the values of the registers REG->rx and REG->ry,
   with REG->rx contributing the more significant bits.  */
static enum register_status
m32c_cat_write (struct m32c_reg *reg, struct regcache *cache,
		const gdb_byte *buf)
{
  int high_bytes = TYPE_LENGTH (reg->rx->type);
  int low_bytes  = TYPE_LENGTH (reg->ry->type);

  gdb_assert (TYPE_LENGTH (reg->type) == high_bytes + low_bytes);

  if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
    {
      cache->cooked_write (reg->rx->num, buf);
      cache->cooked_write (reg->ry->num, buf + high_bytes);
    }
  else
    {
      cache->cooked_write (reg->rx->num, buf + low_bytes);
      cache->cooked_write (reg->ry->num, buf);
    }

  return REG_VALID;
}


/* Copy the value of the raw register REG from CACHE to BUF.  REG is
   the concatenation (from most significant to least) of r3, r2, r1,
   and r0.  */
static enum register_status
m32c_r3r2r1r0_read (struct m32c_reg *reg, readable_regcache *cache, gdb_byte *buf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
  int len = TYPE_LENGTH (tdep->r0->type);
  enum register_status status;

  if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
    {
      status = cache->cooked_read (tdep->r0->num, buf + len * 3);
      if (status == REG_VALID)
	status = cache->cooked_read (tdep->r1->num, buf + len * 2);
      if (status == REG_VALID)
	status = cache->cooked_read (tdep->r2->num, buf + len * 1);
      if (status == REG_VALID)
	status = cache->cooked_read (tdep->r3->num, buf);
    }
  else
    {
      status = cache->cooked_read (tdep->r0->num, buf);
      if (status == REG_VALID)
	status = cache->cooked_read (tdep->r1->num, buf + len * 1);
      if (status == REG_VALID)
	status = cache->cooked_read (tdep->r2->num, buf + len * 2);
      if (status == REG_VALID)
	status = cache->cooked_read (tdep->r3->num, buf + len * 3);
    }

  return status;
}


/* Copy the value of the raw register REG from BUF to CACHE.  REG is
   the concatenation (from most significant to least) of r3, r2, r1,
   and r0.  */
static enum register_status
m32c_r3r2r1r0_write (struct m32c_reg *reg, struct regcache *cache,
		     const gdb_byte *buf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (reg->arch);
  int len = TYPE_LENGTH (tdep->r0->type);

  if (gdbarch_byte_order (reg->arch) == BFD_ENDIAN_BIG)
    {
      cache->cooked_write (tdep->r0->num, buf + len * 3);
      cache->cooked_write (tdep->r1->num, buf + len * 2);
      cache->cooked_write (tdep->r2->num, buf + len * 1);
      cache->cooked_write (tdep->r3->num, buf);
    }
  else
    {
      cache->cooked_write (tdep->r0->num, buf);
      cache->cooked_write (tdep->r1->num, buf + len * 1);
      cache->cooked_write (tdep->r2->num, buf + len * 2);
      cache->cooked_write (tdep->r3->num, buf + len * 3);
    }

  return REG_VALID;
}


static enum register_status
m32c_pseudo_register_read (struct gdbarch *arch,
			   readable_regcache *cache,
			   int cookednum,
			   gdb_byte *buf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
  struct m32c_reg *reg;

  gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
  gdb_assert (arch == cache->arch ());
  gdb_assert (arch == tdep->regs[cookednum].arch);
  reg = &tdep->regs[cookednum];

  return reg->read (reg, cache, buf);
}


static void
m32c_pseudo_register_write (struct gdbarch *arch,
			    struct regcache *cache,
			    int cookednum,
			    const gdb_byte *buf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
  struct m32c_reg *reg;

  gdb_assert (0 <= cookednum && cookednum < tdep->num_regs);
  gdb_assert (arch == cache->arch ());
  gdb_assert (arch == tdep->regs[cookednum].arch);
  reg = &tdep->regs[cookednum];

  reg->write (reg, cache, buf);
}


/* Add a register with the given fields to the end of ARCH's table.
   Return a pointer to the newly added register.  */
static struct m32c_reg *
add_reg (struct gdbarch *arch,
	 const char *name,
	 struct type *type,
	 int sim_num,
	 m32c_read_reg_t *read,
	 m32c_write_reg_t *write,
	 struct m32c_reg *rx,
	 struct m32c_reg *ry,
	 int n)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
  struct m32c_reg *r = &tdep->regs[tdep->num_regs];

  gdb_assert (tdep->num_regs < M32C_MAX_NUM_REGS);

  r->name           = name;
  r->type           = type;
  r->arch           = arch;
  r->num            = tdep->num_regs;
  r->sim_num        = sim_num;
  r->dwarf_num      = -1;
  r->general_p      = 0;
  r->dma_p          = 0;
  r->system_p       = 0;
  r->save_restore_p = 0;
  r->read           = read;
  r->write          = write;
  r->rx             = rx;
  r->ry             = ry;
  r->n              = n;

  tdep->num_regs++;

  return r;
}


/* Record NUM as REG's DWARF register number.  */
static void
set_dwarf_regnum (struct m32c_reg *reg, int num)
{
  gdb_assert (num < M32C_MAX_NUM_REGS);

  /* Update the reg->DWARF mapping.  Only count the first number
     assigned to this register.  */
  if (reg->dwarf_num == -1)
    reg->dwarf_num = num;

  /* Update the DWARF->reg mapping.  */
  gdbarch_tdep (reg->arch)->dwarf_regs[num] = reg;
}


/* Mark REG as a general-purpose register, and return it.  */
static struct m32c_reg *
mark_general (struct m32c_reg *reg)
{
  reg->general_p = 1;
  return reg;
}


/* Mark REG as a DMA register.  */
static void
mark_dma (struct m32c_reg *reg)
{
  reg->dma_p = 1;
}


/* Mark REG as a SYSTEM register, and return it.  */
static struct m32c_reg *
mark_system (struct m32c_reg *reg)
{
  reg->system_p = 1;
  return reg;
}


/* Mark REG as a save-restore register, and return it.  */
static struct m32c_reg *
mark_save_restore (struct m32c_reg *reg)
{
  reg->save_restore_p = 1;
  return reg;
}


#define FLAGBIT_B	0x0010
#define FLAGBIT_U	0x0080

/* Handy macros for declaring registers.  These all evaluate to
   pointers to the register declared.  Macros that define two
   registers evaluate to a pointer to the first.  */

/* A raw register named NAME, with type TYPE and sim number SIM_NUM.  */
#define R(name, type, sim_num)					\
  (add_reg (arch, (name), (type), (sim_num),			\
	    m32c_raw_read, m32c_raw_write, NULL, NULL, 0))

/* The simulator register number for a raw register named NAME.  */
#define SIM(name) (m32c_sim_reg_ ## name)

/* A raw unsigned 16-bit data register named NAME.
   NAME should be an identifier, not a string.  */
#define R16U(name)						\
  (R(#name, tdep->uint16, SIM (name)))

/* A raw data address register named NAME.
   NAME should be an identifier, not a string.  */
#define RA(name)						\
  (R(#name, tdep->data_addr_reg_type, SIM (name)))

/* A raw code address register named NAME.  NAME should
   be an identifier, not a string.  */
#define RC(name)						\
  (R(#name, tdep->code_addr_reg_type, SIM (name)))

/* A pair of raw registers named NAME0 and NAME1, with type TYPE.
   NAME should be an identifier, not a string.  */
#define RP(name, type)				\
  (R(#name "0", (type), SIM (name ## 0)),	\
   R(#name "1", (type), SIM (name ## 1)) - 1)

/* A raw banked general-purpose data register named NAME.
   NAME should be an identifier, not a string.  */
#define RBD(name)						\
  (R(NULL, tdep->int16, SIM (name ## _bank0)),		\
   R(NULL, tdep->int16, SIM (name ## _bank1)) - 1)

/* A raw banked data address register named NAME.
   NAME should be an identifier, not a string.  */
#define RBA(name)						\
  (R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank0)),	\
   R(NULL, tdep->data_addr_reg_type, SIM (name ## _bank1)) - 1)

/* A cooked register named NAME referring to a raw banked register
   from the bank selected by the current value of FLG.  RAW_PAIR
   should be a pointer to the first register in the banked pair.
   NAME must be an identifier, not a string.  */
#define CB(name, raw_pair)				\
  (add_reg (arch, #name, (raw_pair)->type, 0,		\
	    m32c_banked_read, m32c_banked_write,	\
            (raw_pair), (raw_pair + 1), FLAGBIT_B))

/* A pair of registers named NAMEH and NAMEL, of type TYPE, that
   access the top and bottom halves of the register pointed to by
   NAME.  NAME should be an identifier.  */
#define CHL(name, type)							\
  (add_reg (arch, #name "h", (type), 0,					\
	    m32c_part_read, m32c_part_write, name, NULL, 1),		\
   add_reg (arch, #name "l", (type), 0,					\
	    m32c_part_read, m32c_part_write, name, NULL, 0) - 1)

/* A register constructed by concatenating the two registers HIGH and
   LOW, whose name is HIGHLOW and whose type is TYPE.  */
#define CCAT(high, low, type)					\
  (add_reg (arch, #high #low, (type), 0,			\
	    m32c_cat_read, m32c_cat_write, (high), (low), 0))

/* Abbreviations for marking register group membership.  */
#define G(reg)   (mark_general (reg))
#define S(reg)   (mark_system  (reg))
#define DMA(reg) (mark_dma     (reg))


/* Construct the register set for ARCH.  */
static void
make_regs (struct gdbarch *arch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
  int mach = gdbarch_bfd_arch_info (arch)->mach;
  int num_raw_regs;
  int num_cooked_regs;

  struct m32c_reg *r0;
  struct m32c_reg *r1;
  struct m32c_reg *r2;
  struct m32c_reg *r3;
  struct m32c_reg *a0;
  struct m32c_reg *a1;
  struct m32c_reg *fb;
  struct m32c_reg *sb;
  struct m32c_reg *sp;
  struct m32c_reg *r0hl;
  struct m32c_reg *r1hl;
  struct m32c_reg *r2r0;
  struct m32c_reg *r3r1;
  struct m32c_reg *r3r1r2r0;
  struct m32c_reg *r3r2r1r0;
  struct m32c_reg *a1a0;

  struct m32c_reg *raw_r0_pair = RBD (r0);
  struct m32c_reg *raw_r1_pair = RBD (r1);
  struct m32c_reg *raw_r2_pair = RBD (r2);
  struct m32c_reg *raw_r3_pair = RBD (r3);
  struct m32c_reg *raw_a0_pair = RBA (a0);
  struct m32c_reg *raw_a1_pair = RBA (a1);
  struct m32c_reg *raw_fb_pair = RBA (fb);

  /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
     We always declare both raw registers, and deal with the distinction
     in the pseudoregister.  */
  struct m32c_reg *raw_sb_pair = RBA (sb);

  struct m32c_reg *usp         = S (RA (usp));
  struct m32c_reg *isp         = S (RA (isp));
  struct m32c_reg *intb        = S (RC (intb));
  struct m32c_reg *pc          = G (RC (pc));
  struct m32c_reg *flg         = G (R16U (flg));

  if (mach == bfd_mach_m32c)
    {
      S (R16U (svf));
      S (RC (svp));
      S (RC (vct));

      DMA (RP (dmd, tdep->uint8));
      DMA (RP (dct, tdep->uint16));
      DMA (RP (drc, tdep->uint16));
      DMA (RP (dma, tdep->data_addr_reg_type));
      DMA (RP (dsa, tdep->data_addr_reg_type));
      DMA (RP (dra, tdep->data_addr_reg_type));
    }

  num_raw_regs = tdep->num_regs;

  r0 	      = G (CB (r0, raw_r0_pair));
  r1 	      = G (CB (r1, raw_r1_pair));
  r2          = G (CB (r2, raw_r2_pair));
  r3          = G (CB (r3, raw_r3_pair));
  a0          = G (CB (a0, raw_a0_pair));
  a1          = G (CB (a1, raw_a1_pair));
  fb          = G (CB (fb, raw_fb_pair));

  /* sb is banked on the bfd_mach_m32c, but not on bfd_mach_m16c.
     Specify custom read/write functions that do the right thing.  */
  sb          = G (add_reg (arch, "sb", raw_sb_pair->type, 0,
			    m32c_sb_read, m32c_sb_write,
			    raw_sb_pair, raw_sb_pair + 1, 0));

  /* The current sp is either usp or isp, depending on the value of
     the FLG register's U bit.  */
  sp          = G (add_reg (arch, "sp", usp->type, 0,
			    m32c_banked_read, m32c_banked_write,
			    isp, usp, FLAGBIT_U));

  r0hl        = CHL (r0, tdep->int8);
  r1hl        = CHL (r1, tdep->int8);
  CHL (r2, tdep->int8);
  CHL (r3, tdep->int8);
  CHL (intb, tdep->int16);

  r2r0        = CCAT (r2,   r0,   tdep->int32);
  r3r1        = CCAT (r3,   r1,   tdep->int32);
  r3r1r2r0    = CCAT (r3r1, r2r0, tdep->int64);

  r3r2r1r0
    = add_reg (arch, "r3r2r1r0", tdep->int64, 0,
	       m32c_r3r2r1r0_read, m32c_r3r2r1r0_write, NULL, NULL, 0);

  if (mach == bfd_mach_m16c)
    a1a0 = CCAT (a1, a0, tdep->int32);
  else
    a1a0 = NULL;

  num_cooked_regs = tdep->num_regs - num_raw_regs;

  tdep->pc   	 = pc;
  tdep->flg  	 = flg;
  tdep->r0   	 = r0;
  tdep->r1   	 = r1;
  tdep->r2   	 = r2;
  tdep->r3   	 = r3;
  tdep->r2r0 	 = r2r0;
  tdep->r3r2r1r0 = r3r2r1r0;
  tdep->r3r1r2r0 = r3r1r2r0;
  tdep->a0       = a0;
  tdep->a1       = a1;
  tdep->sb       = sb;
  tdep->fb   	 = fb;
  tdep->sp   	 = sp;

  /* Set up the DWARF register table.  */
  memset (tdep->dwarf_regs, 0, sizeof (tdep->dwarf_regs));
  set_dwarf_regnum (r0hl + 1, 0x01);
  set_dwarf_regnum (r0hl + 0, 0x02);
  set_dwarf_regnum (r1hl + 1, 0x03);
  set_dwarf_regnum (r1hl + 0, 0x04);
  set_dwarf_regnum (r0,       0x05);
  set_dwarf_regnum (r1,       0x06);
  set_dwarf_regnum (r2,       0x07);
  set_dwarf_regnum (r3,       0x08);
  set_dwarf_regnum (a0,       0x09);
  set_dwarf_regnum (a1,       0x0a);
  set_dwarf_regnum (fb,       0x0b);
  set_dwarf_regnum (sp,       0x0c);
  set_dwarf_regnum (pc,       0x0d); /* GCC's invention */
  set_dwarf_regnum (sb,       0x13);
  set_dwarf_regnum (r2r0,     0x15);
  set_dwarf_regnum (r3r1,     0x16);
  if (a1a0)
    set_dwarf_regnum (a1a0,   0x17);

  /* Enumerate the save/restore register group.

     The regcache_save and regcache_restore functions apply their read
     function to each register in this group.

     Since frame_pop supplies frame_unwind_register as its read
     function, the registers meaningful to the Dwarf unwinder need to
     be in this group.

     On the other hand, when we make inferior calls, save_inferior_status
     and restore_inferior_status use them to preserve the current register
     values across the inferior call.  For this, you'd kind of like to
     preserve all the raw registers, to protect the interrupted code from
     any sort of bank switching the callee might have done.  But we handle
     those cases so badly anyway --- for example, it matters whether we
     restore FLG before or after we restore the general-purpose registers,
     but there's no way to express that --- that it isn't worth worrying
     about.

     We omit control registers like inthl: if you call a function that
     changes those, it's probably because you wanted that change to be
     visible to the interrupted code.  */
  mark_save_restore (r0);
  mark_save_restore (r1);
  mark_save_restore (r2);
  mark_save_restore (r3);
  mark_save_restore (a0);
  mark_save_restore (a1);
  mark_save_restore (sb);
  mark_save_restore (fb);
  mark_save_restore (sp);
  mark_save_restore (pc);
  mark_save_restore (flg);

  set_gdbarch_num_regs (arch, num_raw_regs);
  set_gdbarch_num_pseudo_regs (arch, num_cooked_regs);
  set_gdbarch_pc_regnum (arch, pc->num);
  set_gdbarch_sp_regnum (arch, sp->num);
  set_gdbarch_register_name (arch, m32c_register_name);
  set_gdbarch_register_type (arch, m32c_register_type);
  set_gdbarch_pseudo_register_read (arch, m32c_pseudo_register_read);
  set_gdbarch_pseudo_register_write (arch, m32c_pseudo_register_write);
  set_gdbarch_register_sim_regno (arch, m32c_register_sim_regno);
  set_gdbarch_stab_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
  set_gdbarch_dwarf2_reg_to_regnum (arch, m32c_debug_info_reg_to_regnum);
  set_gdbarch_register_reggroup_p (arch, m32c_register_reggroup_p);

  reggroup_add (arch, general_reggroup);
  reggroup_add (arch, all_reggroup);
  reggroup_add (arch, save_reggroup);
  reggroup_add (arch, restore_reggroup);
  reggroup_add (arch, system_reggroup);
  reggroup_add (arch, m32c_dma_reggroup);
}



/* Breakpoints.  */
constexpr gdb_byte m32c_break_insn[] = { 0x00 };	/* brk */

typedef BP_MANIPULATION (m32c_break_insn) m32c_breakpoint;


/* Prologue analysis.  */

enum m32c_prologue_kind
{
  /* This function uses a frame pointer.  */
  prologue_with_frame_ptr,

  /* This function has no frame pointer.  */
  prologue_sans_frame_ptr,

  /* This function sets up the stack, so its frame is the first
     frame on the stack.  */
  prologue_first_frame
};

struct m32c_prologue
{
  /* For consistency with the DWARF 2 .debug_frame info generated by
     GCC, a frame's CFA is the address immediately after the saved
     return address.  */

  /* The architecture for which we generated this prologue info.  */
  struct gdbarch *arch;

  enum m32c_prologue_kind kind;

  /* If KIND is prologue_with_frame_ptr, this is the offset from the
     CFA to where the frame pointer points.  This is always zero or
     negative.  */
  LONGEST frame_ptr_offset;

  /* If KIND is prologue_sans_frame_ptr, the offset from the CFA to
     the stack pointer --- always zero or negative.

     Calling this a "size" is a bit misleading, but given that the
     stack grows downwards, using offsets for everything keeps one
     from going completely sign-crazy: you never change anything's
     sign for an ADD instruction; always change the second operand's
     sign for a SUB instruction; and everything takes care of
     itself.

     Functions that use alloca don't have a constant frame size.  But
     they always have frame pointers, so we must use that to find the
     CFA (and perhaps to unwind the stack pointer).  */
  LONGEST frame_size;

  /* The address of the first instruction at which the frame has been
     set up and the arguments are where the debug info says they are
     --- as best as we can tell.  */
  CORE_ADDR prologue_end;

  /* reg_offset[R] is the offset from the CFA at which register R is
     saved, or 1 if register R has not been saved.  (Real values are
     always zero or negative.)  */
  LONGEST reg_offset[M32C_MAX_NUM_REGS];
};


/* The longest I've seen, anyway.  */
#define M32C_MAX_INSN_LEN (9)

/* Processor state, for the prologue analyzer.  */
struct m32c_pv_state
{
  struct gdbarch *arch;
  pv_t r0, r1, r2, r3;
  pv_t a0, a1;
  pv_t sb, fb, sp;
  pv_t pc;
  struct pv_area *stack;

  /* Bytes from the current PC, the address they were read from,
     and the address of the next unconsumed byte.  */
  gdb_byte insn[M32C_MAX_INSN_LEN];
  CORE_ADDR scan_pc, next_addr;
};


/* Push VALUE on STATE's stack, occupying SIZE bytes.  Return zero if
   all went well, or non-zero if simulating the action would trash our
   state.  */
static int
m32c_pv_push (struct m32c_pv_state *state, pv_t value, int size)
{
  if (state->stack->store_would_trash (state->sp))
    return 1;

  state->sp = pv_add_constant (state->sp, -size);
  state->stack->store (state->sp, size, value);

  return 0;
}


enum srcdest_kind
{
  srcdest_reg,
  srcdest_partial_reg,
  srcdest_mem
};

/* A source or destination location for an m16c or m32c
   instruction.  */
struct srcdest
{
  /* If srcdest_reg, the location is a register pointed to by REG.
     If srcdest_partial_reg, the location is part of a register pointed
     to by REG.  We don't try to handle this too well.
     If srcdest_mem, the location is memory whose address is ADDR.  */
  enum srcdest_kind kind;
  pv_t *reg, addr;
};


/* Return the SIZE-byte value at LOC in STATE.  */
static pv_t
m32c_srcdest_fetch (struct m32c_pv_state *state, struct srcdest loc, int size)
{
  if (loc.kind == srcdest_mem)
    return state->stack->fetch (loc.addr, size);
  else if (loc.kind == srcdest_partial_reg)
    return pv_unknown ();
  else
    return *loc.reg;
}


/* Write VALUE, a SIZE-byte value, to LOC in STATE.  Return zero if
   all went well, or non-zero if simulating the store would trash our
   state.  */
static int
m32c_srcdest_store (struct m32c_pv_state *state, struct srcdest loc,
		    pv_t value, int size)
{
  if (loc.kind == srcdest_mem)
    {
      if (state->stack->store_would_trash (loc.addr))
	return 1;
      state->stack->store (loc.addr, size, value);
    }
  else if (loc.kind == srcdest_partial_reg)
    *loc.reg = pv_unknown ();
  else
    *loc.reg = value;

  return 0;
}


static int
m32c_sign_ext (int v, int bits)
{
  int mask = 1 << (bits - 1);
  return (v ^ mask) - mask;
}

static unsigned int
m32c_next_byte (struct m32c_pv_state *st)
{
  gdb_assert (st->next_addr - st->scan_pc < sizeof (st->insn));
  return st->insn[st->next_addr++ - st->scan_pc];
}

static int
m32c_udisp8 (struct m32c_pv_state *st)
{
  return m32c_next_byte (st);
}


static int
m32c_sdisp8 (struct m32c_pv_state *st)
{
  return m32c_sign_ext (m32c_next_byte (st), 8);
}


static int
m32c_udisp16 (struct m32c_pv_state *st)
{
  int low  = m32c_next_byte (st);
  int high = m32c_next_byte (st);

  return low + (high << 8);
}


static int
m32c_sdisp16 (struct m32c_pv_state *st)
{
  int low  = m32c_next_byte (st);
  int high = m32c_next_byte (st);

  return m32c_sign_ext (low + (high << 8), 16);
}


static int
m32c_udisp24 (struct m32c_pv_state *st)
{
  int low  = m32c_next_byte (st);
  int mid  = m32c_next_byte (st);
  int high = m32c_next_byte (st);

  return low + (mid << 8) + (high << 16);
}


/* Extract the 'source' field from an m32c MOV.size:G-format instruction.  */
static int
m32c_get_src23 (unsigned char *i)
{
  return (((i[0] & 0x70) >> 2)
	  | ((i[1] & 0x30) >> 4));
}


/* Extract the 'dest' field from an m32c MOV.size:G-format instruction.  */
static int
m32c_get_dest23 (unsigned char *i)
{
  return (((i[0] & 0x0e) << 1)
	  | ((i[1] & 0xc0) >> 6));
}


static struct srcdest
m32c_decode_srcdest4 (struct m32c_pv_state *st,
		      int code, int size)
{
  struct srcdest sd;

  if (code < 6)
    sd.kind = (size == 2 ? srcdest_reg : srcdest_partial_reg);
  else
    sd.kind = srcdest_mem;

  sd.addr = pv_unknown ();
  sd.reg = 0;

  switch (code)
    {
    case 0x0: sd.reg = &st->r0; break;
    case 0x1: sd.reg = (size == 1 ? &st->r0 : &st->r1); break;
    case 0x2: sd.reg = (size == 1 ? &st->r1 : &st->r2); break;
    case 0x3: sd.reg = (size == 1 ? &st->r1 : &st->r3); break;

    case 0x4: sd.reg = &st->a0; break;
    case 0x5: sd.reg = &st->a1; break;

    case 0x6: sd.addr = st->a0; break;
    case 0x7: sd.addr = st->a1; break;

    case 0x8: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
    case 0x9: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
    case 0xa: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
    case 0xb: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;

    case 0xc: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
    case 0xd: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
    case 0xe: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
    case 0xf: sd.addr = pv_constant (m32c_udisp16 (st)); break;

    default:
      gdb_assert_not_reached ("unexpected srcdest4");
    }

  return sd;
}


static struct srcdest
m32c_decode_sd23 (struct m32c_pv_state *st, int code, int size, int ind)
{
  struct srcdest sd;

  sd.addr = pv_unknown ();
  sd.reg = 0;

  switch (code)
    {
    case 0x12:
    case 0x13:
    case 0x10:
    case 0x11:
      sd.kind = (size == 1) ? srcdest_partial_reg : srcdest_reg;
      break;

    case 0x02:
    case 0x03:
      sd.kind = (size == 4) ? srcdest_reg : srcdest_partial_reg;
      break;

    default:
      sd.kind = srcdest_mem;
      break;

    }

  switch (code)
    {
    case 0x12: sd.reg = &st->r0; break;
    case 0x13: sd.reg = &st->r1; break;
    case 0x10: sd.reg = ((size == 1) ? &st->r0 : &st->r2); break;
    case 0x11: sd.reg = ((size == 1) ? &st->r1 : &st->r3); break;
    case 0x02: sd.reg = &st->a0; break;
    case 0x03: sd.reg = &st->a1; break;

    case 0x00: sd.addr = st->a0; break;
    case 0x01: sd.addr = st->a1; break;
    case 0x04: sd.addr = pv_add_constant (st->a0, m32c_udisp8 (st)); break;
    case 0x05: sd.addr = pv_add_constant (st->a1, m32c_udisp8 (st)); break;
    case 0x06: sd.addr = pv_add_constant (st->sb, m32c_udisp8 (st)); break;
    case 0x07: sd.addr = pv_add_constant (st->fb, m32c_sdisp8 (st)); break;
    case 0x08: sd.addr = pv_add_constant (st->a0, m32c_udisp16 (st)); break;
    case 0x09: sd.addr = pv_add_constant (st->a1, m32c_udisp16 (st)); break;
    case 0x0a: sd.addr = pv_add_constant (st->sb, m32c_udisp16 (st)); break;
    case 0x0b: sd.addr = pv_add_constant (st->fb, m32c_sdisp16 (st)); break;
    case 0x0c: sd.addr = pv_add_constant (st->a0, m32c_udisp24 (st)); break;
    case 0x0d: sd.addr = pv_add_constant (st->a1, m32c_udisp24 (st)); break;
    case 0x0f: sd.addr = pv_constant (m32c_udisp16 (st)); break;
    case 0x0e: sd.addr = pv_constant (m32c_udisp24 (st)); break;
    default:
      gdb_assert_not_reached ("unexpected sd23");
    }

  if (ind)
    {
      sd.addr = m32c_srcdest_fetch (st, sd, 4);
      sd.kind = srcdest_mem;
    }

  return sd;
}


/* The r16c and r32c machines have instructions with similar
   semantics, but completely different machine language encodings.  So
   we break out the semantics into their own functions, and leave
   machine-specific decoding in m32c_analyze_prologue.

   The following functions all expect their arguments already decoded,
   and they all return zero if analysis should continue past this
   instruction, or non-zero if analysis should stop.  */


/* Simulate an 'enter SIZE' instruction in STATE.  */
static int
m32c_pv_enter (struct m32c_pv_state *state, int size)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);

  /* If simulating this store would require us to forget
     everything we know about the stack frame in the name of
     accuracy, it would be better to just quit now.  */
  if (state->stack->store_would_trash (state->sp))
    return 1;

  if (m32c_pv_push (state, state->fb, tdep->push_addr_bytes))
    return 1;
  state->fb = state->sp;
  state->sp = pv_add_constant (state->sp, -size);

  return 0;
}


static int
m32c_pv_pushm_one (struct m32c_pv_state *state, pv_t reg,
		   int bit, int src, int size)
{
  if (bit & src)
    {
      if (m32c_pv_push (state, reg, size))
	return 1;
    }

  return 0;
}


/* Simulate a 'pushm SRC' instruction in STATE.  */
static int
m32c_pv_pushm (struct m32c_pv_state *state, int src)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);

  /* The bits in SRC indicating which registers to save are:
     r0 r1 r2 r3 a0 a1 sb fb */
  return
    (   m32c_pv_pushm_one (state, state->fb, 0x01, src, tdep->push_addr_bytes)
     || m32c_pv_pushm_one (state, state->sb, 0x02, src, tdep->push_addr_bytes)
     || m32c_pv_pushm_one (state, state->a1, 0x04, src, tdep->push_addr_bytes)
     || m32c_pv_pushm_one (state, state->a0, 0x08, src, tdep->push_addr_bytes)
     || m32c_pv_pushm_one (state, state->r3, 0x10, src, 2)
     || m32c_pv_pushm_one (state, state->r2, 0x20, src, 2)
     || m32c_pv_pushm_one (state, state->r1, 0x40, src, 2)
     || m32c_pv_pushm_one (state, state->r0, 0x80, src, 2));
}

/* Return non-zero if VALUE is the first incoming argument register.  */

static int
m32c_is_1st_arg_reg (struct m32c_pv_state *state, pv_t value)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
  return (value.kind == pvk_register
          && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
	      ? (value.reg == tdep->r1->num)
	      : (value.reg == tdep->r0->num))
          && value.k == 0);
}

/* Return non-zero if VALUE is an incoming argument register.  */

static int
m32c_is_arg_reg (struct m32c_pv_state *state, pv_t value)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (state->arch);
  return (value.kind == pvk_register
          && (gdbarch_bfd_arch_info (state->arch)->mach == bfd_mach_m16c
	      ? (value.reg == tdep->r1->num || value.reg == tdep->r2->num)
	      : (value.reg == tdep->r0->num))
          && value.k == 0);
}

/* Return non-zero if a store of VALUE to LOC is probably spilling an
   argument register to its stack slot in STATE.  Such instructions
   should be included in the prologue, if possible.

   The store is a spill if:
   - the value being stored is the original value of an argument register;
   - the value has not already been stored somewhere in STACK; and
   - LOC is a stack slot (e.g., a memory location whose address is
     relative to the original value of the SP).  */

static int
m32c_is_arg_spill (struct m32c_pv_state *st, 
		   struct srcdest loc, 
		   pv_t value)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);

  return (m32c_is_arg_reg (st, value)
	  && loc.kind == srcdest_mem
          && pv_is_register (loc.addr, tdep->sp->num)
          && ! st->stack->find_reg (st->arch, value.reg, 0));
}

/* Return non-zero if a store of VALUE to LOC is probably 
   copying the struct return address into an address register
   for immediate use.  This is basically a "spill" into the
   address register, instead of onto the stack. 

   The prerequisites are:
   - value being stored is original value of the FIRST arg register;
   - value has not already been stored on stack; and
   - LOC is an address register (a0 or a1).  */

static int
m32c_is_struct_return (struct m32c_pv_state *st,
		       struct srcdest loc, 
		       pv_t value)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);

  return (m32c_is_1st_arg_reg (st, value)
	  && !st->stack->find_reg (st->arch, value.reg, 0)
	  && loc.kind == srcdest_reg
	  && (pv_is_register (*loc.reg, tdep->a0->num)
	      || pv_is_register (*loc.reg, tdep->a1->num)));
}

/* Return non-zero if a 'pushm' saving the registers indicated by SRC
   was a register save:
   - all the named registers should have their original values, and
   - the stack pointer should be at a constant offset from the
     original stack pointer.  */
static int
m32c_pushm_is_reg_save (struct m32c_pv_state *st, int src)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (st->arch);
  /* The bits in SRC indicating which registers to save are:
     r0 r1 r2 r3 a0 a1 sb fb */
  return
    (pv_is_register (st->sp, tdep->sp->num)
     && (! (src & 0x01) || pv_is_register_k (st->fb, tdep->fb->num, 0))
     && (! (src & 0x02) || pv_is_register_k (st->sb, tdep->sb->num, 0))
     && (! (src & 0x04) || pv_is_register_k (st->a1, tdep->a1->num, 0))
     && (! (src & 0x08) || pv_is_register_k (st->a0, tdep->a0->num, 0))
     && (! (src & 0x10) || pv_is_register_k (st->r3, tdep->r3->num, 0))
     && (! (src & 0x20) || pv_is_register_k (st->r2, tdep->r2->num, 0))
     && (! (src & 0x40) || pv_is_register_k (st->r1, tdep->r1->num, 0))
     && (! (src & 0x80) || pv_is_register_k (st->r0, tdep->r0->num, 0)));
}


/* Function for finding saved registers in a 'struct pv_area'; we pass
   this to pv_area::scan.

   If VALUE is a saved register, ADDR says it was saved at a constant
   offset from the frame base, and SIZE indicates that the whole
   register was saved, record its offset in RESULT_UNTYPED.  */
static void
check_for_saved (void *prologue_untyped, pv_t addr, CORE_ADDR size, pv_t value)
{
  struct m32c_prologue *prologue = (struct m32c_prologue *) prologue_untyped;
  struct gdbarch *arch = prologue->arch;
  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);

  /* Is this the unchanged value of some register being saved on the
     stack?  */
  if (value.kind == pvk_register
      && value.k == 0
      && pv_is_register (addr, tdep->sp->num))
    {
      /* Some registers require special handling: they're saved as a
	 larger value than the register itself.  */
      CORE_ADDR saved_size = register_size (arch, value.reg);

      if (value.reg == tdep->pc->num)
	saved_size = tdep->ret_addr_bytes;
      else if (register_type (arch, value.reg)
	       == tdep->data_addr_reg_type)
	saved_size = tdep->push_addr_bytes;

      if (size == saved_size)
	{
	  /* Find which end of the saved value corresponds to our
	     register.  */
	  if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
	    prologue->reg_offset[value.reg]
	      = (addr.k + saved_size - register_size (arch, value.reg));
	  else
	    prologue->reg_offset[value.reg] = addr.k;
	}
    }
}


/* Analyze the function prologue for ARCH at START, going no further
   than LIMIT, and place a description of what we found in
   PROLOGUE.  */
static void
m32c_analyze_prologue (struct gdbarch *arch,
		       CORE_ADDR start, CORE_ADDR limit,
		       struct m32c_prologue *prologue)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
  unsigned long mach = gdbarch_bfd_arch_info (arch)->mach;
  CORE_ADDR after_last_frame_related_insn;
  struct m32c_pv_state st;

  st.arch = arch;
  st.r0 = pv_register (tdep->r0->num, 0);
  st.r1 = pv_register (tdep->r1->num, 0);
  st.r2 = pv_register (tdep->r2->num, 0);
  st.r3 = pv_register (tdep->r3->num, 0);
  st.a0 = pv_register (tdep->a0->num, 0);
  st.a1 = pv_register (tdep->a1->num, 0);
  st.sb = pv_register (tdep->sb->num, 0);
  st.fb = pv_register (tdep->fb->num, 0);
  st.sp = pv_register (tdep->sp->num, 0);
  st.pc = pv_register (tdep->pc->num, 0);
  pv_area stack (tdep->sp->num, gdbarch_addr_bit (arch));
  st.stack = &stack;

  /* Record that the call instruction has saved the return address on
     the stack.  */
  m32c_pv_push (&st, st.pc, tdep->ret_addr_bytes);

  memset (prologue, 0, sizeof (*prologue));
  prologue->arch = arch;
  {
    int i;
    for (i = 0; i < M32C_MAX_NUM_REGS; i++)
      prologue->reg_offset[i] = 1;
  }

  st.scan_pc = after_last_frame_related_insn = start;

  while (st.scan_pc < limit)
    {
      pv_t pre_insn_fb = st.fb;
      pv_t pre_insn_sp = st.sp;

      /* In theory we could get in trouble by trying to read ahead
	 here, when we only know we're expecting one byte.  In
	 practice I doubt anyone will care, and it makes the rest of
	 the code easier.  */
      if (target_read_memory (st.scan_pc, st.insn, sizeof (st.insn)))
	/* If we can't fetch the instruction from memory, stop here
	   and hope for the best.  */
	break;
      st.next_addr = st.scan_pc;

      /* The assembly instructions are written as they appear in the
	 section of the processor manuals that describe the
	 instruction encodings.

	 When a single assembly language instruction has several
	 different machine-language encodings, the manual
	 distinguishes them by a number in parens, before the
	 mnemonic.  Those numbers are included, as well.

	 The srcdest decoding instructions have the same names as the
	 analogous functions in the simulator.  */
      if (mach == bfd_mach_m16c)
	{
	  /* (1) ENTER #imm8 */
	  if (st.insn[0] == 0x7c && st.insn[1] == 0xf2)
	    {
	      if (m32c_pv_enter (&st, st.insn[2]))
		break;
	      st.next_addr += 3;
	    }
	  /* (1) PUSHM src */
	  else if (st.insn[0] == 0xec)
	    {
	      int src = st.insn[1];
	      if (m32c_pv_pushm (&st, src))
		break;
	      st.next_addr += 2;

	      if (m32c_pushm_is_reg_save (&st, src))
		after_last_frame_related_insn = st.next_addr;
	    }

	  /* (6) MOV.size:G src, dest */
	  else if ((st.insn[0] & 0xfe) == 0x72)
	    {
	      int size = (st.insn[0] & 0x01) ? 2 : 1;
	      struct srcdest src;
	      struct srcdest dest;
	      pv_t src_value;
	      st.next_addr += 2;

	      src
		= m32c_decode_srcdest4 (&st, (st.insn[1] >> 4) & 0xf, size);
	      dest
		= m32c_decode_srcdest4 (&st, st.insn[1] & 0xf, size);
	      src_value = m32c_srcdest_fetch (&st, src, size);

	      if (m32c_is_arg_spill (&st, dest, src_value))
		after_last_frame_related_insn = st.next_addr;
	      else if (m32c_is_struct_return (&st, dest, src_value))
		after_last_frame_related_insn = st.next_addr;

	      if (m32c_srcdest_store (&st, dest, src_value, size))
		break;
	    }

	  /* (1) LDC #IMM16, sp */
	  else if (st.insn[0] == 0xeb
		   && st.insn[1] == 0x50)
	    {
	      st.next_addr += 2;
	      st.sp = pv_constant (m32c_udisp16 (&st));
	    }

	  else
	    /* We've hit some instruction we don't know how to simulate.
	       Strictly speaking, we should set every value we're
	       tracking to "unknown".  But we'll be optimistic, assume
	       that we have enough information already, and stop
	       analysis here.  */
	    break;
	}
      else
	{
	  int src_indirect = 0;
	  int dest_indirect = 0;
	  int i = 0;

	  gdb_assert (mach == bfd_mach_m32c);

	  /* Check for prefix bytes indicating indirect addressing.  */
	  if (st.insn[0] == 0x41)
	    {
	      src_indirect = 1;
	      i++;
	    }
	  else if (st.insn[0] == 0x09)
	    {
	      dest_indirect = 1;
	      i++;
	    }
	  else if (st.insn[0] == 0x49)
	    {
	      src_indirect = dest_indirect = 1;
	      i++;
	    }

	  /* (1) ENTER #imm8 */
	  if (st.insn[i] == 0xec)
	    {
	      if (m32c_pv_enter (&st, st.insn[i + 1]))
		break;
	      st.next_addr += 2;
	    }

	  /* (1) PUSHM src */
	  else if (st.insn[i] == 0x8f)
	    {
	      int src = st.insn[i + 1];
	      if (m32c_pv_pushm (&st, src))
		break;
	      st.next_addr += 2;

	      if (m32c_pushm_is_reg_save (&st, src))
		after_last_frame_related_insn = st.next_addr;
	    }

	  /* (7) MOV.size:G src, dest */
	  else if ((st.insn[i] & 0x80) == 0x80
		   && (st.insn[i + 1] & 0x0f) == 0x0b
		   && m32c_get_src23 (&st.insn[i]) < 20
		   && m32c_get_dest23 (&st.insn[i]) < 20)
	    {
	      struct srcdest src;
	      struct srcdest dest;
	      pv_t src_value;
	      int bw = st.insn[i] & 0x01;
	      int size = bw ? 2 : 1;
	      st.next_addr += 2;

	      src
		= m32c_decode_sd23 (&st, m32c_get_src23 (&st.insn[i]),
				    size, src_indirect);
	      dest
		= m32c_decode_sd23 (&st, m32c_get_dest23 (&st.insn[i]),
				    size, dest_indirect);
	      src_value = m32c_srcdest_fetch (&st, src, size);

	      if (m32c_is_arg_spill (&st, dest, src_value))
		after_last_frame_related_insn = st.next_addr;

	      if (m32c_srcdest_store (&st, dest, src_value, size))
		break;
	    }
	  /* (2) LDC #IMM24, sp */
	  else if (st.insn[i] == 0xd5
		   && st.insn[i + 1] == 0x29)
	    {
	      st.next_addr += 2;
	      st.sp = pv_constant (m32c_udisp24 (&st));
	    }
	  else
	    /* We've hit some instruction we don't know how to simulate.
	       Strictly speaking, we should set every value we're
	       tracking to "unknown".  But we'll be optimistic, assume
	       that we have enough information already, and stop
	       analysis here.  */
	    break;
	}

      /* If this instruction changed the FB or decreased the SP (i.e.,
         allocated more stack space), then this may be a good place to
         declare the prologue finished.  However, there are some
         exceptions:

         - If the instruction just changed the FB back to its original
           value, then that's probably a restore instruction.  The
           prologue should definitely end before that.

         - If the instruction increased the value of the SP (that is,
           shrunk the frame), then it's probably part of a frame
           teardown sequence, and the prologue should end before
           that.  */

      if (! pv_is_identical (st.fb, pre_insn_fb))
        {
          if (! pv_is_register_k (st.fb, tdep->fb->num, 0))
            after_last_frame_related_insn = st.next_addr;
        }
      else if (! pv_is_identical (st.sp, pre_insn_sp))
        {
          /* The comparison of the constants looks odd, there, because
             .k is unsigned.  All it really means is that the SP is
             lower than it was before the instruction.  */
          if (   pv_is_register (pre_insn_sp, tdep->sp->num)
              && pv_is_register (st.sp,       tdep->sp->num)
              && ((pre_insn_sp.k - st.sp.k) < (st.sp.k - pre_insn_sp.k)))
            after_last_frame_related_insn = st.next_addr;
        }

      st.scan_pc = st.next_addr;
    }

  /* Did we load a constant value into the stack pointer?  */
  if (pv_is_constant (st.sp))
    prologue->kind = prologue_first_frame;

  /* Alternatively, did we initialize the frame pointer?  Remember
     that the CFA is the address after the return address.  */
  if (pv_is_register (st.fb, tdep->sp->num))
    {
      prologue->kind = prologue_with_frame_ptr;
      prologue->frame_ptr_offset = st.fb.k;
    }

  /* Is the frame size a known constant?  Remember that frame_size is
     actually the offset from the CFA to the SP (i.e., a negative
     value).  */
  else if (pv_is_register (st.sp, tdep->sp->num))
    {
      prologue->kind = prologue_sans_frame_ptr;
      prologue->frame_size = st.sp.k;
    }

  /* We haven't been able to make sense of this function's frame.  Treat
     it as the first frame.  */
  else
    prologue->kind = prologue_first_frame;

  /* Record where all the registers were saved.  */
  st.stack->scan (check_for_saved, (void *) prologue);

  prologue->prologue_end = after_last_frame_related_insn;
}


static CORE_ADDR
m32c_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR ip)
{
  const char *name;
  CORE_ADDR func_addr, func_end, sal_end;
  struct m32c_prologue p;

  /* Try to find the extent of the function that contains IP.  */
  if (! find_pc_partial_function (ip, &name, &func_addr, &func_end))
    return ip;

  /* Find end by prologue analysis.  */
  m32c_analyze_prologue (gdbarch, ip, func_end, &p);
  /* Find end by line info.  */
  sal_end = skip_prologue_using_sal (gdbarch, ip);
  /* Return whichever is lower.  */
  if (sal_end != 0 && sal_end != ip && sal_end < p.prologue_end)
    return sal_end;
  else
    return p.prologue_end;
}



/* Stack unwinding.  */

static struct m32c_prologue *
m32c_analyze_frame_prologue (struct frame_info *this_frame,
			     void **this_prologue_cache)
{
  if (! *this_prologue_cache)
    {
      CORE_ADDR func_start = get_frame_func (this_frame);
      CORE_ADDR stop_addr = get_frame_pc (this_frame);

      /* If we couldn't find any function containing the PC, then
         just initialize the prologue cache, but don't do anything.  */
      if (! func_start)
        stop_addr = func_start;

      *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct m32c_prologue);
      m32c_analyze_prologue (get_frame_arch (this_frame),
			     func_start, stop_addr,
			     (struct m32c_prologue *) *this_prologue_cache);
    }

  return (struct m32c_prologue *) *this_prologue_cache;
}


static CORE_ADDR
m32c_frame_base (struct frame_info *this_frame,
                void **this_prologue_cache)
{
  struct m32c_prologue *p
    = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));

  /* In functions that use alloca, the distance between the stack
     pointer and the frame base varies dynamically, so we can't use
     the SP plus static information like prologue analysis to find the
     frame base.  However, such functions must have a frame pointer,
     to be able to restore the SP on exit.  So whenever we do have a
     frame pointer, use that to find the base.  */
  switch (p->kind)
    {
    case prologue_with_frame_ptr:
      {
	CORE_ADDR fb
	  = get_frame_register_unsigned (this_frame, tdep->fb->num);
	return fb - p->frame_ptr_offset;
      }

    case prologue_sans_frame_ptr:
      {
	CORE_ADDR sp
	  = get_frame_register_unsigned (this_frame, tdep->sp->num);
	return sp - p->frame_size;
      }

    case prologue_first_frame:
      return 0;

    default:
      gdb_assert_not_reached ("unexpected prologue kind");
    }
}


static void
m32c_this_id (struct frame_info *this_frame,
	      void **this_prologue_cache,
	      struct frame_id *this_id)
{
  CORE_ADDR base = m32c_frame_base (this_frame, this_prologue_cache);

  if (base)
    *this_id = frame_id_build (base, get_frame_func (this_frame));
  /* Otherwise, leave it unset, and that will terminate the backtrace.  */
}


static struct value *
m32c_prev_register (struct frame_info *this_frame,
		    void **this_prologue_cache, int regnum)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
  struct m32c_prologue *p
    = m32c_analyze_frame_prologue (this_frame, this_prologue_cache);
  CORE_ADDR frame_base = m32c_frame_base (this_frame, this_prologue_cache);

  if (regnum == tdep->sp->num)
    return frame_unwind_got_constant (this_frame, regnum, frame_base);

  /* If prologue analysis says we saved this register somewhere,
     return a description of the stack slot holding it.  */
  if (p->reg_offset[regnum] != 1)
    return frame_unwind_got_memory (this_frame, regnum,
                                    frame_base + p->reg_offset[regnum]);

  /* Otherwise, presume we haven't changed the value of this
     register, and get it from the next frame.  */
  return frame_unwind_got_register (this_frame, regnum, regnum);
}


static const struct frame_unwind m32c_unwind = {
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  m32c_this_id,
  m32c_prev_register,
  NULL,
  default_frame_sniffer
};


/* Inferior calls.  */

/* The calling conventions, according to GCC:

   r8c, m16c
   ---------
   First arg may be passed in r1l or r1 if it (1) fits (QImode or
   HImode), (2) is named, and (3) is an integer or pointer type (no
   structs, floats, etc).  Otherwise, it's passed on the stack.

   Second arg may be passed in r2, same restrictions (but not QImode),
   even if the first arg is passed on the stack.

   Third and further args are passed on the stack.  No padding is
   used, stack "alignment" is 8 bits.

   m32cm, m32c
   -----------

   First arg may be passed in r0l or r0, same restrictions as above.

   Second and further args are passed on the stack.  Padding is used
   after QImode parameters (i.e. lower-addressed byte is the value,
   higher-addressed byte is the padding), stack "alignment" is 16
   bits.  */


/* Return true if TYPE is a type that can be passed in registers.  (We
   ignore the size, and pay attention only to the type code;
   acceptable sizes depends on which register is being considered to
   hold it.)  */
static int
m32c_reg_arg_type (struct type *type)
{
  enum type_code code = TYPE_CODE (type);

  return (code == TYPE_CODE_INT
	  || code == TYPE_CODE_ENUM
	  || code == TYPE_CODE_PTR
	  || TYPE_IS_REFERENCE (type)
	  || code == TYPE_CODE_BOOL
	  || code == TYPE_CODE_CHAR);
}


static CORE_ADDR
m32c_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
		      struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
		      struct value **args, CORE_ADDR sp,
		      function_call_return_method return_method,
		      CORE_ADDR struct_addr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
  CORE_ADDR cfa;
  int i;

  /* The number of arguments given in this function's prototype, or
     zero if it has a non-prototyped function type.  The m32c ABI
     passes arguments mentioned in the prototype differently from
     those in the ellipsis of a varargs function, or from those passed
     to a non-prototyped function.  */
  int num_prototyped_args = 0;

  {
    struct type *func_type = value_type (function);

    /* Dereference function pointer types.  */
    if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
      func_type = TYPE_TARGET_TYPE (func_type);

    gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC ||
		TYPE_CODE (func_type) == TYPE_CODE_METHOD);

#if 0
    /* The ABI description in gcc/config/m32c/m32c.abi says that
       we need to handle prototyped and non-prototyped functions
       separately, but the code in GCC doesn't actually do so.  */
    if (TYPE_PROTOTYPED (func_type))
#endif
      num_prototyped_args = TYPE_NFIELDS (func_type);
  }

  /* First, if the function returns an aggregate by value, push a
     pointer to a buffer for it.  This doesn't affect the way
     subsequent arguments are allocated to registers.  */
  if (return_method == return_method_struct)
    {
      int ptr_len = TYPE_LENGTH (tdep->ptr_voyd);
      sp -= ptr_len;
      write_memory_unsigned_integer (sp, ptr_len, byte_order, struct_addr);
    }

  /* Push the arguments.  */
  for (i = nargs - 1; i >= 0; i--)
    {
      struct value *arg = args[i];
      const gdb_byte *arg_bits = value_contents (arg);
      struct type *arg_type = value_type (arg);
      ULONGEST arg_size = TYPE_LENGTH (arg_type);

      /* Can it go in r1 or r1l (for m16c) or r0 or r0l (for m32c)?  */
      if (i == 0
	  && arg_size <= 2
	  && i < num_prototyped_args
	  && m32c_reg_arg_type (arg_type))
	{
	  /* Extract and re-store as an integer as a terse way to make
	     sure it ends up in the least significant end of r1.  (GDB
	     should avoid assuming endianness, even on uni-endian
	     processors.)  */
	  ULONGEST u = extract_unsigned_integer (arg_bits, arg_size,
						 byte_order);
	  struct m32c_reg *reg = (mach == bfd_mach_m16c) ? tdep->r1 : tdep->r0;
	  regcache_cooked_write_unsigned (regcache, reg->num, u);
	}

      /* Can it go in r2?  */
      else if (mach == bfd_mach_m16c
	       && i == 1
	       && arg_size == 2
	       && i < num_prototyped_args
	       && m32c_reg_arg_type (arg_type))
	regcache->cooked_write (tdep->r2->num, arg_bits);

      /* Everything else goes on the stack.  */
      else
	{
	  sp -= arg_size;

	  /* Align the stack.  */
	  if (mach == bfd_mach_m32c)
	    sp &= ~1;

	  write_memory (sp, arg_bits, arg_size);
	}
    }

  /* This is the CFA we use to identify the dummy frame.  */
  cfa = sp;

  /* Push the return address.  */
  sp -= tdep->ret_addr_bytes;
  write_memory_unsigned_integer (sp, tdep->ret_addr_bytes, byte_order,
				 bp_addr);

  /* Update the stack pointer.  */
  regcache_cooked_write_unsigned (regcache, tdep->sp->num, sp);

  /* We need to borrow an odd trick from the i386 target here.

     The value we return from this function gets used as the stack
     address (the CFA) for the dummy frame's ID.  The obvious thing is
     to return the new TOS.  However, that points at the return
     address, saved on the stack, which is inconsistent with the CFA's
     described by GCC's DWARF 2 .debug_frame information: DWARF 2
     .debug_frame info uses the address immediately after the saved
     return address.  So you end up with a dummy frame whose CFA
     points at the return address, but the frame for the function
     being called has a CFA pointing after the return address: the
     younger CFA is *greater than* the older CFA.  The sanity checks
     in frame.c don't like that.

     So we try to be consistent with the CFA's used by DWARF 2.
     Having a dummy frame and a real frame with the *same* CFA is
     tolerable.  */
  return cfa;
}



/* Return values.  */

/* Return value conventions, according to GCC:

   r8c, m16c
   ---------

   QImode in r0l
   HImode in r0
   SImode in r2r0
   near pointer in r0
   far pointer in r2r0

   Aggregate values (regardless of size) are returned by pushing a
   pointer to a temporary area on the stack after the args are pushed.
   The function fills in this area with the value.  Note that this
   pointer on the stack does not affect how register arguments, if any,
   are configured.

   m32cm, m32c
   -----------
   Same.  */

/* Return non-zero if values of type TYPE are returned by storing them
   in a buffer whose address is passed on the stack, ahead of the
   other arguments.  */
static int
m32c_return_by_passed_buf (struct type *type)
{
  enum type_code code = TYPE_CODE (type);

  return (code == TYPE_CODE_STRUCT
	  || code == TYPE_CODE_UNION);
}

static enum return_value_convention
m32c_return_value (struct gdbarch *gdbarch,
		   struct value *function,
		   struct type *valtype,
		   struct regcache *regcache,
		   gdb_byte *readbuf,
		   const gdb_byte *writebuf)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum return_value_convention conv;
  ULONGEST valtype_len = TYPE_LENGTH (valtype);

  if (m32c_return_by_passed_buf (valtype))
    conv = RETURN_VALUE_STRUCT_CONVENTION;
  else
    conv = RETURN_VALUE_REGISTER_CONVENTION;

  if (readbuf)
    {
      /* We should never be called to find values being returned by
	 RETURN_VALUE_STRUCT_CONVENTION.  Those can't be located,
	 unless we made the call ourselves.  */
      gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);

      gdb_assert (valtype_len <= 8);

      /* Anything that fits in r0 is returned there.  */
      if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
	{
	  ULONGEST u;
	  regcache_cooked_read_unsigned (regcache, tdep->r0->num, &u);
	  store_unsigned_integer (readbuf, valtype_len, byte_order, u);
	}
      else
	{
	  /* Everything else is passed in mem0, using as many bytes as
	     needed.  This is not what the Renesas tools do, but it's
	     what GCC does at the moment.  */
	  struct bound_minimal_symbol mem0
	    = lookup_minimal_symbol ("mem0", NULL, NULL);

	  if (! mem0.minsym)
	    error (_("The return value is stored in memory at 'mem0', "
		     "but GDB cannot find\n"
		     "its address."));
	  read_memory (BMSYMBOL_VALUE_ADDRESS (mem0), readbuf, valtype_len);
	}
    }

  if (writebuf)
    {
      /* We should never be called to store values to be returned
	 using RETURN_VALUE_STRUCT_CONVENTION.  We have no way of
	 finding the buffer, unless we made the call ourselves.  */
      gdb_assert (conv == RETURN_VALUE_REGISTER_CONVENTION);

      gdb_assert (valtype_len <= 8);

      /* Anything that fits in r0 is returned there.  */
      if (valtype_len <= TYPE_LENGTH (tdep->r0->type))
	{
	  ULONGEST u = extract_unsigned_integer (writebuf, valtype_len,
						 byte_order);
	  regcache_cooked_write_unsigned (regcache, tdep->r0->num, u);
	}
      else
	{
	  /* Everything else is passed in mem0, using as many bytes as
	     needed.  This is not what the Renesas tools do, but it's
	     what GCC does at the moment.  */
	  struct bound_minimal_symbol mem0
	    = lookup_minimal_symbol ("mem0", NULL, NULL);

	  if (! mem0.minsym)
	    error (_("The return value is stored in memory at 'mem0', "
		     "but GDB cannot find\n"
		     " its address."));
	  write_memory (BMSYMBOL_VALUE_ADDRESS (mem0), writebuf, valtype_len);
	}
    }

  return conv;
}



/* Trampolines.  */

/* The m16c and m32c use a trampoline function for indirect function
   calls.  An indirect call looks like this:

	     ... push arguments ...
	     ... push target function address ...
	     jsr.a m32c_jsri16

   The code for m32c_jsri16 looks like this:

     m32c_jsri16:

             # Save return address.
	     pop.w	m32c_jsri_ret
	     pop.b	m32c_jsri_ret+2

             # Store target function address.
	     pop.w	m32c_jsri_addr

	     # Re-push return address.
	     push.b	m32c_jsri_ret+2
	     push.w	m32c_jsri_ret

	     # Call the target function.
	     jmpi.a	m32c_jsri_addr

   Without further information, GDB will treat calls to m32c_jsri16
   like calls to any other function.  Since m32c_jsri16 doesn't have
   debugging information, that normally means that GDB sets a step-
   resume breakpoint and lets the program continue --- which is not
   what the user wanted.  (Giving the trampoline debugging info
   doesn't help: the user expects the program to stop in the function
   their program is calling, not in some trampoline code they've never
   seen before.)

   The gdbarch_skip_trampoline_code method tells GDB how to step
   through such trampoline functions transparently to the user.  When
   given the address of a trampoline function's first instruction,
   gdbarch_skip_trampoline_code should return the address of the first
   instruction of the function really being called.  If GDB decides it
   wants to step into that function, it will set a breakpoint there
   and silently continue to it.

   We recognize the trampoline by name, and extract the target address
   directly from the stack.  This isn't great, but recognizing by its
   code sequence seems more fragile.  */

static CORE_ADDR
m32c_skip_trampoline_code (struct frame_info *frame, CORE_ADDR stop_pc)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  /* It would be nicer to simply look up the addresses of known
     trampolines once, and then compare stop_pc with them.  However,
     we'd need to ensure that that cached address got invalidated when
     someone loaded a new executable, and I'm not quite sure of the
     best way to do that.  find_pc_partial_function does do some
     caching, so we'll see how this goes.  */
  const char *name;
  CORE_ADDR start, end;

  if (find_pc_partial_function (stop_pc, &name, &start, &end))
    {
      /* Are we stopped at the beginning of the trampoline function?  */
      if (strcmp (name, "m32c_jsri16") == 0
	  && stop_pc == start)
	{
	  /* Get the stack pointer.  The return address is at the top,
	     and the target function's address is just below that.  We
	     know it's a two-byte address, since the trampoline is
	     m32c_jsri*16*.  */
	  CORE_ADDR sp = get_frame_sp (get_current_frame ());
	  CORE_ADDR target
	    = read_memory_unsigned_integer (sp + tdep->ret_addr_bytes,
					    2, byte_order);

	  /* What we have now is the address of a jump instruction.
	     What we need is the destination of that jump.
	     The opcode is 1 byte, and the destination is the next 3 bytes.  */

	  target = read_memory_unsigned_integer (target + 1, 3, byte_order);
	  return target;
	}
    }

  return 0;
}


/* Address/pointer conversions.  */

/* On the m16c, there is a 24-bit address space, but only a very few
   instructions can generate addresses larger than 0xffff: jumps,
   jumps to subroutines, and the lde/std (load/store extended)
   instructions.

   Since GCC can only support one size of pointer, we can't have
   distinct 'near' and 'far' pointer types; we have to pick one size
   for everything.  If we wanted to use 24-bit pointers, then GCC
   would have to use lde and ste for all memory references, which
   would be terrible for performance and code size.  So the GNU
   toolchain uses 16-bit pointers for everything, and gives up the
   ability to have pointers point outside the first 64k of memory.

   However, as a special hack, we let the linker place functions at
   addresses above 0xffff, as long as it also places a trampoline in
   the low 64k for every function whose address is taken.  Each
   trampoline consists of a single jmp.a instruction that jumps to the
   function's real entry point.  Pointers to functions can be 16 bits
   long, even though the functions themselves are at higher addresses:
   the pointers refer to the trampolines, not the functions.

   This complicates things for GDB, however: given the address of a
   function (from debug info or linker symbols, say) which could be
   anywhere in the 24-bit address space, how can we find an
   appropriate 16-bit value to use as a pointer to it?

   If the linker has not generated a trampoline for the function,
   we're out of luck.  Well, I guess we could malloc some space and
   write a jmp.a instruction to it, but I'm not going to get into that
   at the moment.

   If the linker has generated a trampoline for the function, then it
   also emitted a symbol for the trampoline: if the function's linker
   symbol is named NAME, then the function's trampoline's linker
   symbol is named NAME.plt.

   So, given a code address:
   - We try to find a linker symbol at that address.
   - If we find such a symbol named NAME, we look for a linker symbol
     named NAME.plt.
   - If we find such a symbol, we assume it is a trampoline, and use
     its address as the pointer value.

   And, given a function pointer:
   - We try to find a linker symbol at that address named NAME.plt.
   - If we find such a symbol, we look for a linker symbol named NAME.
   - If we find that, we provide that as the function's address.
   - If any of the above steps fail, we return the original address
     unchanged; it might really be a function in the low 64k.

   See?  You *knew* there was a reason you wanted to be a computer
   programmer!  :)  */

static void
m32c_m16c_address_to_pointer (struct gdbarch *gdbarch,
			      struct type *type, gdb_byte *buf, CORE_ADDR addr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum type_code target_code;
  gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type));

  target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));

  if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
    {
      const char *func_name;
      char *tramp_name;
      struct bound_minimal_symbol tramp_msym;

      /* Try to find a linker symbol at this address.  */
      struct bound_minimal_symbol func_msym
	= lookup_minimal_symbol_by_pc (addr);

      if (! func_msym.minsym)
        error (_("Cannot convert code address %s to function pointer:\n"
               "couldn't find a symbol at that address, to find trampoline."),
               paddress (gdbarch, addr));

      func_name = MSYMBOL_LINKAGE_NAME (func_msym.minsym);
      tramp_name = (char *) xmalloc (strlen (func_name) + 5);
      strcpy (tramp_name, func_name);
      strcat (tramp_name, ".plt");

      /* Try to find a linker symbol for the trampoline.  */
      tramp_msym = lookup_minimal_symbol (tramp_name, NULL, NULL);

      /* We've either got another copy of the name now, or don't need
         the name any more.  */
      xfree (tramp_name);

      if (! tramp_msym.minsym)
	{
	  CORE_ADDR ptrval;

	  /* No PLT entry found.  Mask off the upper bits of the address
	     to make a pointer.  As noted in the warning to the user
	     below, this value might be useful if converted back into
	     an address by GDB, but will otherwise, almost certainly,
	     be garbage.
	     
	     Using this masked result does seem to be useful
	     in gdb.cp/cplusfuncs.exp in which ~40 FAILs turn into
	     PASSes.  These results appear to be correct as well.
	     
	     We print a warning here so that the user can make a
	     determination about whether the result is useful or not.  */
	  ptrval = addr & 0xffff;

	  warning (_("Cannot convert code address %s to function pointer:\n"
		   "couldn't find trampoline named '%s.plt'.\n"
		   "Returning pointer value %s instead; this may produce\n"
		   "a useful result if converted back into an address by GDB,\n"
		   "but will most likely not be useful otherwise."),
		   paddress (gdbarch, addr), func_name,
		   paddress (gdbarch, ptrval));

	  addr = ptrval;

	}
      else
	{
	  /* The trampoline's address is our pointer.  */
	  addr = BMSYMBOL_VALUE_ADDRESS (tramp_msym);
	}
    }

  store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
}


static CORE_ADDR
m32c_m16c_pointer_to_address (struct gdbarch *gdbarch,
			      struct type *type, const gdb_byte *buf)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR ptr;
  enum type_code target_code;

  gdb_assert (TYPE_CODE (type) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type));

  ptr = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);

  target_code = TYPE_CODE (TYPE_TARGET_TYPE (type));

  if (target_code == TYPE_CODE_FUNC || target_code == TYPE_CODE_METHOD)
    {
      /* See if there is a minimal symbol at that address whose name is
         "NAME.plt".  */
      struct bound_minimal_symbol ptr_msym = lookup_minimal_symbol_by_pc (ptr);

      if (ptr_msym.minsym)
        {
          const char *ptr_msym_name = MSYMBOL_LINKAGE_NAME (ptr_msym.minsym);
          int len = strlen (ptr_msym_name);

          if (len > 4
              && strcmp (ptr_msym_name + len - 4, ".plt") == 0)
            {
	      struct bound_minimal_symbol func_msym;
              /* We have a .plt symbol; try to find the symbol for the
                 corresponding function.

                 Since the trampoline contains a jump instruction, we
                 could also just extract the jump's target address.  I
                 don't see much advantage one way or the other.  */
              char *func_name = (char *) xmalloc (len - 4 + 1);
              memcpy (func_name, ptr_msym_name, len - 4);
              func_name[len - 4] = '\0';
              func_msym
                = lookup_minimal_symbol (func_name, NULL, NULL);

              /* If we do have such a symbol, return its value as the
                 function's true address.  */
              if (func_msym.minsym)
                ptr = BMSYMBOL_VALUE_ADDRESS (func_msym);
            }
        }
      else
	{
	  int aspace;

	  for (aspace = 1; aspace <= 15; aspace++)
	    {
	      ptr_msym = lookup_minimal_symbol_by_pc ((aspace << 16) | ptr);
	      
	      if (ptr_msym.minsym)
		ptr |= aspace << 16;
	    }
	}
    }

  return ptr;
}

static void
m32c_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
			    int *frame_regnum,
			    LONGEST *frame_offset)
{
  const char *name;
  CORE_ADDR func_addr, func_end;
  struct m32c_prologue p;

  struct regcache *regcache = get_current_regcache ();
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
  
  if (!find_pc_partial_function (pc, &name, &func_addr, &func_end))
    internal_error (__FILE__, __LINE__,
		    _("No virtual frame pointer available"));

  m32c_analyze_prologue (gdbarch, func_addr, pc, &p);
  switch (p.kind)
    {
    case prologue_with_frame_ptr:
      *frame_regnum = m32c_banked_register (tdep->fb, regcache)->num;
      *frame_offset = p.frame_ptr_offset;
      break;
    case prologue_sans_frame_ptr:
      *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
      *frame_offset = p.frame_size;
      break;
    default:
      *frame_regnum = m32c_banked_register (tdep->sp, regcache)->num;
      *frame_offset = 0;
      break;
    }
  /* Sanity check */
  if (*frame_regnum > gdbarch_num_regs (gdbarch))
    internal_error (__FILE__, __LINE__,
		    _("No virtual frame pointer available"));
}


/* Initialization.  */

static struct gdbarch *
m32c_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;
  unsigned long mach = info.bfd_arch_info->mach;

  /* Find a candidate among the list of architectures we've created
     already.  */
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
       arches != NULL;
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
    return arches->gdbarch;

  tdep = XCNEW (struct gdbarch_tdep);
  gdbarch = gdbarch_alloc (&info, tdep);

  /* Essential types.  */
  make_types (gdbarch);

  /* Address/pointer conversions.  */
  if (mach == bfd_mach_m16c)
    {
      set_gdbarch_address_to_pointer (gdbarch, m32c_m16c_address_to_pointer);
      set_gdbarch_pointer_to_address (gdbarch, m32c_m16c_pointer_to_address);
    }

  /* Register set.  */
  make_regs (gdbarch);

  /* Breakpoints.  */
  set_gdbarch_breakpoint_kind_from_pc (gdbarch, m32c_breakpoint::kind_from_pc);
  set_gdbarch_sw_breakpoint_from_kind (gdbarch, m32c_breakpoint::bp_from_kind);

  /* Prologue analysis and unwinding.  */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
  set_gdbarch_skip_prologue (gdbarch, m32c_skip_prologue);
#if 0
  /* I'm dropping the dwarf2 sniffer because it has a few problems.
     They may be in the dwarf2 cfi code in GDB, or they may be in
     the debug info emitted by the upstream toolchain.  I don't 
     know which, but I do know that the prologue analyzer works better.
     MVS 04/13/06  */
  dwarf2_append_sniffers (gdbarch);
#endif
  frame_unwind_append_unwinder (gdbarch, &m32c_unwind);

  /* Inferior calls.  */
  set_gdbarch_push_dummy_call (gdbarch, m32c_push_dummy_call);
  set_gdbarch_return_value (gdbarch, m32c_return_value);

  /* Trampolines.  */
  set_gdbarch_skip_trampoline_code (gdbarch, m32c_skip_trampoline_code);

  set_gdbarch_virtual_frame_pointer (gdbarch, m32c_virtual_frame_pointer);

  /* m32c function boundary addresses are not necessarily even.
     Therefore, the `vbit', which indicates a pointer to a virtual
     member function, is stored in the delta field, rather than as
     the low bit of a function pointer address.

     In order to verify this, see the definition of
     TARGET_PTRMEMFUNC_VBIT_LOCATION in gcc/defaults.h along with the
     definition of FUNCTION_BOUNDARY in gcc/config/m32c/m32c.h.  */
  set_gdbarch_vbit_in_delta (gdbarch, 1);

  return gdbarch;
}

void
_initialize_m32c_tdep (void)
{
  register_gdbarch_init (bfd_arch_m32c, m32c_gdbarch_init);

  m32c_dma_reggroup = reggroup_new ("dma", USER_REGGROUP);
}