summaryrefslogtreecommitdiff
path: root/gdb/lynx-nat.c
blob: b04080143eef5c8e81be92ab5f063808222379d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
/* Native-dependent code for LynxOS.
   Copyright 1993, 1994 Free Software Foundation, Inc.

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "target.h"

#include <sys/ptrace.h>
#include <sys/wait.h>
#include <sys/fpp.h>

static unsigned long registers_addr PARAMS ((int pid));

#define X(ENTRY)(offsetof(struct econtext, ENTRY))

#ifdef I386
/* Mappings from tm-i386v.h */

static int regmap[] =
{
  X(eax),
  X(ecx),
  X(edx),
  X(ebx),
  X(esp),			/* sp */
  X(ebp),			/* fp */
  X(esi),
  X(edi),
  X(eip),			/* pc */
  X(flags),			/* ps */
  X(cs),
  X(ss),
  X(ds),
  X(es),
  X(ecode),			/* Lynx doesn't give us either fs or gs, so */
  X(fault),			/* we just substitute these two in the hopes
				   that they are useful. */
};
#endif /* I386 */

#ifdef M68K
/* Mappings from tm-m68k.h */

static int regmap[] =
{
  X(regs[0]),			/* d0 */
  X(regs[1]),			/* d1 */
  X(regs[2]),			/* d2 */
  X(regs[3]),			/* d3 */
  X(regs[4]),			/* d4 */
  X(regs[5]),			/* d5 */
  X(regs[6]),			/* d6 */
  X(regs[7]),			/* d7 */
  X(regs[8]),			/* a0 */
  X(regs[9]),			/* a1 */
  X(regs[10]),			/* a2 */
  X(regs[11]),			/* a3 */
  X(regs[12]),			/* a4 */
  X(regs[13]),			/* a5 */
  X(regs[14]),			/* fp */
  offsetof (st_t, usp) - offsetof (st_t, ec), /* sp */
  X(status),			/* ps */
  X(pc),

  X(fregs[0*3]),		/* fp0 */
  X(fregs[1*3]),		/* fp1 */
  X(fregs[2*3]),		/* fp2 */
  X(fregs[3*3]),		/* fp3 */
  X(fregs[4*3]),		/* fp4 */
  X(fregs[5*3]),		/* fp5 */
  X(fregs[6*3]),		/* fp6 */
  X(fregs[7*3]),		/* fp7 */

  X(fcregs[0]),			/* fpcontrol */
  X(fcregs[1]),			/* fpstatus */
  X(fcregs[2]),			/* fpiaddr */
  X(ssw),			/* fpcode */
  X(fault),			/* fpflags */
};
#endif /* M68K */

#ifdef SPARC
/* Mappings from tm-sparc.h */

#define FX(ENTRY)(offsetof(struct fcontext, ENTRY))

static int regmap[] =
{
  -1,				/* g0 */
  X(g1),
  X(g2),
  X(g3),
  X(g4),
  -1,				/* g5->g7 aren't saved by Lynx */
  -1,
  -1,

  X(o[0]),
  X(o[1]),
  X(o[2]),
  X(o[3]),
  X(o[4]),
  X(o[5]),
  X(o[6]),			/* sp */
  X(o[7]),			/* ra */

  -1,-1,-1,-1,-1,-1,-1,-1,	/* l0 -> l7 */

  -1,-1,-1,-1,-1,-1,-1,-1,	/* i0 -> i7 */

  FX(f.fregs[0]),		/* f0 */
  FX(f.fregs[1]),
  FX(f.fregs[2]),
  FX(f.fregs[3]),
  FX(f.fregs[4]),
  FX(f.fregs[5]),
  FX(f.fregs[6]),
  FX(f.fregs[7]),
  FX(f.fregs[8]),
  FX(f.fregs[9]),
  FX(f.fregs[10]),
  FX(f.fregs[11]),
  FX(f.fregs[12]),
  FX(f.fregs[13]),
  FX(f.fregs[14]),
  FX(f.fregs[15]),
  FX(f.fregs[16]),
  FX(f.fregs[17]),
  FX(f.fregs[18]),
  FX(f.fregs[19]),
  FX(f.fregs[20]),
  FX(f.fregs[21]),
  FX(f.fregs[22]),
  FX(f.fregs[23]),
  FX(f.fregs[24]),
  FX(f.fregs[25]),
  FX(f.fregs[26]),
  FX(f.fregs[27]),
  FX(f.fregs[28]),
  FX(f.fregs[29]),
  FX(f.fregs[30]),
  FX(f.fregs[31]),

  X(y),
  X(psr),
  X(wim),
  X(tbr),
  X(pc),
  X(npc),
  FX(fsr),			/* fpsr */
  -1,				/* cpsr */
};
#endif /* SPARC */

#ifdef rs6000

static int regmap[] =
{
  X(iregs[0]),			/* r0 */
  X(iregs[1]),
  X(iregs[2]),
  X(iregs[3]),
  X(iregs[4]),
  X(iregs[5]),
  X(iregs[6]),
  X(iregs[7]),
  X(iregs[8]),
  X(iregs[9]),
  X(iregs[10]),
  X(iregs[11]),
  X(iregs[12]),
  X(iregs[13]),
  X(iregs[14]),
  X(iregs[15]),
  X(iregs[16]),
  X(iregs[17]),
  X(iregs[18]),
  X(iregs[19]),
  X(iregs[20]),
  X(iregs[21]),
  X(iregs[22]),
  X(iregs[23]),
  X(iregs[24]),
  X(iregs[25]),
  X(iregs[26]),
  X(iregs[27]),
  X(iregs[28]),
  X(iregs[29]),
  X(iregs[30]),
  X(iregs[31]),

  X(fregs[0]),			/* f0 */
  X(fregs[1]),
  X(fregs[2]),
  X(fregs[3]),
  X(fregs[4]),
  X(fregs[5]),
  X(fregs[6]),
  X(fregs[7]),
  X(fregs[8]),
  X(fregs[9]),
  X(fregs[10]),
  X(fregs[11]),
  X(fregs[12]),
  X(fregs[13]),
  X(fregs[14]),
  X(fregs[15]),
  X(fregs[16]),
  X(fregs[17]),
  X(fregs[18]),
  X(fregs[19]),
  X(fregs[20]),
  X(fregs[21]),
  X(fregs[22]),
  X(fregs[23]),
  X(fregs[24]),
  X(fregs[25]),
  X(fregs[26]),
  X(fregs[27]),
  X(fregs[28]),
  X(fregs[29]),
  X(fregs[30]),
  X(fregs[31]),

  X(srr0),			/* IAR (PC) */
  X(srr1),			/* MSR (PS) */
  X(cr),			/* CR */
  X(lr),			/* LR */
  X(ctr),			/* CTR */
  X(xer),			/* XER */
  X(mq)				/* MQ */
};

#endif /* rs6000 */

#ifdef SPARC

/* This routine handles some oddball cases for Sparc registers and LynxOS.
   In partucular, it causes refs to G0, g5->7, and all fp regs to return zero.
   It also handles knows where to find the I & L regs on the stack.  */

void
fetch_inferior_registers (regno)
     int regno;
{
  int whatregs = 0;

#define WHATREGS_FLOAT 1
#define WHATREGS_GEN 2
#define WHATREGS_STACK 4

  if (regno == -1)
    whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK;
  else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
    whatregs = WHATREGS_STACK;
  else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
    whatregs = WHATREGS_FLOAT;
  else
    whatregs = WHATREGS_GEN;

  if (whatregs & WHATREGS_GEN)
    {
      struct econtext ec;		/* general regs */
      char buf[MAX_REGISTER_RAW_SIZE];
      int retval;
      int i;

      errno = 0;
      retval = ptrace (PTRACE_GETREGS, inferior_pid, (PTRACE_ARG3_TYPE) &ec,
		       0);
      if (errno)
	perror_with_name ("ptrace(PTRACE_GETREGS)");
  
      memset (buf, 0, REGISTER_RAW_SIZE (G0_REGNUM));
      supply_register (G0_REGNUM, buf);
      supply_register (TBR_REGNUM, (char *)&ec.tbr);

      memcpy (&registers[REGISTER_BYTE (G1_REGNUM)], &ec.g1,
	      4 * REGISTER_RAW_SIZE (G1_REGNUM));
      for (i = G1_REGNUM; i <= G1_REGNUM + 3; i++)
	register_valid[i] = 1;

      supply_register (PS_REGNUM, (char *)&ec.psr);
      supply_register (Y_REGNUM, (char *)&ec.y);
      supply_register (PC_REGNUM, (char *)&ec.pc);
      supply_register (NPC_REGNUM, (char *)&ec.npc);
      supply_register (WIM_REGNUM, (char *)&ec.wim);

      memcpy (&registers[REGISTER_BYTE (O0_REGNUM)], ec.o,
	      8 * REGISTER_RAW_SIZE (O0_REGNUM));
      for (i = O0_REGNUM; i <= O0_REGNUM + 7; i++)
	register_valid[i] = 1;
    }

  if (whatregs & WHATREGS_STACK)
    {
      CORE_ADDR sp;
      int i;

      sp = read_register (SP_REGNUM);

      target_xfer_memory (sp + FRAME_SAVED_I0,
			  &registers[REGISTER_BYTE(I0_REGNUM)],
			  8 * REGISTER_RAW_SIZE (I0_REGNUM), 0);
      for (i = I0_REGNUM; i <= I7_REGNUM; i++)
	register_valid[i] = 1;

      target_xfer_memory (sp + FRAME_SAVED_L0,
			  &registers[REGISTER_BYTE(L0_REGNUM)],
			  8 * REGISTER_RAW_SIZE (L0_REGNUM), 0);
      for (i = L0_REGNUM; i <= L0_REGNUM + 7; i++)
	register_valid[i] = 1;
    }

  if (whatregs & WHATREGS_FLOAT)
    {
      struct fcontext fc;		/* fp regs */
      int retval;
      int i;

      errno = 0;
      retval = ptrace (PTRACE_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) &fc,
		       0);
      if (errno)
	perror_with_name ("ptrace(PTRACE_GETFPREGS)");
  
      memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], fc.f.fregs,
	      32 * REGISTER_RAW_SIZE (FP0_REGNUM));
      for (i = FP0_REGNUM; i <= FP0_REGNUM + 31; i++)
	register_valid[i] = 1;

      supply_register (FPS_REGNUM, (char *)&fc.fsr);
    }
}

/* This routine handles storing of the I & L regs for the Sparc.  The trick
   here is that they actually live on the stack.  The really tricky part is
   that when changing the stack pointer, the I & L regs must be written to
   where the new SP points, otherwise the regs will be incorrect when the
   process is started up again.   We assume that the I & L regs are valid at
   this point.  */

void
store_inferior_registers (regno)
     int regno;
{
  int whatregs = 0;

  if (regno == -1)
    whatregs = WHATREGS_FLOAT | WHATREGS_GEN | WHATREGS_STACK;
  else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
    whatregs = WHATREGS_STACK;
  else if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
    whatregs = WHATREGS_FLOAT;
  else if (regno == SP_REGNUM)
    whatregs = WHATREGS_STACK | WHATREGS_GEN;
  else
    whatregs = WHATREGS_GEN;

  if (whatregs & WHATREGS_GEN)
    {
      struct econtext ec;		/* general regs */
      int retval;

      ec.tbr = read_register (TBR_REGNUM);
      memcpy (&ec.g1, &registers[REGISTER_BYTE (G1_REGNUM)],
	      4 * REGISTER_RAW_SIZE (G1_REGNUM));

      ec.psr = read_register (PS_REGNUM);
      ec.y = read_register (Y_REGNUM);
      ec.pc = read_register (PC_REGNUM);
      ec.npc = read_register (NPC_REGNUM);
      ec.wim = read_register (WIM_REGNUM);

      memcpy (ec.o, &registers[REGISTER_BYTE (O0_REGNUM)],
	      8 * REGISTER_RAW_SIZE (O0_REGNUM));

      errno = 0;
      retval = ptrace (PTRACE_SETREGS, inferior_pid, (PTRACE_ARG3_TYPE) &ec,
		       0);
      if (errno)
	perror_with_name ("ptrace(PTRACE_SETREGS)");
    }

  if (whatregs & WHATREGS_STACK)
    {
      int regoffset;
      CORE_ADDR sp;

      sp = read_register (SP_REGNUM);

      if (regno == -1 || regno == SP_REGNUM)
	{
	  if (!register_valid[L0_REGNUM+5])
	    abort();
	  target_xfer_memory (sp + FRAME_SAVED_I0,
			      &registers[REGISTER_BYTE (I0_REGNUM)],
			      8 * REGISTER_RAW_SIZE (I0_REGNUM), 1);

	  target_xfer_memory (sp + FRAME_SAVED_L0,
			      &registers[REGISTER_BYTE (L0_REGNUM)],
			      8 * REGISTER_RAW_SIZE (L0_REGNUM), 1);
	}
      else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
	{
	  if (!register_valid[regno])
	    abort();
	  if (regno >= L0_REGNUM && regno <= L0_REGNUM + 7)
	    regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (L0_REGNUM)
	      + FRAME_SAVED_L0;
	  else
	    regoffset = REGISTER_BYTE (regno) - REGISTER_BYTE (I0_REGNUM)
	      + FRAME_SAVED_I0;
	  target_xfer_memory (sp + regoffset, &registers[REGISTER_BYTE (regno)],
			      REGISTER_RAW_SIZE (regno), 1);
	}
    }

  if (whatregs & WHATREGS_FLOAT)
    {
      struct fcontext fc;		/* fp regs */
      int retval;

/* We read fcontext first so that we can get good values for fq_t... */
      errno = 0;
      retval = ptrace (PTRACE_GETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) &fc,
		       0);
      if (errno)
	perror_with_name ("ptrace(PTRACE_GETFPREGS)");
  
      memcpy (fc.f.fregs, &registers[REGISTER_BYTE (FP0_REGNUM)],
	      32 * REGISTER_RAW_SIZE (FP0_REGNUM));

      fc.fsr = read_register (FPS_REGNUM);

      errno = 0;
      retval = ptrace (PTRACE_SETFPREGS, inferior_pid, (PTRACE_ARG3_TYPE) &fc,
		       0);
      if (errno)
	perror_with_name ("ptrace(PTRACE_SETFPREGS)");
      }
}
#endif /* SPARC */

#if defined (I386) || defined (M68K) || defined (rs6000)

/* Return the offset relative to the start of the per-thread data to the
   saved context block.  */

static unsigned long
registers_addr(pid)
     int pid;
{
  CORE_ADDR stblock;
  int ecpoff = offsetof(st_t, ecp);
  CORE_ADDR ecp;

  errno = 0;
  stblock = (CORE_ADDR) ptrace (PTRACE_THREADUSER, pid, (PTRACE_ARG3_TYPE)0,
				0);
  if (errno)
    perror_with_name ("ptrace(PTRACE_THREADUSER)");

  ecp = (CORE_ADDR) ptrace (PTRACE_PEEKTHREAD, pid, (PTRACE_ARG3_TYPE)ecpoff,
			    0);
  if (errno)
    perror_with_name ("ptrace(PTRACE_PEEKTHREAD)");

  return ecp - stblock;
}

/* Fetch one or more registers from the inferior.  REGNO == -1 to get
   them all.  We actually fetch more than requested, when convenient,
   marking them as valid so we won't fetch them again.  */

void
fetch_inferior_registers (regno)
     int regno;
{
  int reglo, reghi;
  int i;
  unsigned long ecp;

  if (regno == -1)
    {
      reglo = 0;
      reghi = NUM_REGS - 1;
    }
  else
    reglo = reghi = regno;

  ecp = registers_addr (inferior_pid);

  for (regno = reglo; regno <= reghi; regno++)
    {
      char buf[MAX_REGISTER_RAW_SIZE];
      int ptrace_fun = PTRACE_PEEKTHREAD;

#ifdef M68K
      ptrace_fun = regno == SP_REGNUM ? PTRACE_PEEKUSP : PTRACE_PEEKTHREAD;
#endif

      for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
	{
	  unsigned int reg;

	  errno = 0;
	  reg = ptrace (ptrace_fun, inferior_pid,
			(PTRACE_ARG3_TYPE) (ecp + regmap[regno] + i), 0);
	  if (errno)
	    perror_with_name ("ptrace(PTRACE_PEEKUSP)");
  
	  *(int *)&buf[i] = reg;
	}
      supply_register (regno, buf);
    }
}

/* Store our register values back into the inferior.
   If REGNO is -1, do this for all registers.
   Otherwise, REGNO specifies which register (so we can save time).  */

/* Registers we shouldn't try to store.  */
#if !defined (CANNOT_STORE_REGISTER)
#define CANNOT_STORE_REGISTER(regno) 0
#endif

void
store_inferior_registers (regno)
     int regno;
{
  int reglo, reghi;
  int i;
  unsigned long ecp;

  if (regno == -1)
    {
      reglo = 0;
      reghi = NUM_REGS - 1;
    }
  else
    reglo = reghi = regno;

  ecp = registers_addr (inferior_pid);

  for (regno = reglo; regno <= reghi; regno++)
    {
      int ptrace_fun = PTRACE_POKEUSER;

      if (CANNOT_STORE_REGISTER (regno))
	continue;

#ifdef M68K
      ptrace_fun = regno == SP_REGNUM ? PTRACE_POKEUSP : PTRACE_POKEUSER;
#endif

      for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
	{
	  unsigned int reg;

	  reg = *(unsigned int *)&registers[REGISTER_BYTE (regno) + i];

	  errno = 0;
	  ptrace (ptrace_fun, inferior_pid,
		  (PTRACE_ARG3_TYPE) (ecp + regmap[regno] + i), reg);
	  if (errno)
	    perror_with_name ("ptrace(PTRACE_POKEUSP)");
	}
    }
}
#endif /* defined (I386) || defined (M68K) || defined (rs6000) */

/* Wait for child to do something.  Return pid of child, or -1 in case
   of error; store status through argument pointer OURSTATUS.  */

int
child_wait (pid, ourstatus)
     int pid;
     struct target_waitstatus *ourstatus;
{
  int save_errno;
  int thread;
  union wait status;

  while (1)
    {
      int sig;

      set_sigint_trap();	/* Causes SIGINT to be passed on to the
				   attached process. */
      pid = wait (&status);

      save_errno = errno;

      clear_sigint_trap();

      if (pid == -1)
	{
	  if (save_errno == EINTR)
	    continue;
	  fprintf_unfiltered (gdb_stderr, "Child process unexpectedly missing: %s.\n",
		   safe_strerror (save_errno));
	  /* Claim it exited with unknown signal.  */
	  ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
	  ourstatus->value.sig = TARGET_SIGNAL_UNKNOWN;
	  return -1;
	}

      if (pid != PIDGET (inferior_pid))	/* Some other process?!? */
	continue;

      thread = status.w_tid;	/* Get thread id from status */

      /* Initial thread value can only be acquired via wait, so we have to
	 resort to this hack.  */

      if (TIDGET (inferior_pid) == 0 && thread != 0)
	{
	  inferior_pid = BUILDPID (inferior_pid, thread);
	  add_thread (inferior_pid);
	}

      pid = BUILDPID (pid, thread);

      /* We've become a single threaded process again.  */
      if (thread == 0)
	inferior_pid = pid;

      /* Check for thread creation.  */
      if (WIFSTOPPED(status)
	  && WSTOPSIG(status) == SIGTRAP
	  && !in_thread_list (pid))
	{
	  int realsig;

	  realsig = ptrace (PTRACE_GETTRACESIG, pid, (PTRACE_ARG3_TYPE)0, 0);

	  if (realsig == SIGNEWTHREAD)
	    {
	      /* It's a new thread notification.  Nothing to do here since
		 the machine independent code in wait_for_inferior will
		 add the thread to the thread list and restart the thread
		 when pid != inferior_pid and pid is not in the thread
		 list.   We don't even want to much with realsig -- the
		 code in wait_for_inferior expects SIGTRAP.  */
	      ;
	    }
	  else
	    error ("Signal for unknown thread was not SIGNEWTHREAD");
	}

      /* Check for thread termination.  */
      else if (WIFSTOPPED(status)
	       && WSTOPSIG(status) == SIGTRAP
	       && in_thread_list (pid))
	{
	  int realsig;

	  realsig = ptrace (PTRACE_GETTRACESIG, pid, (PTRACE_ARG3_TYPE)0, 0);

	  if (realsig == SIGTHREADEXIT)
	    {
	      ptrace (PTRACE_CONT, PIDGET (pid), (PTRACE_ARG3_TYPE)0, 0);
	      continue;
	    }
	}

#ifdef SPARC
      /* SPARC Lynx uses an byte reversed wait status; we must use the
	 host macros to access it.  These lines just a copy of
	 store_waitstatus.  We can't use CHILD_SPECIAL_WAITSTATUS
	 because target.c can't include the Lynx <sys/wait.h>.  */
      if (WIFEXITED (status))
	{
	  ourstatus->kind = TARGET_WAITKIND_EXITED;
	  ourstatus->value.integer = WEXITSTATUS (status);
	}
      else if (!WIFSTOPPED (status))
	{
	  ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
	  ourstatus->value.sig =
	    target_signal_from_host (WTERMSIG (status));
	}
      else
	{
	  ourstatus->kind = TARGET_WAITKIND_STOPPED;
	  ourstatus->value.sig =
	    target_signal_from_host (WSTOPSIG (status));
	}
#else
      store_waitstatus (ourstatus, status.w_status);
#endif

      return pid;
    }
}

/* Return nonzero if the given thread is still alive.  */
int
child_thread_alive (pid)
     int pid;
{
  /* Arggh.  Apparently pthread_kill only works for threads within
     the process that calls pthread_kill.

     We want to avoid the lynx signal extensions as they simply don't
     map well to the generic gdb interface we want to keep.

     All we want to do is determine if a particular thread is alive;
     it appears as if we can just make a harmless thread specific
     ptrace call to do that.  */
  return (ptrace (PTRACE_THREADUSER, pid, 0, 0) != -1);
}

/* Resume execution of the inferior process.
   If STEP is nonzero, single-step it.
   If SIGNAL is nonzero, give it that signal.  */

void
child_resume (pid, step, signal)
     int pid;
     int step;
     enum target_signal signal;
{
  int func;

  errno = 0;

  /* If pid == -1, then we want to step/continue all threads, else
     we only want to step/continue a single thread.  */
  if (pid == -1)
    {
      pid = inferior_pid;
      func = step ? PTRACE_SINGLESTEP : PTRACE_CONT;
    }
  else
    func = step ? PTRACE_SINGLESTEP_ONE : PTRACE_CONT_ONE;


  /* An address of (PTRACE_ARG3_TYPE)1 tells ptrace to continue from where
     it was.  (If GDB wanted it to start some other way, we have already
     written a new PC value to the child.)

     If this system does not support PT_STEP, a higher level function will
     have called single_step() to transmute the step request into a
     continue request (by setting breakpoints on all possible successor
     instructions), so we don't have to worry about that here.  */

  ptrace (func, pid, (PTRACE_ARG3_TYPE) 1, target_signal_to_host (signal));

  if (errno)
    perror_with_name ("ptrace");
}

/* Convert a Lynx process ID to a string.  Returns the string in a static
   buffer.  */

char *
lynx_pid_to_str (pid)
     int pid;
{
  static char buf[40];

  sprintf (buf, "process %d thread %d", PIDGET (pid), TIDGET (pid));

  return buf;
}

/* Extract the register values out of the core file and store
   them where `read_register' will find them.

   CORE_REG_SECT points to the register values themselves, read into memory.
   CORE_REG_SIZE is the size of that area.
   WHICH says which set of registers we are handling (0 = int, 2 = float
         on machines where they are discontiguous).
   REG_ADDR is the offset from u.u_ar0 to the register values relative to
            core_reg_sect.  This is used with old-fashioned core files to
	    locate the registers in a large upage-plus-stack ".reg" section.
	    Original upage address X is at location core_reg_sect+x+reg_addr.
 */

void
fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
     char *core_reg_sect;
     unsigned core_reg_size;
     int which;
     unsigned reg_addr;
{
  struct st_entry s;
  unsigned int regno;

  for (regno = 0; regno < NUM_REGS; regno++)
    if (regmap[regno] != -1)
      supply_register (regno, core_reg_sect + offsetof (st_t, ec)
		       + regmap[regno]);

#ifdef SPARC
/* Fetching this register causes all of the I & L regs to be read from the
   stack and validated.  */

  fetch_inferior_registers (I0_REGNUM);
#endif
}