summaryrefslogtreecommitdiff
path: root/gdb/infrun.c
blob: 0089b7ef7859c669c3f7d99d265703179f572e10 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
/* Target-struct-independent code to start (run) and stop an inferior process.
   Copyright 1986, 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996
   Free Software Foundation, Inc.

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "gdb_string.h"
#include <ctype.h>
#include "symtab.h"
#include "frame.h"
#include "inferior.h"
#include "breakpoint.h"
#include "wait.h"
#include "gdbcore.h"
#include "gdbcmd.h"
#include "target.h"
#include "gdbthread.h"
#include "annotate.h"

#include <signal.h>

/* unistd.h is needed to #define X_OK */
#ifdef USG
#include <unistd.h>
#else
#include <sys/file.h>
#endif

/* Prototypes for local functions */

static void signals_info PARAMS ((char *, int));

static void handle_command PARAMS ((char *, int));

static void sig_print_info PARAMS ((enum target_signal));

static void sig_print_header PARAMS ((void));

static void resume_cleanups PARAMS ((int));

static int hook_stop_stub PARAMS ((char *));

/* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
   program.  It needs to examine the jmp_buf argument and extract the PC
   from it.  The return value is non-zero on success, zero otherwise. */

#ifndef GET_LONGJMP_TARGET
#define GET_LONGJMP_TARGET(PC_ADDR) 0
#endif


/* Some machines have trampoline code that sits between function callers
   and the actual functions themselves.  If this machine doesn't have
   such things, disable their processing.  */

#ifndef SKIP_TRAMPOLINE_CODE
#define	SKIP_TRAMPOLINE_CODE(pc)	0
#endif

/* Dynamic function trampolines are similar to solib trampolines in that they
   are between the caller and the callee.  The difference is that when you
   enter a dynamic trampoline, you can't determine the callee's address.  Some
   (usually complex) code needs to run in the dynamic trampoline to figure out
   the callee's address.  This macro is usually called twice.  First, when we
   enter the trampoline (looks like a normal function call at that point).  It
   should return the PC of a point within the trampoline where the callee's
   address is known.  Second, when we hit the breakpoint, this routine returns
   the callee's address.  At that point, things proceed as per a step resume
   breakpoint.  */

#ifndef DYNAMIC_TRAMPOLINE_NEXTPC
#define DYNAMIC_TRAMPOLINE_NEXTPC(pc) 0
#endif

/* For SVR4 shared libraries, each call goes through a small piece of
   trampoline code in the ".plt" section.  IN_SOLIB_CALL_TRAMPOLINE evaluates
   to nonzero if we are current stopped in one of these. */

#ifndef IN_SOLIB_CALL_TRAMPOLINE
#define IN_SOLIB_CALL_TRAMPOLINE(pc,name)	0
#endif

/* In some shared library schemes, the return path from a shared library
   call may need to go through a trampoline too.  */

#ifndef IN_SOLIB_RETURN_TRAMPOLINE
#define IN_SOLIB_RETURN_TRAMPOLINE(pc,name)	0
#endif

/* On some systems, the PC may be left pointing at an instruction that  won't
   actually be executed.  This is usually indicated by a bit in the PSW.  If
   we find ourselves in such a state, then we step the target beyond the
   nullified instruction before returning control to the user so as to avoid
   confusion. */

#ifndef INSTRUCTION_NULLIFIED
#define INSTRUCTION_NULLIFIED 0
#endif

/* Tables of how to react to signals; the user sets them.  */

static unsigned char *signal_stop;
static unsigned char *signal_print;
static unsigned char *signal_program;

#define SET_SIGS(nsigs,sigs,flags) \
  do { \
    int signum = (nsigs); \
    while (signum-- > 0) \
      if ((sigs)[signum]) \
	(flags)[signum] = 1; \
  } while (0)

#define UNSET_SIGS(nsigs,sigs,flags) \
  do { \
    int signum = (nsigs); \
    while (signum-- > 0) \
      if ((sigs)[signum]) \
	(flags)[signum] = 0; \
  } while (0)


/* Command list pointer for the "stop" placeholder.  */

static struct cmd_list_element *stop_command;

/* Nonzero if breakpoints are now inserted in the inferior.  */

static int breakpoints_inserted;

/* Function inferior was in as of last step command.  */

static struct symbol *step_start_function;

/* Nonzero if we are expecting a trace trap and should proceed from it.  */

static int trap_expected;

/* Nonzero if we want to give control to the user when we're notified
   of shared library events by the dynamic linker.  */
static int stop_on_solib_events;

#ifdef HP_OS_BUG
/* Nonzero if the next time we try to continue the inferior, it will
   step one instruction and generate a spurious trace trap.
   This is used to compensate for a bug in HP-UX.  */

static int trap_expected_after_continue;
#endif

/* Nonzero means expecting a trace trap
   and should stop the inferior and return silently when it happens.  */

int stop_after_trap;

/* Nonzero means expecting a trap and caller will handle it themselves.
   It is used after attach, due to attaching to a process;
   when running in the shell before the child program has been exec'd;
   and when running some kinds of remote stuff (FIXME?).  */

int stop_soon_quietly;

/* Nonzero if proceed is being used for a "finish" command or a similar
   situation when stop_registers should be saved.  */

int proceed_to_finish;

/* Save register contents here when about to pop a stack dummy frame,
   if-and-only-if proceed_to_finish is set.
   Thus this contains the return value from the called function (assuming
   values are returned in a register).  */

char stop_registers[REGISTER_BYTES];

/* Nonzero if program stopped due to error trying to insert breakpoints.  */

static int breakpoints_failed;

/* Nonzero after stop if current stack frame should be printed.  */

static int stop_print_frame;

#ifdef NO_SINGLE_STEP
extern int one_stepped;		/* From machine dependent code */
extern void single_step ();	/* Same. */
#endif /* NO_SINGLE_STEP */

extern void write_pc_pid PARAMS ((CORE_ADDR, int));


/* Things to clean up if we QUIT out of resume ().  */
/* ARGSUSED */
static void
resume_cleanups (arg)
     int arg;
{
  normal_stop ();
}

/* Resume the inferior, but allow a QUIT.  This is useful if the user
   wants to interrupt some lengthy single-stepping operation
   (for child processes, the SIGINT goes to the inferior, and so
   we get a SIGINT random_signal, but for remote debugging and perhaps
   other targets, that's not true).

   STEP nonzero if we should step (zero to continue instead).
   SIG is the signal to give the inferior (zero for none).  */
void
resume (step, sig)
     int step;
     enum target_signal sig;
{
  struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
  QUIT;

#ifdef CANNOT_STEP_BREAKPOINT
  /* Most targets can step a breakpoint instruction, thus executing it
     normally.  But if this one cannot, just continue and we will hit
     it anyway.  */
  if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
    step = 0;
#endif

#ifdef NO_SINGLE_STEP
  if (step) {
    single_step(sig);	/* Do it the hard way, w/temp breakpoints */
    step = 0;		/* ...and don't ask hardware to do it.  */
  }
#endif

  /* Handle any optimized stores to the inferior NOW...  */
#ifdef DO_DEFERRED_STORES
  DO_DEFERRED_STORES;
#endif

  /* Install inferior's terminal modes.  */
  target_terminal_inferior ();

  target_resume (-1, step, sig);
  discard_cleanups (old_cleanups);
}


/* Clear out all variables saying what to do when inferior is continued.
   First do this, then set the ones you want, then call `proceed'.  */

void
clear_proceed_status ()
{
  trap_expected = 0;
  step_range_start = 0;
  step_range_end = 0;
  step_frame_address = 0;
  step_over_calls = -1;
  stop_after_trap = 0;
  stop_soon_quietly = 0;
  proceed_to_finish = 0;
  breakpoint_proceeded = 1;	/* We're about to proceed... */

  /* Discard any remaining commands or status from previous stop.  */
  bpstat_clear (&stop_bpstat);
}

/* Basic routine for continuing the program in various fashions.

   ADDR is the address to resume at, or -1 for resume where stopped.
   SIGGNAL is the signal to give it, or 0 for none,
     or -1 for act according to how it stopped.
   STEP is nonzero if should trap after one instruction.
     -1 means return after that and print nothing.
     You should probably set various step_... variables
     before calling here, if you are stepping.

   You should call clear_proceed_status before calling proceed.  */

void
proceed (addr, siggnal, step)
     CORE_ADDR addr;
     enum target_signal siggnal;
     int step;
{
  int oneproc = 0;

  if (step > 0)
    step_start_function = find_pc_function (read_pc ());
  if (step < 0)
    stop_after_trap = 1;

  if (addr == (CORE_ADDR)-1)
    {
      /* If there is a breakpoint at the address we will resume at,
	 step one instruction before inserting breakpoints
	 so that we do not stop right away.  */

      if (breakpoint_here_p (read_pc ()))
	oneproc = 1;

#ifdef STEP_SKIPS_DELAY
      /* Check breakpoint_here_p first, because breakpoint_here_p is fast
	 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
	 is slow (it needs to read memory from the target).  */
      if (breakpoint_here_p (read_pc () + 4)
	  && STEP_SKIPS_DELAY (read_pc ()))
	oneproc = 1;
#endif /* STEP_SKIPS_DELAY */
    }
  else
    write_pc (addr);

#ifdef PREPARE_TO_PROCEED
  /* In a multi-threaded task we may select another thread and then continue.
     
     In this case the thread that stopped at a breakpoint will immediately
     cause another stop, if it is not stepped over first. On the other hand,
     if (ADDR != -1) we only want to single step over the breakpoint if we did
     switch to another thread.

     If we are single stepping, don't do any of the above.
     (Note that in the current implementation single stepping another
     thread after a breakpoint and then continuing will cause the original
     breakpoint to be hit again, but you can always continue, so it's not
     a big deal.)  */

  if (! step && PREPARE_TO_PROCEED (1) && breakpoint_here_p (read_pc ()))
    oneproc = 1;
#endif /* PREPARE_TO_PROCEED */

#ifdef HP_OS_BUG
  if (trap_expected_after_continue)
    {
      /* If (step == 0), a trap will be automatically generated after
	 the first instruction is executed.  Force step one
	 instruction to clear this condition.  This should not occur
	 if step is nonzero, but it is harmless in that case.  */
      oneproc = 1;
      trap_expected_after_continue = 0;
    }
#endif /* HP_OS_BUG */

  if (oneproc)
    /* We will get a trace trap after one instruction.
       Continue it automatically and insert breakpoints then.  */
    trap_expected = 1;
  else
    {
      int temp = insert_breakpoints ();
      if (temp)
	{
	  print_sys_errmsg ("ptrace", temp);
	  error ("Cannot insert breakpoints.\n\
The same program may be running in another process.");
	}
      breakpoints_inserted = 1;
    }

  if (siggnal != TARGET_SIGNAL_DEFAULT)
    stop_signal = siggnal;
  /* If this signal should not be seen by program,
     give it zero.  Used for debugging signals.  */
  else if (!signal_program[stop_signal])
    stop_signal = TARGET_SIGNAL_0;

  annotate_starting ();

  /* Make sure that output from GDB appears before output from the
     inferior.  */
  gdb_flush (gdb_stdout);

  /* Resume inferior.  */
  resume (oneproc || step || bpstat_should_step (), stop_signal);

  /* Wait for it to stop (if not standalone)
     and in any case decode why it stopped, and act accordingly.  */

  wait_for_inferior ();
  normal_stop ();
}

/* Record the pc and sp of the program the last time it stopped.
   These are just used internally by wait_for_inferior, but need
   to be preserved over calls to it and cleared when the inferior
   is started.  */
static CORE_ADDR prev_pc;
static CORE_ADDR prev_func_start;
static char *prev_func_name;


/* Start remote-debugging of a machine over a serial link.  */

void
start_remote ()
{
  init_thread_list ();
  init_wait_for_inferior ();
  clear_proceed_status ();
  stop_soon_quietly = 1;
  trap_expected = 0;
  wait_for_inferior ();
  normal_stop ();
}

/* Initialize static vars when a new inferior begins.  */

void
init_wait_for_inferior ()
{
  /* These are meaningless until the first time through wait_for_inferior.  */
  prev_pc = 0;
  prev_func_start = 0;
  prev_func_name = NULL;

#ifdef HP_OS_BUG
  trap_expected_after_continue = 0;
#endif
  breakpoints_inserted = 0;
  breakpoint_init_inferior ();

  /* Don't confuse first call to proceed(). */
  stop_signal = TARGET_SIGNAL_0;
}

static void
delete_breakpoint_current_contents (arg)
     PTR arg;
{
  struct breakpoint **breakpointp = (struct breakpoint **)arg;
  if (*breakpointp != NULL)
    delete_breakpoint (*breakpointp);
}

/* Wait for control to return from inferior to debugger.
   If inferior gets a signal, we may decide to start it up again
   instead of returning.  That is why there is a loop in this function.
   When this function actually returns it means the inferior
   should be left stopped and GDB should read more commands.  */

void
wait_for_inferior ()
{
  struct cleanup *old_cleanups;
  struct target_waitstatus w;
  int another_trap;
  int random_signal;
  CORE_ADDR stop_func_start;
  CORE_ADDR stop_func_end;
  char *stop_func_name;
#if 0
  CORE_ADDR prologue_pc = 0;
#endif
  CORE_ADDR tmp;
  struct symtab_and_line sal;
  int remove_breakpoints_on_following_step = 0;
  int current_line;
  struct symtab *current_symtab;
  int handling_longjmp = 0;	/* FIXME */
  struct breakpoint *step_resume_breakpoint = NULL;
  struct breakpoint *through_sigtramp_breakpoint = NULL;
  int pid;
  int update_step_sp = 0;

  old_cleanups = make_cleanup (delete_breakpoint_current_contents,
			       &step_resume_breakpoint);
  make_cleanup (delete_breakpoint_current_contents,
		&through_sigtramp_breakpoint);
  sal = find_pc_line(prev_pc, 0);
  current_line = sal.line;
  current_symtab = sal.symtab;

  /* Are we stepping?  */
#define CURRENTLY_STEPPING() \
  ((through_sigtramp_breakpoint == NULL \
    && !handling_longjmp \
    && ((step_range_end && step_resume_breakpoint == NULL) \
	|| trap_expected)) \
   || bpstat_should_step ())

  while (1)
    {
      /* We have to invalidate the registers BEFORE calling target_wait because
	 they can be loaded from the target while in target_wait.  This makes
	 remote debugging a bit more efficient for those targets that provide
	 critical registers as part of their normal status mechanism. */

      registers_changed ();

      if (target_wait_hook)
	pid = target_wait_hook (-1, &w);
      else
	pid = target_wait (-1, &w);

    /* Gross.

       We goto this label from elsewhere in wait_for_inferior when we want
       to continue the main loop without calling "wait" and trashing the
       waitstatus contained in W.  */
    have_waited:

      flush_cached_frames ();

      /* If it's a new process, add it to the thread database */

      if (pid != inferior_pid
	  && !in_thread_list (pid))
	{
	  fprintf_unfiltered (gdb_stderr, "[New %s]\n", target_pid_to_str (pid));
	  add_thread (pid);

	  /* We may want to consider not doing a resume here in order to give
	     the user a chance to play with the new thread.  It might be good
	     to make that a user-settable option.  */

	  /* At this point, all threads are stopped (happens automatically in
	     either the OS or the native code).  Therefore we need to continue
	     all threads in order to make progress.  */

	  target_resume (-1, 0, TARGET_SIGNAL_0);
	  continue;
	}

      switch (w.kind)
	{
	case TARGET_WAITKIND_LOADED:
	  /* Ignore it gracefully.  */
	  if (breakpoints_inserted)
	    {
	      mark_breakpoints_out ();
	      insert_breakpoints ();
	    }
	  resume (0, TARGET_SIGNAL_0);
	  continue;

	case TARGET_WAITKIND_SPURIOUS:
	  resume (0, TARGET_SIGNAL_0);
	  continue;

	case TARGET_WAITKIND_EXITED:
	  target_terminal_ours ();	/* Must do this before mourn anyway */
	  annotate_exited (w.value.integer);
	  if (w.value.integer)
	    printf_filtered ("\nProgram exited with code 0%o.\n", 
			     (unsigned int)w.value.integer);
	  else
	    printf_filtered ("\nProgram exited normally.\n");

	  /* Record the exit code in the convenience variable $_exitcode, so
	     that the user can inspect this again later.  */
	  set_internalvar (lookup_internalvar ("_exitcode"),
			   value_from_longest (builtin_type_int, 
					       (LONGEST) w.value.integer));
	  gdb_flush (gdb_stdout);
	  target_mourn_inferior ();
#ifdef NO_SINGLE_STEP
	  one_stepped = 0;
#endif
	  stop_print_frame = 0;
	  goto stop_stepping;

	case TARGET_WAITKIND_SIGNALLED:
	  stop_print_frame = 0;
	  stop_signal = w.value.sig;
	  target_terminal_ours ();	/* Must do this before mourn anyway */
	  annotate_signalled ();

	  /* This looks pretty bogus to me.  Doesn't TARGET_WAITKIND_SIGNALLED
	     mean it is already dead?  This has been here since GDB 2.8, so
	     perhaps it means rms didn't understand unix waitstatuses?
	     For the moment I'm just kludging around this in remote.c
	     rather than trying to change it here --kingdon, 5 Dec 1994.  */
	  target_kill ();		/* kill mourns as well */

	  printf_filtered ("\nProgram terminated with signal ");
	  annotate_signal_name ();
	  printf_filtered ("%s", target_signal_to_name (stop_signal));
	  annotate_signal_name_end ();
	  printf_filtered (", ");
	  annotate_signal_string ();
	  printf_filtered ("%s", target_signal_to_string (stop_signal));
	  annotate_signal_string_end ();
	  printf_filtered (".\n");

	  printf_filtered ("The program no longer exists.\n");
	  gdb_flush (gdb_stdout);
#ifdef NO_SINGLE_STEP
	  one_stepped = 0;
#endif
	  goto stop_stepping;

	case TARGET_WAITKIND_STOPPED:
	  /* This is the only case in which we keep going; the above cases
	     end in a continue or goto.  */
	  break;
	}

      stop_signal = w.value.sig;

      stop_pc = read_pc_pid (pid);

      /* See if a thread hit a thread-specific breakpoint that was meant for
	 another thread.  If so, then step that thread past the breakpoint,
	 and continue it.  */

      if (stop_signal == TARGET_SIGNAL_TRAP)
	{
#ifdef NO_SINGLE_STEP
	  if (one_stepped)
	    random_signal = 0;
	  else
#endif
	    if (breakpoints_inserted
		&& breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK))
	      {
		random_signal = 0;
		if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK, pid))
		  {
		    /* Saw a breakpoint, but it was hit by the wrong thread.  Just continue. */
		    write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK, pid);

		    remove_breakpoints ();
		    target_resume (pid, 1, TARGET_SIGNAL_0); /* Single step */
		    /* FIXME: What if a signal arrives instead of the single-step
		       happening?  */

		    if (target_wait_hook)
		      target_wait_hook (pid, &w);
		    else
		      target_wait (pid, &w);
		    insert_breakpoints ();

		    /* We need to restart all the threads now.  */
		    target_resume (-1, 0, TARGET_SIGNAL_0);
		    continue;
		  }
	      }
	}
      else
	random_signal = 1;

      /* See if something interesting happened to the non-current thread.  If
         so, then switch to that thread, and eventually give control back to
	 the user.  */

      if (pid != inferior_pid)
	{
	  int printed = 0;

	  /* If it's a random signal for a non-current thread, notify user
	     if he's expressed an interest.  */

	  if (random_signal
	      && signal_print[stop_signal])
	    {
	      printed = 1;
	      target_terminal_ours_for_output ();
	      printf_filtered ("\nProgram received signal %s, %s.\n",
			       target_signal_to_name (stop_signal),
			       target_signal_to_string (stop_signal));
	      gdb_flush (gdb_stdout);
	    }

	  /* If it's not SIGTRAP and not a signal we want to stop for, then
	     continue the thread. */

	  if (stop_signal != TARGET_SIGNAL_TRAP
	      && !signal_stop[stop_signal])
	    {
	      if (printed)
		target_terminal_inferior ();

	      /* Clear the signal if it should not be passed.  */
	      if (signal_program[stop_signal] == 0)
		stop_signal = TARGET_SIGNAL_0;

	      target_resume (pid, 0, stop_signal);
	      continue;
	    }

	  /* It's a SIGTRAP or a signal we're interested in.  Switch threads,
	     and fall into the rest of wait_for_inferior().  */

	  /* Save infrun state for the old thread.  */
	  save_infrun_state (inferior_pid, prev_pc,
			     prev_func_start, prev_func_name,
			     trap_expected, step_resume_breakpoint,
			     through_sigtramp_breakpoint,
			     step_range_start, step_range_end,
			     step_frame_address, handling_longjmp,
			     another_trap);

	  inferior_pid = pid;

	  /* Load infrun state for the new thread.  */
	  load_infrun_state (inferior_pid, &prev_pc,
			     &prev_func_start, &prev_func_name,
			     &trap_expected, &step_resume_breakpoint,
			     &through_sigtramp_breakpoint,
			     &step_range_start, &step_range_end,
			     &step_frame_address, &handling_longjmp,
			     &another_trap);
	  printf_filtered ("[Switching to %s]\n", target_pid_to_str (pid));

	  flush_cached_frames ();
	}

#ifdef NO_SINGLE_STEP
      if (one_stepped)
	single_step (0);	/* This actually cleans up the ss */
#endif /* NO_SINGLE_STEP */
      
      /* If PC is pointing at a nullified instruction, then step beyond
	 it so that the user won't be confused when GDB appears to be ready
	 to execute it. */

      if (INSTRUCTION_NULLIFIED)
	{
	  struct target_waitstatus tmpstatus;

	  registers_changed ();
	  target_resume (pid, 1, TARGET_SIGNAL_0);

	  /* We may have received a signal that we want to pass to
	     the inferior; therefore, we must not clobber the waitstatus
	     in W.  So we call wait ourselves, then continue the loop
	     at the "have_waited" label.  */
	  if (target_wait_hook)
	    target_wait_hook (pid, &tmpstatus);
	  else
	    target_wait (pid, &tmpstatus);


	  goto have_waited;
	}

#ifdef HAVE_STEPPABLE_WATCHPOINT
      /* It may not be necessary to disable the watchpoint to stop over
	 it.  For example, the PA can (with some kernel cooperation) 
	 single step over a watchpoint without disabling the watchpoint.  */
      if (STOPPED_BY_WATCHPOINT (w))
	{
	  resume (1, 0);
	  continue;
	}
#endif

#ifdef HAVE_NONSTEPPABLE_WATCHPOINT
      /* It is far more common to need to disable a watchpoint
	 to step the inferior over it.  FIXME.  What else might
	 a debug register or page protection watchpoint scheme need
	 here?  */
      if (STOPPED_BY_WATCHPOINT (w))
	{
/* At this point, we are stopped at an instruction which has attempted to write
   to a piece of memory under control of a watchpoint.  The instruction hasn't
   actually executed yet.  If we were to evaluate the watchpoint expression
   now, we would get the old value, and therefore no change would seem to have
   occurred.

   In order to make watchpoints work `right', we really need to complete the
   memory write, and then evaluate the watchpoint expression.  The following
   code does that by removing the watchpoint (actually, all watchpoints and
   breakpoints), single-stepping the target, re-inserting watchpoints, and then
   falling through to let normal single-step processing handle proceed.  Since
   this includes evaluating watchpoints, things will come to a stop in the
   correct manner.  */

	  write_pc (stop_pc - DECR_PC_AFTER_BREAK);

	  remove_breakpoints ();
	  target_resume (pid, 1, TARGET_SIGNAL_0); /* Single step */

	  if (target_wait_hook)
	    target_wait_hook (pid, &w);
	  else
	    target_wait (pid, &w);
	  insert_breakpoints ();
	  /* FIXME-maybe: is this cleaner than setting a flag?  Does it
	     handle things like signals arriving and other things happening
	     in combination correctly?  */
	  goto have_waited;
	}
#endif

#ifdef HAVE_CONTINUABLE_WATCHPOINT
      /* It may be possible to simply continue after a watchpoint.  */
      STOPPED_BY_WATCHPOINT (w);
#endif

      stop_func_start = 0;
      stop_func_name = 0;
      /* Don't care about return value; stop_func_start and stop_func_name
	 will both be 0 if it doesn't work.  */
      find_pc_partial_function (stop_pc, &stop_func_name, &stop_func_start,
				&stop_func_end);
      stop_func_start += FUNCTION_START_OFFSET;
      another_trap = 0;
      bpstat_clear (&stop_bpstat);
      stop_step = 0;
      stop_stack_dummy = 0;
      stop_print_frame = 1;
      random_signal = 0;
      stopped_by_random_signal = 0;
      breakpoints_failed = 0;
      
      /* Look at the cause of the stop, and decide what to do.
	 The alternatives are:
	 1) break; to really stop and return to the debugger,
	 2) drop through to start up again
	 (set another_trap to 1 to single step once)
	 3) set random_signal to 1, and the decision between 1 and 2
	 will be made according to the signal handling tables.  */
      
      /* First, distinguish signals caused by the debugger from signals
	 that have to do with the program's own actions.
	 Note that breakpoint insns may cause SIGTRAP or SIGILL
	 or SIGEMT, depending on the operating system version.
	 Here we detect when a SIGILL or SIGEMT is really a breakpoint
	 and change it to SIGTRAP.  */
      
      if (stop_signal == TARGET_SIGNAL_TRAP
	  || (breakpoints_inserted &&
	      (stop_signal == TARGET_SIGNAL_ILL
	       || stop_signal == TARGET_SIGNAL_EMT
            ))
	  || stop_soon_quietly)
	{
	  if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
	    {
	      stop_print_frame = 0;
	      break;
	    }
	  if (stop_soon_quietly)
	    break;

	  /* Don't even think about breakpoints
	     if just proceeded over a breakpoint.

	     However, if we are trying to proceed over a breakpoint
	     and end up in sigtramp, then through_sigtramp_breakpoint
	     will be set and we should check whether we've hit the
	     step breakpoint.  */
	  if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
	      && through_sigtramp_breakpoint == NULL)
	    bpstat_clear (&stop_bpstat);
	  else
	    {
	      /* See if there is a breakpoint at the current PC.  */
	      stop_bpstat = bpstat_stop_status
		(&stop_pc,
#if DECR_PC_AFTER_BREAK
		 /* Notice the case of stepping through a jump
		    that lands just after a breakpoint.
		    Don't confuse that with hitting the breakpoint.
		    What we check for is that 1) stepping is going on
		    and 2) the pc before the last insn does not match
		    the address of the breakpoint before the current pc.  */
		 (prev_pc != stop_pc - DECR_PC_AFTER_BREAK
		  && CURRENTLY_STEPPING ())
#else /* DECR_PC_AFTER_BREAK zero */
		 0
#endif /* DECR_PC_AFTER_BREAK zero */
		 );
	      /* Following in case break condition called a
		 function.  */
	      stop_print_frame = 1;
	    }

	  if (stop_signal == TARGET_SIGNAL_TRAP)
	    random_signal
	      = !(bpstat_explains_signal (stop_bpstat)
		  || trap_expected
#ifndef CALL_DUMMY_BREAKPOINT_OFFSET
		  || PC_IN_CALL_DUMMY (stop_pc, read_sp (),
				       FRAME_FP (get_current_frame ()))
#endif /* No CALL_DUMMY_BREAKPOINT_OFFSET.  */
		  || (step_range_end && step_resume_breakpoint == NULL));
	  else
	    {
	      random_signal
		= !(bpstat_explains_signal (stop_bpstat)
		    /* End of a stack dummy.  Some systems (e.g. Sony
		       news) give another signal besides SIGTRAP,
		       so check here as well as above.  */
#ifndef CALL_DUMMY_BREAKPOINT_OFFSET
		    || PC_IN_CALL_DUMMY (stop_pc, read_sp (),
					 FRAME_FP (get_current_frame ()))
#endif /* No CALL_DUMMY_BREAKPOINT_OFFSET.  */
		    );
	      if (!random_signal)
		stop_signal = TARGET_SIGNAL_TRAP;
	    }
	}
      else
	random_signal = 1;

      /* For the program's own signals, act according to
	 the signal handling tables.  */

      if (random_signal)
	{
	  /* Signal not for debugging purposes.  */
	  int printed = 0;
	  
	  stopped_by_random_signal = 1;
	  
	  if (signal_print[stop_signal])
	    {
	      printed = 1;
	      target_terminal_ours_for_output ();
	      annotate_signal ();
	      printf_filtered ("\nProgram received signal ");
	      annotate_signal_name ();
	      printf_filtered ("%s", target_signal_to_name (stop_signal));
	      annotate_signal_name_end ();
	      printf_filtered (", ");
	      annotate_signal_string ();
	      printf_filtered ("%s", target_signal_to_string (stop_signal));
	      annotate_signal_string_end ();
	      printf_filtered (".\n");
	      gdb_flush (gdb_stdout);
	    }
	  if (signal_stop[stop_signal])
	    break;
	  /* If not going to stop, give terminal back
	     if we took it away.  */
	  else if (printed)
	    target_terminal_inferior ();

	  /* Clear the signal if it should not be passed.  */
	  if (signal_program[stop_signal] == 0)
	    stop_signal = TARGET_SIGNAL_0;

	  /* I'm not sure whether this needs to be check_sigtramp2 or
	     whether it could/should be keep_going.  */
	  goto check_sigtramp2;
	}

      /* Handle cases caused by hitting a breakpoint.  */
      {
	CORE_ADDR jmp_buf_pc;
	struct bpstat_what what;

	what = bpstat_what (stop_bpstat);

	if (what.call_dummy)
	  {
	    stop_stack_dummy = 1;
#ifdef HP_OS_BUG
	    trap_expected_after_continue = 1;
#endif
	  }

	switch (what.main_action)
	  {
	  case BPSTAT_WHAT_SET_LONGJMP_RESUME:
	    /* If we hit the breakpoint at longjmp, disable it for the
	       duration of this command.  Then, install a temporary
	       breakpoint at the target of the jmp_buf. */
	    disable_longjmp_breakpoint();
	    remove_breakpoints ();
	    breakpoints_inserted = 0;
	    if (!GET_LONGJMP_TARGET(&jmp_buf_pc)) goto keep_going;

	    /* Need to blow away step-resume breakpoint, as it
	       interferes with us */
	    if (step_resume_breakpoint != NULL)
	      {
		delete_breakpoint (step_resume_breakpoint);
		step_resume_breakpoint = NULL;
	      }
	    /* Not sure whether we need to blow this away too, but probably
	       it is like the step-resume breakpoint.  */
	    if (through_sigtramp_breakpoint != NULL)
	      {
		delete_breakpoint (through_sigtramp_breakpoint);
		through_sigtramp_breakpoint = NULL;
	      }

#if 0
	    /* FIXME - Need to implement nested temporary breakpoints */
	    if (step_over_calls > 0)
	      set_longjmp_resume_breakpoint(jmp_buf_pc,
					    get_current_frame());
	    else
#endif				/* 0 */
	      set_longjmp_resume_breakpoint(jmp_buf_pc, NULL);
	    handling_longjmp = 1; /* FIXME */
	    goto keep_going;

	  case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
	  case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
	    remove_breakpoints ();
	    breakpoints_inserted = 0;
#if 0
	    /* FIXME - Need to implement nested temporary breakpoints */
	    if (step_over_calls
		&& (FRAME_FP (get_current_frame ())
		    INNER_THAN step_frame_address))
	      {
		another_trap = 1;
		goto keep_going;
	      }
#endif				/* 0 */
	    disable_longjmp_breakpoint();
	    handling_longjmp = 0; /* FIXME */
	    if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
	      break;
	    /* else fallthrough */

	  case BPSTAT_WHAT_SINGLE:
	    if (breakpoints_inserted)
	      remove_breakpoints ();
	    breakpoints_inserted = 0;
	    another_trap = 1;
	    /* Still need to check other stuff, at least the case
	       where we are stepping and step out of the right range.  */
	    break;

	  case BPSTAT_WHAT_STOP_NOISY:
	    stop_print_frame = 1;

	    /* We are about to nuke the step_resume_breakpoint and
	       through_sigtramp_breakpoint via the cleanup chain, so
	       no need to worry about it here.  */

	    goto stop_stepping;

	  case BPSTAT_WHAT_STOP_SILENT:
	    stop_print_frame = 0;

	    /* We are about to nuke the step_resume_breakpoint and
	       through_sigtramp_breakpoint via the cleanup chain, so
	       no need to worry about it here.  */

	    goto stop_stepping;

	  case BPSTAT_WHAT_STEP_RESUME:
	    delete_breakpoint (step_resume_breakpoint);
	    step_resume_breakpoint = NULL;
	    break;

	  case BPSTAT_WHAT_THROUGH_SIGTRAMP:
	    if (through_sigtramp_breakpoint)
	      delete_breakpoint (through_sigtramp_breakpoint);
	    through_sigtramp_breakpoint = NULL;

	    /* If were waiting for a trap, hitting the step_resume_break
	       doesn't count as getting it.  */
	    if (trap_expected)
	      another_trap = 1;
	    break;

#ifdef SOLIB_ADD
	  case BPSTAT_WHAT_CHECK_SHLIBS:
	    {
	      extern int auto_solib_add;

	      /* Remove breakpoints, we eventually want to step over the
		 shlib event breakpoint, and SOLIB_ADD might adjust
		 breakpoint addresses via breakpoint_re_set.  */
	      if (breakpoints_inserted)
		remove_breakpoints ();
	      breakpoints_inserted = 0;

	      /* Check for any newly added shared libraries if we're
		 supposed to be adding them automatically.  */
	      if (auto_solib_add)
		{
		  /* Switch terminal for any messages produced by
		     breakpoint_re_set.  */
	          target_terminal_ours_for_output ();
		  SOLIB_ADD (NULL, 0, NULL);
		  re_enable_breakpoints_in_shlibs ();
	          target_terminal_inferior ();
		}

	      /* If requested, stop when the dynamic linker notifies
		 gdb of events.  This allows the user to get control
		 and place breakpoints in initializer routines for
		 dynamically loaded objects (among other things).  */
	      if (stop_on_solib_events)
		{
		  stop_print_frame = 0;
		  goto stop_stepping;
		}
	      else
		{
		  /* We want to step over this breakpoint, then keep going.  */
		  another_trap = 1;
		  break;
		}
	    }
#endif

	  case BPSTAT_WHAT_LAST:
	    /* Not a real code, but listed here to shut up gcc -Wall.  */

	  case BPSTAT_WHAT_KEEP_CHECKING:
	    break;
	  }
      }

      /* We come here if we hit a breakpoint but should not
	 stop for it.  Possibly we also were stepping
	 and should stop for that.  So fall through and
	 test for stepping.  But, if not stepping,
	 do not stop.  */

#ifndef CALL_DUMMY_BREAKPOINT_OFFSET
      /* This is the old way of detecting the end of the stack dummy.
	 An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
	 handled above.  As soon as we can test it on all of them, all
	 architectures should define it.  */

      /* If this is the breakpoint at the end of a stack dummy,
	 just stop silently, unless the user was doing an si/ni, in which
	 case she'd better know what she's doing.  */

      if (PC_IN_CALL_DUMMY (stop_pc, read_sp (), FRAME_FP (get_current_frame ()))
	  && !step_range_end)
	{
	  stop_print_frame = 0;
	  stop_stack_dummy = 1;
#ifdef HP_OS_BUG
	  trap_expected_after_continue = 1;
#endif
	  break;
	}
#endif /* No CALL_DUMMY_BREAKPOINT_OFFSET.  */

      if (step_resume_breakpoint)
	/* Having a step-resume breakpoint overrides anything
	   else having to do with stepping commands until
	   that breakpoint is reached.  */
	/* I'm not sure whether this needs to be check_sigtramp2 or
	   whether it could/should be keep_going.  */
	goto check_sigtramp2;

      if (step_range_end == 0)
	/* Likewise if we aren't even stepping.  */
	/* I'm not sure whether this needs to be check_sigtramp2 or
	   whether it could/should be keep_going.  */
	goto check_sigtramp2;

      /* If stepping through a line, keep going if still within it.  */
      if (stop_pc >= step_range_start
	  && stop_pc < step_range_end
#if 0
/* I haven't a clue what might trigger this clause, and it seems wrong anyway,
   so I've disabled it until someone complains.  -Stu 10/24/95 */

	  /* The step range might include the start of the
	     function, so if we are at the start of the
	     step range and either the stack or frame pointers
	     just changed, we've stepped outside */
	  && !(stop_pc == step_range_start
	       && FRAME_FP (get_current_frame ())
	       && (read_sp () INNER_THAN step_sp
		   || FRAME_FP (get_current_frame ()) != step_frame_address))
#endif
)
	{
	  /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
	     So definately need to check for sigtramp here.  */
	  goto check_sigtramp2;
	}

      /* We stepped out of the stepping range.  */

      /* We can't update step_sp every time through the loop, because
	 reading the stack pointer would slow down stepping too much.
	 But we can update it every time we leave the step range.  */
      update_step_sp = 1;

      /* Did we just take a signal?  */
      if (IN_SIGTRAMP (stop_pc, stop_func_name)
	  && !IN_SIGTRAMP (prev_pc, prev_func_name))
	{
	  /* We've just taken a signal; go until we are back to
	     the point where we took it and one more.  */

	  /* This code is needed at least in the following case:
	     The user types "next" and then a signal arrives (before
	     the "next" is done).  */

	  /* Note that if we are stopped at a breakpoint, then we need
	     the step_resume breakpoint to override any breakpoints at
	     the same location, so that we will still step over the
	     breakpoint even though the signal happened.  */

	  {
	    struct symtab_and_line sr_sal;

	    sr_sal.pc = prev_pc;
	    sr_sal.symtab = NULL;
	    sr_sal.line = 0;
	    /* We could probably be setting the frame to
	       step_frame_address; I don't think anyone thought to try it.  */
	    step_resume_breakpoint =
	      set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
	    if (breakpoints_inserted)
	      insert_breakpoints ();
	  }

	  /* If this is stepi or nexti, make sure that the stepping range
	     gets us past that instruction.  */
	  if (step_range_end == 1)
	    /* FIXME: Does this run afoul of the code below which, if
	       we step into the middle of a line, resets the stepping
	       range?  */
	    step_range_end = (step_range_start = prev_pc) + 1;

	  remove_breakpoints_on_following_step = 1;
	  goto keep_going;
	}

#if 0
      /* I disabled this test because it was too complicated and slow.  The
	 SKIP_PROLOGUE was especially slow, because it caused unnecessary
	 prologue examination on various architectures.  The code in the #else
	 clause has been tested on the Sparc, Mips, PA, and Power
	 architectures, so it's pretty likely to be correct.  -Stu 10/24/95 */

      /* See if we left the step range due to a subroutine call that
	 we should proceed to the end of.  */

      if (stop_func_start)
	{
	  struct symtab *s;

	  /* Do this after the IN_SIGTRAMP check; it might give
	     an error.  */
	  prologue_pc = stop_func_start;

	  /* Don't skip the prologue if this is assembly source */
	  s = find_pc_symtab (stop_pc);
	  if (s && s->language != language_asm)
	    SKIP_PROLOGUE (prologue_pc);
	}

      if ((/* Might be a non-recursive call.  If the symbols are missing
	      enough that stop_func_start == prev_func_start even though
	      they are really two functions, we will treat some calls as
	      jumps.  */
	   stop_func_start != prev_func_start

	   /* Might be a recursive call if either we have a prologue
	      or the call instruction itself saves the PC on the stack.  */
	   || prologue_pc != stop_func_start
	   || read_sp () != step_sp)
	  && (/* PC is completely out of bounds of any known objfiles.  Treat
		 like a subroutine call. */
	      ! stop_func_start

	      /* If we do a call, we will be at the start of a function...  */
	      || stop_pc == stop_func_start

	      /* ...except on the Alpha with -O (and also Irix 5 and
		 perhaps others), in which we might call the address
		 after the load of gp.  Since prologues don't contain
		 calls, we can't return to within one, and we don't
		 jump back into them, so this check is OK.  */

	      || stop_pc < prologue_pc

	      /* ...and if it is a leaf function, the prologue might
 		 consist of gp loading only, so the call transfers to
 		 the first instruction after the prologue.  */
 	      || (stop_pc == prologue_pc

		  /* Distinguish this from the case where we jump back
		     to the first instruction after the prologue,
		     within a function.  */
		   && stop_func_start != prev_func_start)

	      /* If we end up in certain places, it means we did a subroutine
		 call.  I'm not completely sure this is necessary now that we
		 have the above checks with stop_func_start (and now that
		 find_pc_partial_function is pickier).  */
	      || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, stop_func_name)

	      /* If none of the above apply, it is a jump within a function,
		 or a return from a subroutine.  The other case is longjmp,
		 which can no longer happen here as long as the
		 handling_longjmp stuff is working.  */
	      ))
#else
	/* This test is a much more streamlined, (but hopefully correct)
	   replacement for the code above.  It's been tested on the Sparc,
	   Mips, PA, and Power architectures with good results.  */

	if (stop_pc == stop_func_start /* Quick test */
	    || in_prologue (stop_pc, stop_func_start)
	    || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, stop_func_name)
	    || stop_func_start == 0)
#endif

	{
	  /* It's a subroutine call.  */

	  if (step_over_calls == 0)
	    {
	      /* I presume that step_over_calls is only 0 when we're
		 supposed to be stepping at the assembly language level
		 ("stepi").  Just stop.  */
	      stop_step = 1;
	      break;
	    }

	  if (step_over_calls > 0)
	    /* We're doing a "next".  */
	    goto step_over_function;

	  /* If we are in a function call trampoline (a stub between
	     the calling routine and the real function), locate the real
	     function.  That's what tells us (a) whether we want to step
	     into it at all, and (b) what prologue we want to run to
	     the end of, if we do step into it.  */
	  tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
	  if (tmp != 0)
	    stop_func_start = tmp;
	  else
	    {
	      tmp = DYNAMIC_TRAMPOLINE_NEXTPC (stop_pc);
	      if (tmp)
		{
		  struct symtab_and_line xxx;

		  xxx.pc = tmp;
		  xxx.symtab = NULL;
		  xxx.line = 0;
		  step_resume_breakpoint = 
		    set_momentary_breakpoint (xxx, NULL, bp_step_resume);
		  insert_breakpoints ();
		  goto keep_going;
		}
	    }

	  /* If we have line number information for the function we
	     are thinking of stepping into, step into it.

	     If there are several symtabs at that PC (e.g. with include
	     files), just want to know whether *any* of them have line
	     numbers.  find_pc_line handles this.  */
	  {
	    struct symtab_and_line tmp_sal;

	    tmp_sal = find_pc_line (stop_func_start, 0);
	    if (tmp_sal.line != 0)
	      goto step_into_function;
	  }

step_over_function:
	  /* A subroutine call has happened.  */
	  {
	    /* Set a special breakpoint after the return */
	    struct symtab_and_line sr_sal;
	    sr_sal.pc = 
	      ADDR_BITS_REMOVE
		(SAVED_PC_AFTER_CALL (get_current_frame ()));
	    sr_sal.symtab = NULL;
	    sr_sal.line = 0;
	    step_resume_breakpoint =
	      set_momentary_breakpoint (sr_sal, get_current_frame (),
					bp_step_resume);
	    step_resume_breakpoint->frame = step_frame_address;
	    if (breakpoints_inserted)
	      insert_breakpoints ();
	  }
	  goto keep_going;

step_into_function:
	  /* Subroutine call with source code we should not step over.
	     Do step to the first line of code in it.  */
	  {
	    struct symtab *s;

	    s = find_pc_symtab (stop_pc);
	    if (s && s->language != language_asm)
	      SKIP_PROLOGUE (stop_func_start);
	  }
	  sal = find_pc_line (stop_func_start, 0);
	  /* Use the step_resume_break to step until
	     the end of the prologue, even if that involves jumps
	     (as it seems to on the vax under 4.2).  */
	  /* If the prologue ends in the middle of a source line,
	     continue to the end of that source line (if it is still
	     within the function).  Otherwise, just go to end of prologue.  */
#ifdef PROLOGUE_FIRSTLINE_OVERLAP
	  /* no, don't either.  It skips any code that's
	     legitimately on the first line.  */
#else
	  if (sal.end && sal.pc != stop_func_start && sal.end < stop_func_end)
	    stop_func_start = sal.end;
#endif

	  if (stop_func_start == stop_pc)
	    {
	      /* We are already there: stop now.  */
	      stop_step = 1;
	      break;
	    }
	  else
	    /* Put the step-breakpoint there and go until there. */
	    {
	      struct symtab_and_line sr_sal;

	      sr_sal.pc = stop_func_start;
	      sr_sal.symtab = NULL;
	      sr_sal.line = 0;
	      /* Do not specify what the fp should be when we stop
		 since on some machines the prologue
		 is where the new fp value is established.  */
	      step_resume_breakpoint =
		set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
	      if (breakpoints_inserted)
		insert_breakpoints ();

	      /* And make sure stepping stops right away then.  */
	      step_range_end = step_range_start;
	    }
	  goto keep_going;
	}

      /* We've wandered out of the step range.  */

      sal = find_pc_line(stop_pc, 0);

      if (step_range_end == 1)
	{
	  /* It is stepi or nexti.  We always want to stop stepping after
	     one instruction.  */
	  stop_step = 1;
	  break;
	}

      /* If we're in the return path from a shared library trampoline,
	 we want to proceed through the trampoline when stepping.  */
      if (IN_SOLIB_RETURN_TRAMPOLINE(stop_pc, stop_func_name))
	{
	  CORE_ADDR tmp;

	  /* Determine where this trampoline returns.  */
	  tmp = SKIP_TRAMPOLINE_CODE (stop_pc);

	  /* Only proceed through if we know where it's going.  */
	  if (tmp)
	    {
	      /* And put the step-breakpoint there and go until there. */
	      struct symtab_and_line sr_sal;

	      sr_sal.pc = tmp;
	      sr_sal.symtab = NULL;
	      sr_sal.line = 0;
	      /* Do not specify what the fp should be when we stop
		 since on some machines the prologue
		 is where the new fp value is established.  */
	      step_resume_breakpoint =
		set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
	      if (breakpoints_inserted)
		insert_breakpoints ();

	      /* Restart without fiddling with the step ranges or
		 other state.  */
	      goto keep_going;
	    }
	}
	 
      if (sal.line == 0)
	{
	  /* We have no line number information.  That means to stop
	     stepping (does this always happen right after one instruction,
	     when we do "s" in a function with no line numbers,
	     or can this happen as a result of a return or longjmp?).  */
	  stop_step = 1;
	  break;
	}

      if (stop_pc == sal.pc
	  && (current_line != sal.line || current_symtab != sal.symtab))
	{
	  /* We are at the start of a different line.  So stop.  Note that
	     we don't stop if we step into the middle of a different line.
	     That is said to make things like for (;;) statements work
	     better.  */
	  stop_step = 1;
	  break;
	}

      /* We aren't done stepping.

	 Optimize by setting the stepping range to the line.
	 (We might not be in the original line, but if we entered a
	 new line in mid-statement, we continue stepping.  This makes 
	 things like for(;;) statements work better.)  */

      if (stop_func_end && sal.end >= stop_func_end)
	{
	  /* If this is the last line of the function, don't keep stepping
	     (it would probably step us out of the function).
	     This is particularly necessary for a one-line function,
	     in which after skipping the prologue we better stop even though
	     we will be in mid-line.  */
	  stop_step = 1;
	  break;
	}
      step_range_start = sal.pc;
      step_range_end = sal.end;
      goto keep_going;

    check_sigtramp2:
      if (trap_expected
	  && IN_SIGTRAMP (stop_pc, stop_func_name)
	  && !IN_SIGTRAMP (prev_pc, prev_func_name))
	{
	  /* What has happened here is that we have just stepped the inferior
	     with a signal (because it is a signal which shouldn't make
	     us stop), thus stepping into sigtramp.

	     So we need to set a step_resume_break_address breakpoint
	     and continue until we hit it, and then step.  FIXME: This should
	     be more enduring than a step_resume breakpoint; we should know
	     that we will later need to keep going rather than re-hitting
	     the breakpoint here (see testsuite/gdb.t06/signals.exp where
	     it says "exceedingly difficult").  */
	  struct symtab_and_line sr_sal;

	  sr_sal.pc = prev_pc;
	  sr_sal.symtab = NULL;
	  sr_sal.line = 0;
	  /* We perhaps could set the frame if we kept track of what
	     the frame corresponding to prev_pc was.  But we don't,
	     so don't.  */
	  through_sigtramp_breakpoint =
	    set_momentary_breakpoint (sr_sal, NULL, bp_through_sigtramp);
	  if (breakpoints_inserted)
	    insert_breakpoints ();

	  remove_breakpoints_on_following_step = 1;
	  another_trap = 1;
	}

    keep_going:
      /* Come to this label when you need to resume the inferior.
	 It's really much cleaner to do a goto than a maze of if-else
	 conditions.  */

      /* Save the pc before execution, to compare with pc after stop.  */
      prev_pc = read_pc ();	/* Might have been DECR_AFTER_BREAK */
      prev_func_start = stop_func_start; /* Ok, since if DECR_PC_AFTER
					  BREAK is defined, the
					  original pc would not have
					  been at the start of a
					  function. */
      prev_func_name = stop_func_name;

      if (update_step_sp)
	step_sp = read_sp ();
      update_step_sp = 0;

      /* If we did not do break;, it means we should keep
	 running the inferior and not return to debugger.  */

      if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
	{
	  /* We took a signal (which we are supposed to pass through to
	     the inferior, else we'd have done a break above) and we
	     haven't yet gotten our trap.  Simply continue.  */
	  resume (CURRENTLY_STEPPING (), stop_signal);
	}
      else
	{
	  /* Either the trap was not expected, but we are continuing
	     anyway (the user asked that this signal be passed to the
	     child)
	       -- or --
	     The signal was SIGTRAP, e.g. it was our signal, but we
	     decided we should resume from it.

	     We're going to run this baby now!

	     Insert breakpoints now, unless we are trying
	     to one-proceed past a breakpoint.  */
	  /* If we've just finished a special step resume and we don't
	     want to hit a breakpoint, pull em out.  */
	  if (step_resume_breakpoint == NULL
	      && through_sigtramp_breakpoint == NULL
	      && remove_breakpoints_on_following_step)
	    {
	      remove_breakpoints_on_following_step = 0;
	      remove_breakpoints ();
	      breakpoints_inserted = 0;
	    }
	  else if (!breakpoints_inserted &&
		   (through_sigtramp_breakpoint != NULL || !another_trap))
	    {
	      breakpoints_failed = insert_breakpoints ();
	      if (breakpoints_failed)
		break;
	      breakpoints_inserted = 1;
	    }

	  trap_expected = another_trap;

	  if (stop_signal == TARGET_SIGNAL_TRAP)
	    stop_signal = TARGET_SIGNAL_0;

#ifdef SHIFT_INST_REGS
	  /* I'm not sure when this following segment applies.  I do know, now,
	     that we shouldn't rewrite the regs when we were stopped by a
	     random signal from the inferior process.  */
	  /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
	     (this is only used on the 88k).  */

          if (!bpstat_explains_signal (stop_bpstat)
	      && (stop_signal != TARGET_SIGNAL_CHLD) 
              && !stopped_by_random_signal)
            SHIFT_INST_REGS();
#endif /* SHIFT_INST_REGS */

	  resume (CURRENTLY_STEPPING (), stop_signal);
	}
    }

 stop_stepping:
  if (target_has_execution)
    {
      /* Assuming the inferior still exists, set these up for next
	 time, just like we did above if we didn't break out of the
	 loop.  */
      prev_pc = read_pc ();
      prev_func_start = stop_func_start;
      prev_func_name = stop_func_name;
    }
  do_cleanups (old_cleanups);
}

/* Here to return control to GDB when the inferior stops for real.
   Print appropriate messages, remove breakpoints, give terminal our modes.

   STOP_PRINT_FRAME nonzero means print the executing frame
   (pc, function, args, file, line number and line text).
   BREAKPOINTS_FAILED nonzero means stop was due to error
   attempting to insert breakpoints.  */

void
normal_stop ()
{
  /* Make sure that the current_frame's pc is correct.  This
     is a correction for setting up the frame info before doing
     DECR_PC_AFTER_BREAK */
  if (target_has_execution && get_current_frame())
    (get_current_frame ())->pc = read_pc ();
  
  if (breakpoints_failed)
    {
      target_terminal_ours_for_output ();
      print_sys_errmsg ("ptrace", breakpoints_failed);
      printf_filtered ("Stopped; cannot insert breakpoints.\n\
The same program may be running in another process.\n");
    }

  if (target_has_execution && breakpoints_inserted)
    if (remove_breakpoints ())
      {
	target_terminal_ours_for_output ();
	printf_filtered ("Cannot remove breakpoints because program is no longer writable.\n\
It might be running in another process.\n\
Further execution is probably impossible.\n");
      }

  breakpoints_inserted = 0;

  /* Delete the breakpoint we stopped at, if it wants to be deleted.
     Delete any breakpoint that is to be deleted at the next stop.  */

  breakpoint_auto_delete (stop_bpstat);

  /* If an auto-display called a function and that got a signal,
     delete that auto-display to avoid an infinite recursion.  */

  if (stopped_by_random_signal)
    disable_current_display ();

  if (step_multi && stop_step)
    goto done;

  target_terminal_ours ();

  if (stop_bpstat
      && stop_bpstat->breakpoint_at
      && stop_bpstat->breakpoint_at->type == bp_shlib_event)
    printf_filtered ("Stopped due to shared library event\n");

  /* Look up the hook_stop and run it if it exists.  */

  if (stop_command->hook)
    {
      catch_errors (hook_stop_stub, (char *)stop_command->hook,
		    "Error while running hook_stop:\n", RETURN_MASK_ALL);
    }

  if (!target_has_stack)
    goto done;

  /* Select innermost stack frame except on return from a stack dummy routine,
     or if the program has exited.  Print it without a level number if
     we have changed functions or hit a breakpoint.  Print source line
     if we have one.  */
  if (!stop_stack_dummy)
    {
      select_frame (get_current_frame (), 0);

      if (stop_print_frame)
	{
	  int source_only;

	  source_only = bpstat_print (stop_bpstat);
	  source_only = source_only ||
	        (   stop_step
		 && step_frame_address == FRAME_FP (get_current_frame ())
		 && step_start_function == find_pc_function (stop_pc));

          print_stack_frame (selected_frame, -1, source_only? -1: 1);

	  /* Display the auto-display expressions.  */
	  do_displays ();
	}
    }

  /* Save the function value return registers, if we care.
     We might be about to restore their previous contents.  */
  if (proceed_to_finish)
    read_register_bytes (0, stop_registers, REGISTER_BYTES);

  if (stop_stack_dummy)
    {
      /* Pop the empty frame that contains the stack dummy.
         POP_FRAME ends with a setting of the current frame, so we
	 can use that next. */
      POP_FRAME;
      /* Set stop_pc to what it was before we called the function.  Can't rely
	 on restore_inferior_status because that only gets called if we don't
	 stop in the called function.  */
      stop_pc = read_pc();
      select_frame (get_current_frame (), 0);
    }
 done:
  annotate_stopped ();
}

static int
hook_stop_stub (cmd)
     char *cmd;
{
  execute_user_command ((struct cmd_list_element *)cmd, 0);
  return (0);
}

int signal_stop_state (signo)
     int signo;
{
  return signal_stop[signo];
}

int signal_print_state (signo)
     int signo;
{
  return signal_print[signo];
}

int signal_pass_state (signo)
     int signo;
{
  return signal_program[signo];
}

static void
sig_print_header ()
{
  printf_filtered ("\
Signal        Stop\tPrint\tPass to program\tDescription\n");
}

static void
sig_print_info (oursig)
     enum target_signal oursig;
{
  char *name = target_signal_to_name (oursig);
  printf_filtered ("%s", name);
  printf_filtered ("%*.*s ", 13 - strlen (name), 13 - strlen (name),
		   "                 ");
  printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
  printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
  printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
  printf_filtered ("%s\n", target_signal_to_string (oursig));
}

/* Specify how various signals in the inferior should be handled.  */

static void
handle_command (args, from_tty)
     char *args;
     int from_tty;
{
  char **argv;
  int digits, wordlen;
  int sigfirst, signum, siglast;
  enum target_signal oursig;
  int allsigs;
  int nsigs;
  unsigned char *sigs;
  struct cleanup *old_chain;

  if (args == NULL)
    {
      error_no_arg ("signal to handle");
    }

  /* Allocate and zero an array of flags for which signals to handle. */

  nsigs = (int)TARGET_SIGNAL_LAST;
  sigs = (unsigned char *) alloca (nsigs);
  memset (sigs, 0, nsigs);

  /* Break the command line up into args. */

  argv = buildargv (args);
  if (argv == NULL)
    {
      nomem (0);
    }
  old_chain = make_cleanup (freeargv, (char *) argv);

  /* Walk through the args, looking for signal oursigs, signal names, and
     actions.  Signal numbers and signal names may be interspersed with
     actions, with the actions being performed for all signals cumulatively
     specified.  Signal ranges can be specified as <LOW>-<HIGH>. */

  while (*argv != NULL)
    {
      wordlen = strlen (*argv);
      for (digits = 0; isdigit ((*argv)[digits]); digits++) {;}
      allsigs = 0;
      sigfirst = siglast = -1;

      if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
	{
	  /* Apply action to all signals except those used by the
	     debugger.  Silently skip those. */
	  allsigs = 1;
	  sigfirst = 0;
	  siglast = nsigs - 1;
	}
      else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
	{
	  SET_SIGS (nsigs, sigs, signal_stop);
	  SET_SIGS (nsigs, sigs, signal_print);
	}
      else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
	{
	  UNSET_SIGS (nsigs, sigs, signal_program);
	}
      else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
	{
	  SET_SIGS (nsigs, sigs, signal_print);
	}
      else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
	{
	  SET_SIGS (nsigs, sigs, signal_program);
	}
      else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
	{
	  UNSET_SIGS (nsigs, sigs, signal_stop);
	}
      else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
	{
	  SET_SIGS (nsigs, sigs, signal_program);
	}
      else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
	{
	  UNSET_SIGS (nsigs, sigs, signal_print);
	  UNSET_SIGS (nsigs, sigs, signal_stop);
	}
      else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
	{
	  UNSET_SIGS (nsigs, sigs, signal_program);
	}
      else if (digits > 0)
	{
	  /* It is numeric.  The numeric signal refers to our own internal
	     signal numbering from target.h, not to host/target signal number.
	     This is a feature; users really should be using symbolic names
	     anyway, and the common ones like SIGHUP, SIGINT, SIGALRM, etc.
	     will work right anyway.  */

	  sigfirst = siglast = (int) target_signal_from_command (atoi (*argv));
	  if ((*argv)[digits] == '-')
	    {
	      siglast =
		(int) target_signal_from_command (atoi ((*argv) + digits + 1));
	    }
	  if (sigfirst > siglast)
	    {
	      /* Bet he didn't figure we'd think of this case... */
	      signum = sigfirst;
	      sigfirst = siglast;
	      siglast = signum;
	    }
	}
      else
	{
	  oursig = target_signal_from_name (*argv);
	  if (oursig != TARGET_SIGNAL_UNKNOWN)
	    {
	      sigfirst = siglast = (int)oursig;
	    }
	  else
	    {
	      /* Not a number and not a recognized flag word => complain.  */
	      error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
	    }
	}

      /* If any signal numbers or symbol names were found, set flags for
	 which signals to apply actions to. */

      for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
	{
	  switch ((enum target_signal)signum)
	    {
	      case TARGET_SIGNAL_TRAP:
	      case TARGET_SIGNAL_INT:
	        if (!allsigs && !sigs[signum])
		  {
		    if (query ("%s is used by the debugger.\n\
Are you sure you want to change it? ",
			       target_signal_to_name
			       ((enum target_signal)signum)))
		      {
			sigs[signum] = 1;
		      }
		    else
		      {
			printf_unfiltered ("Not confirmed, unchanged.\n");
			gdb_flush (gdb_stdout);
		      }
		  }
		break;
	      case TARGET_SIGNAL_0:
	      case TARGET_SIGNAL_DEFAULT:
	      case TARGET_SIGNAL_UNKNOWN:
		/* Make sure that "all" doesn't print these.  */
		break;
	      default:
		sigs[signum] = 1;
		break;
	    }
	}

      argv++;
    }

  target_notice_signals(inferior_pid);

  if (from_tty)
    {
      /* Show the results.  */
      sig_print_header ();
      for (signum = 0; signum < nsigs; signum++)
	{
	  if (sigs[signum])
	    {
	      sig_print_info (signum);
	    }
	}
    }

  do_cleanups (old_chain);
}

/* Print current contents of the tables set by the handle command.
   It is possible we should just be printing signals actually used
   by the current target (but for things to work right when switching
   targets, all signals should be in the signal tables).  */

static void
signals_info (signum_exp, from_tty)
     char *signum_exp;
     int from_tty;
{
  enum target_signal oursig;
  sig_print_header ();

  if (signum_exp)
    {
      /* First see if this is a symbol name.  */
      oursig = target_signal_from_name (signum_exp);
      if (oursig == TARGET_SIGNAL_UNKNOWN)
	{
	  /* No, try numeric.  */
	  oursig =
	    target_signal_from_command (parse_and_eval_address (signum_exp));
	}
      sig_print_info (oursig);
      return;
    }

  printf_filtered ("\n");
  /* These ugly casts brought to you by the native VAX compiler.  */
  for (oursig = TARGET_SIGNAL_FIRST;
       (int)oursig < (int)TARGET_SIGNAL_LAST;
       oursig = (enum target_signal)((int)oursig + 1))
    {
      QUIT;

      if (oursig != TARGET_SIGNAL_UNKNOWN
	  && oursig != TARGET_SIGNAL_DEFAULT
	  && oursig != TARGET_SIGNAL_0)
	sig_print_info (oursig);
    }

  printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
}

/* Save all of the information associated with the inferior<==>gdb
   connection.  INF_STATUS is a pointer to a "struct inferior_status"
   (defined in inferior.h).  */

void
save_inferior_status (inf_status, restore_stack_info)
     struct inferior_status *inf_status;
     int restore_stack_info;
{
  inf_status->stop_signal = stop_signal;
  inf_status->stop_pc = stop_pc;
  inf_status->stop_step = stop_step;
  inf_status->stop_stack_dummy = stop_stack_dummy;
  inf_status->stopped_by_random_signal = stopped_by_random_signal;
  inf_status->trap_expected = trap_expected;
  inf_status->step_range_start = step_range_start;
  inf_status->step_range_end = step_range_end;
  inf_status->step_frame_address = step_frame_address;
  inf_status->step_over_calls = step_over_calls;
  inf_status->stop_after_trap = stop_after_trap;
  inf_status->stop_soon_quietly = stop_soon_quietly;
  /* Save original bpstat chain here; replace it with copy of chain. 
     If caller's caller is walking the chain, they'll be happier if we
     hand them back the original chain when restore_i_s is called.  */
  inf_status->stop_bpstat = stop_bpstat;
  stop_bpstat = bpstat_copy (stop_bpstat);
  inf_status->breakpoint_proceeded = breakpoint_proceeded;
  inf_status->restore_stack_info = restore_stack_info;
  inf_status->proceed_to_finish = proceed_to_finish;
  
  memcpy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);

  read_register_bytes (0, inf_status->registers, REGISTER_BYTES);

  record_selected_frame (&(inf_status->selected_frame_address),
			 &(inf_status->selected_level));
  return;
}

struct restore_selected_frame_args {
  CORE_ADDR frame_address;
  int level;
};

static int restore_selected_frame PARAMS ((char *));

/* Restore the selected frame.  args is really a struct
   restore_selected_frame_args * (declared as char * for catch_errors)
   telling us what frame to restore.  Returns 1 for success, or 0 for
   failure.  An error message will have been printed on error.  */

static int
restore_selected_frame (args)
     char *args;
{
  struct restore_selected_frame_args *fr =
    (struct restore_selected_frame_args *) args;
  struct frame_info *frame;
  int level = fr->level;

  frame = find_relative_frame (get_current_frame (), &level);

  /* If inf_status->selected_frame_address is NULL, there was no
     previously selected frame.  */
  if (frame == NULL ||
      FRAME_FP (frame) != fr->frame_address ||
      level != 0)
    {
      warning ("Unable to restore previously selected frame.\n");
      return 0;
    }
  select_frame (frame, fr->level);
  return(1);
}

void
restore_inferior_status (inf_status)
     struct inferior_status *inf_status;
{
  stop_signal = inf_status->stop_signal;
  stop_pc = inf_status->stop_pc;
  stop_step = inf_status->stop_step;
  stop_stack_dummy = inf_status->stop_stack_dummy;
  stopped_by_random_signal = inf_status->stopped_by_random_signal;
  trap_expected = inf_status->trap_expected;
  step_range_start = inf_status->step_range_start;
  step_range_end = inf_status->step_range_end;
  step_frame_address = inf_status->step_frame_address;
  step_over_calls = inf_status->step_over_calls;
  stop_after_trap = inf_status->stop_after_trap;
  stop_soon_quietly = inf_status->stop_soon_quietly;
  bpstat_clear (&stop_bpstat);
  stop_bpstat = inf_status->stop_bpstat;
  breakpoint_proceeded = inf_status->breakpoint_proceeded;
  proceed_to_finish = inf_status->proceed_to_finish;

  memcpy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);

  /* The inferior can be gone if the user types "print exit(0)"
     (and perhaps other times).  */
  if (target_has_execution)
    write_register_bytes (0, inf_status->registers, REGISTER_BYTES);

  /* The inferior can be gone if the user types "print exit(0)"
     (and perhaps other times).  */

  /* FIXME: If we are being called after stopping in a function which
     is called from gdb, we should not be trying to restore the
     selected frame; it just prints a spurious error message (The
     message is useful, however, in detecting bugs in gdb (like if gdb
     clobbers the stack)).  In fact, should we be restoring the
     inferior status at all in that case?  .  */

  if (target_has_stack && inf_status->restore_stack_info)
    {
      struct restore_selected_frame_args fr;
      fr.level = inf_status->selected_level;
      fr.frame_address = inf_status->selected_frame_address;
      /* The point of catch_errors is that if the stack is clobbered,
	 walking the stack might encounter a garbage pointer and error()
	 trying to dereference it.  */
      if (catch_errors (restore_selected_frame, &fr,
			"Unable to restore previously selected frame:\n",
			RETURN_MASK_ERROR) == 0)
	/* Error in restoring the selected frame.  Select the innermost
	   frame.  */
	select_frame (get_current_frame (), 0);
    }
}


void
_initialize_infrun ()
{
  register int i;
  register int numsigs;

  add_info ("signals", signals_info,
	    "What debugger does when program gets various signals.\n\
Specify a signal as argument to print info on that signal only.");
  add_info_alias ("handle", "signals", 0);

  add_com ("handle", class_run, handle_command,
	   concat ("Specify how to handle a signal.\n\
Args are signals and actions to apply to those signals.\n\
Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
from 1-15 are allowed for compatibility with old versions of GDB.\n\
Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
The special arg \"all\" is recognized to mean all signals except those\n\
used by the debugger, typically SIGTRAP and SIGINT.\n",
"Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
Stop means reenter debugger if this signal happens (implies print).\n\
Print means print a message if this signal happens.\n\
Pass means let program see this signal; otherwise program doesn't know.\n\
Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
Pass and Stop may be combined.", NULL));

  stop_command = add_cmd ("stop", class_obscure, not_just_help_class_command,
	   "There is no `stop' command, but you can set a hook on `stop'.\n\
This allows you to set a list of commands to be run each time execution\n\
of the program stops.", &cmdlist);

  numsigs = (int)TARGET_SIGNAL_LAST;
  signal_stop = (unsigned char *)    
    xmalloc (sizeof (signal_stop[0]) * numsigs);
  signal_print = (unsigned char *)
    xmalloc (sizeof (signal_print[0]) * numsigs);
  signal_program = (unsigned char *)
    xmalloc (sizeof (signal_program[0]) * numsigs);
  for (i = 0; i < numsigs; i++)
    {
      signal_stop[i] = 1;
      signal_print[i] = 1;
      signal_program[i] = 1;
    }

  /* Signals caused by debugger's own actions
     should not be given to the program afterwards.  */
  signal_program[TARGET_SIGNAL_TRAP] = 0;
  signal_program[TARGET_SIGNAL_INT] = 0;

  /* Signals that are not errors should not normally enter the debugger.  */
  signal_stop[TARGET_SIGNAL_ALRM] = 0;
  signal_print[TARGET_SIGNAL_ALRM] = 0;
  signal_stop[TARGET_SIGNAL_VTALRM] = 0;
  signal_print[TARGET_SIGNAL_VTALRM] = 0;
  signal_stop[TARGET_SIGNAL_PROF] = 0;
  signal_print[TARGET_SIGNAL_PROF] = 0;
  signal_stop[TARGET_SIGNAL_CHLD] = 0;
  signal_print[TARGET_SIGNAL_CHLD] = 0;
  signal_stop[TARGET_SIGNAL_IO] = 0;
  signal_print[TARGET_SIGNAL_IO] = 0;
  signal_stop[TARGET_SIGNAL_POLL] = 0;
  signal_print[TARGET_SIGNAL_POLL] = 0;
  signal_stop[TARGET_SIGNAL_URG] = 0;
  signal_print[TARGET_SIGNAL_URG] = 0;

#ifdef SOLIB_ADD
  add_show_from_set
    (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
                  (char *) &stop_on_solib_events,
		  "Set stopping for shared library events.\n\
If nonzero, gdb will give control to the user when the dynamic linker\n\
notifies gdb of shared library events.  The most common event of interest\n\
to the user would be loading/unloading of a new library.\n",
                  &setlist),
     &showlist);
#endif
}