summaryrefslogtreecommitdiff
path: root/gdb/ia64-tdep.c
blob: e9464e1de0f41858065e16447df479dc74828854 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
/* Target-dependent code for the IA-64 for GDB, the GNU debugger.

   Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
   2009 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "inferior.h"
#include "gdbcore.h"
#include "arch-utils.h"
#include "floatformat.h"
#include "gdbtypes.h"
#include "regcache.h"
#include "reggroups.h"
#include "frame.h"
#include "frame-base.h"
#include "frame-unwind.h"
#include "doublest.h"
#include "value.h"
#include "gdb_assert.h"
#include "objfiles.h"
#include "elf/common.h"		/* for DT_PLTGOT value */
#include "elf-bfd.h"
#include "dis-asm.h"
#include "infcall.h"
#include "osabi.h"
#include "ia64-tdep.h"
#include "cp-abi.h"

#ifdef HAVE_LIBUNWIND_IA64_H
#include "elf/ia64.h"           /* for PT_IA_64_UNWIND value */
#include "libunwind-frame.h"
#include "libunwind-ia64.h"

/* Note: KERNEL_START is supposed to be an address which is not going
         to ever contain any valid unwind info.  For ia64 linux, the choice
         of 0xc000000000000000 is fairly safe since that's uncached space.
 
         We use KERNEL_START as follows: after obtaining the kernel's
         unwind table via getunwind(), we project its unwind data into
         address-range KERNEL_START-(KERNEL_START+ktab_size) and then
         when ia64_access_mem() sees a memory access to this
         address-range, we redirect it to ktab instead.

         None of this hackery is needed with a modern kernel/libcs
         which uses the kernel virtual DSO to provide access to the
         kernel's unwind info.  In that case, ktab_size remains 0 and
         hence the value of KERNEL_START doesn't matter.  */

#define KERNEL_START 0xc000000000000000ULL

static size_t ktab_size = 0;
struct ia64_table_entry
  {
    uint64_t start_offset;
    uint64_t end_offset;
    uint64_t info_offset;
  };

static struct ia64_table_entry *ktab = NULL;

#endif

/* An enumeration of the different IA-64 instruction types.  */

typedef enum instruction_type
{
  A,			/* Integer ALU ;    I-unit or M-unit */
  I,			/* Non-ALU integer; I-unit */
  M,			/* Memory ;         M-unit */
  F,			/* Floating-point ; F-unit */
  B,			/* Branch ;         B-unit */
  L,			/* Extended (L+X) ; I-unit */
  X,			/* Extended (L+X) ; I-unit */
  undefined		/* undefined or reserved */
} instruction_type;

/* We represent IA-64 PC addresses as the value of the instruction
   pointer or'd with some bit combination in the low nibble which
   represents the slot number in the bundle addressed by the
   instruction pointer.  The problem is that the Linux kernel
   multiplies its slot numbers (for exceptions) by one while the
   disassembler multiplies its slot numbers by 6.  In addition, I've
   heard it said that the simulator uses 1 as the multiplier.
   
   I've fixed the disassembler so that the bytes_per_line field will
   be the slot multiplier.  If bytes_per_line comes in as zero, it
   is set to six (which is how it was set up initially). -- objdump
   displays pretty disassembly dumps with this value.  For our purposes,
   we'll set bytes_per_line to SLOT_MULTIPLIER. This is okay since we
   never want to also display the raw bytes the way objdump does. */

#define SLOT_MULTIPLIER 1

/* Length in bytes of an instruction bundle */

#define BUNDLE_LEN 16

/* See the saved memory layout comment for ia64_memory_insert_breakpoint.  */

#if BREAKPOINT_MAX < BUNDLE_LEN - 2
# error "BREAKPOINT_MAX < BUNDLE_LEN - 2"
#endif

static gdbarch_init_ftype ia64_gdbarch_init;

static gdbarch_register_name_ftype ia64_register_name;
static gdbarch_register_type_ftype ia64_register_type;
static gdbarch_breakpoint_from_pc_ftype ia64_breakpoint_from_pc;
static gdbarch_skip_prologue_ftype ia64_skip_prologue;
static struct type *is_float_or_hfa_type (struct type *t);
static CORE_ADDR ia64_find_global_pointer (struct gdbarch *gdbarch,
					   CORE_ADDR faddr);

#define NUM_IA64_RAW_REGS 462

static int sp_regnum = IA64_GR12_REGNUM;
static int fp_regnum = IA64_VFP_REGNUM;
static int lr_regnum = IA64_VRAP_REGNUM;

/* NOTE: we treat the register stack registers r32-r127 as pseudo-registers because
   they may not be accessible via the ptrace register get/set interfaces.  */
enum pseudo_regs { FIRST_PSEUDO_REGNUM = NUM_IA64_RAW_REGS, VBOF_REGNUM = IA64_NAT127_REGNUM + 1, V32_REGNUM, 
		   V127_REGNUM = V32_REGNUM + 95, 
		   VP0_REGNUM, VP16_REGNUM = VP0_REGNUM + 16, VP63_REGNUM = VP0_REGNUM + 63, LAST_PSEUDO_REGNUM };

/* Array of register names; There should be ia64_num_regs strings in
   the initializer.  */

static char *ia64_register_names[] = 
{ "r0",   "r1",   "r2",   "r3",   "r4",   "r5",   "r6",   "r7",
  "r8",   "r9",   "r10",  "r11",  "r12",  "r13",  "r14",  "r15",
  "r16",  "r17",  "r18",  "r19",  "r20",  "r21",  "r22",  "r23",
  "r24",  "r25",  "r26",  "r27",  "r28",  "r29",  "r30",  "r31",
  "",     "",     "",     "",     "",     "",     "",     "",
  "",     "",     "",     "",     "",     "",     "",     "",
  "",     "",     "",     "",     "",     "",     "",     "",
  "",     "",     "",     "",     "",     "",     "",     "",
  "",     "",     "",     "",     "",     "",     "",     "",
  "",     "",     "",     "",     "",     "",     "",     "",
  "",     "",     "",     "",     "",     "",     "",     "",
  "",     "",     "",     "",     "",     "",     "",     "",
  "",     "",     "",     "",     "",     "",     "",     "",
  "",     "",     "",     "",     "",     "",     "",     "",
  "",     "",     "",     "",     "",     "",     "",     "",
  "",     "",     "",     "",     "",     "",     "",     "",

  "f0",   "f1",   "f2",   "f3",   "f4",   "f5",   "f6",   "f7",
  "f8",   "f9",   "f10",  "f11",  "f12",  "f13",  "f14",  "f15",
  "f16",  "f17",  "f18",  "f19",  "f20",  "f21",  "f22",  "f23",
  "f24",  "f25",  "f26",  "f27",  "f28",  "f29",  "f30",  "f31",
  "f32",  "f33",  "f34",  "f35",  "f36",  "f37",  "f38",  "f39",
  "f40",  "f41",  "f42",  "f43",  "f44",  "f45",  "f46",  "f47",
  "f48",  "f49",  "f50",  "f51",  "f52",  "f53",  "f54",  "f55",
  "f56",  "f57",  "f58",  "f59",  "f60",  "f61",  "f62",  "f63",
  "f64",  "f65",  "f66",  "f67",  "f68",  "f69",  "f70",  "f71",
  "f72",  "f73",  "f74",  "f75",  "f76",  "f77",  "f78",  "f79",
  "f80",  "f81",  "f82",  "f83",  "f84",  "f85",  "f86",  "f87",
  "f88",  "f89",  "f90",  "f91",  "f92",  "f93",  "f94",  "f95",
  "f96",  "f97",  "f98",  "f99",  "f100", "f101", "f102", "f103",
  "f104", "f105", "f106", "f107", "f108", "f109", "f110", "f111",
  "f112", "f113", "f114", "f115", "f116", "f117", "f118", "f119",
  "f120", "f121", "f122", "f123", "f124", "f125", "f126", "f127",

  "",     "",     "",     "",     "",     "",     "",     "",
  "",     "",     "",     "",     "",     "",     "",     "",
  "",     "",     "",     "",     "",     "",     "",     "",
  "",     "",     "",     "",     "",     "",     "",     "",
  "",     "",     "",     "",     "",     "",     "",     "",
  "",     "",     "",     "",     "",     "",     "",     "",
  "",     "",     "",     "",     "",     "",     "",     "",
  "",     "",     "",     "",     "",     "",     "",     "",

  "b0",   "b1",   "b2",   "b3",   "b4",   "b5",   "b6",   "b7",

  "vfp", "vrap",

  "pr", "ip", "psr", "cfm",

  "kr0",   "kr1",   "kr2",   "kr3",   "kr4",   "kr5",   "kr6",   "kr7",
  "", "", "", "", "", "", "", "",
  "rsc", "bsp", "bspstore", "rnat",
  "", "fcr", "", "",
  "eflag", "csd", "ssd", "cflg", "fsr", "fir", "fdr",  "",
  "ccv", "", "", "", "unat", "", "", "",
  "fpsr", "", "", "", "itc",
  "", "", "", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", "", "",
  "pfs", "lc", "ec",
  "", "", "", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", "", "", "",
  "", "", "", "", "", "", "", "", "", "",
  "",
  "nat0",  "nat1",  "nat2",  "nat3",  "nat4",  "nat5",  "nat6",  "nat7",
  "nat8",  "nat9",  "nat10", "nat11", "nat12", "nat13", "nat14", "nat15",
  "nat16", "nat17", "nat18", "nat19", "nat20", "nat21", "nat22", "nat23",
  "nat24", "nat25", "nat26", "nat27", "nat28", "nat29", "nat30", "nat31",
  "nat32", "nat33", "nat34", "nat35", "nat36", "nat37", "nat38", "nat39",
  "nat40", "nat41", "nat42", "nat43", "nat44", "nat45", "nat46", "nat47",
  "nat48", "nat49", "nat50", "nat51", "nat52", "nat53", "nat54", "nat55",
  "nat56", "nat57", "nat58", "nat59", "nat60", "nat61", "nat62", "nat63",
  "nat64", "nat65", "nat66", "nat67", "nat68", "nat69", "nat70", "nat71",
  "nat72", "nat73", "nat74", "nat75", "nat76", "nat77", "nat78", "nat79",
  "nat80", "nat81", "nat82", "nat83", "nat84", "nat85", "nat86", "nat87",
  "nat88", "nat89", "nat90", "nat91", "nat92", "nat93", "nat94", "nat95",
  "nat96", "nat97", "nat98", "nat99", "nat100","nat101","nat102","nat103",
  "nat104","nat105","nat106","nat107","nat108","nat109","nat110","nat111",
  "nat112","nat113","nat114","nat115","nat116","nat117","nat118","nat119",
  "nat120","nat121","nat122","nat123","nat124","nat125","nat126","nat127",

  "bof",
  
  "r32",  "r33",  "r34",  "r35",  "r36",  "r37",  "r38",  "r39",   
  "r40",  "r41",  "r42",  "r43",  "r44",  "r45",  "r46",  "r47",
  "r48",  "r49",  "r50",  "r51",  "r52",  "r53",  "r54",  "r55",
  "r56",  "r57",  "r58",  "r59",  "r60",  "r61",  "r62",  "r63",
  "r64",  "r65",  "r66",  "r67",  "r68",  "r69",  "r70",  "r71",
  "r72",  "r73",  "r74",  "r75",  "r76",  "r77",  "r78",  "r79",
  "r80",  "r81",  "r82",  "r83",  "r84",  "r85",  "r86",  "r87",
  "r88",  "r89",  "r90",  "r91",  "r92",  "r93",  "r94",  "r95",
  "r96",  "r97",  "r98",  "r99",  "r100", "r101", "r102", "r103",
  "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
  "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
  "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",

  "p0",   "p1",   "p2",   "p3",   "p4",   "p5",   "p6",   "p7",
  "p8",   "p9",   "p10",  "p11",  "p12",  "p13",  "p14",  "p15",
  "p16",  "p17",  "p18",  "p19",  "p20",  "p21",  "p22",  "p23",
  "p24",  "p25",  "p26",  "p27",  "p28",  "p29",  "p30",  "p31",
  "p32",  "p33",  "p34",  "p35",  "p36",  "p37",  "p38",  "p39",
  "p40",  "p41",  "p42",  "p43",  "p44",  "p45",  "p46",  "p47",
  "p48",  "p49",  "p50",  "p51",  "p52",  "p53",  "p54",  "p55",
  "p56",  "p57",  "p58",  "p59",  "p60",  "p61",  "p62",  "p63",
};

struct ia64_frame_cache
{
  CORE_ADDR base;       /* frame pointer base for frame */
  CORE_ADDR pc;		/* function start pc for frame */
  CORE_ADDR saved_sp;	/* stack pointer for frame */
  CORE_ADDR bsp;	/* points at r32 for the current frame */
  CORE_ADDR cfm;	/* cfm value for current frame */
  CORE_ADDR prev_cfm;   /* cfm value for previous frame */
  int   frameless;
  int   sof;		/* Size of frame  (decoded from cfm value) */
  int	sol;		/* Size of locals (decoded from cfm value) */
  int	sor;		/* Number of rotating registers. (decoded from cfm value) */
  CORE_ADDR after_prologue;
  /* Address of first instruction after the last
     prologue instruction;  Note that there may
     be instructions from the function's body
     intermingled with the prologue. */
  int mem_stack_frame_size;
  /* Size of the memory stack frame (may be zero),
     or -1 if it has not been determined yet. */
  int	fp_reg;		/* Register number (if any) used a frame pointer
			   for this frame.  0 if no register is being used
			   as the frame pointer. */
  
  /* Saved registers.  */
  CORE_ADDR saved_regs[NUM_IA64_RAW_REGS];

};

static int
floatformat_valid (const struct floatformat *fmt, const void *from)
{
  return 1;
}

static const struct floatformat floatformat_ia64_ext =
{
  floatformat_little, 82, 0, 1, 17, 65535, 0x1ffff, 18, 64,
  floatformat_intbit_yes, "floatformat_ia64_ext", floatformat_valid, NULL
};

static const struct floatformat *floatformats_ia64_ext[2] =
{
  &floatformat_ia64_ext,
  &floatformat_ia64_ext
};

static struct type *
ia64_ext_type (struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (!tdep->ia64_ext_type)
    tdep->ia64_ext_type
      = arch_float_type (gdbarch, 128, "builtin_type_ia64_ext",
			 floatformats_ia64_ext);

  return tdep->ia64_ext_type;
}

static int
ia64_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
			  struct reggroup *group)
{
  int vector_p;
  int float_p;
  int raw_p;
  if (group == all_reggroup)
    return 1;
  vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
  float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
  raw_p = regnum < NUM_IA64_RAW_REGS;
  if (group == float_reggroup)
    return float_p;
  if (group == vector_reggroup)
    return vector_p;
  if (group == general_reggroup)
    return (!vector_p && !float_p);
  if (group == save_reggroup || group == restore_reggroup)
    return raw_p; 
  return 0;
}

static const char *
ia64_register_name (struct gdbarch *gdbarch, int reg)
{
  return ia64_register_names[reg];
}

struct type *
ia64_register_type (struct gdbarch *arch, int reg)
{
  if (reg >= IA64_FR0_REGNUM && reg <= IA64_FR127_REGNUM)
    return ia64_ext_type (arch);
  else
    return builtin_type (arch)->builtin_long;
}

static int
ia64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
{
  if (reg >= IA64_GR32_REGNUM && reg <= IA64_GR127_REGNUM)
    return V32_REGNUM + (reg - IA64_GR32_REGNUM);
  return reg;
}


/* Extract ``len'' bits from an instruction bundle starting at
   bit ``from''.  */

static long long
extract_bit_field (const char *bundle, int from, int len)
{
  long long result = 0LL;
  int to = from + len;
  int from_byte = from / 8;
  int to_byte = to / 8;
  unsigned char *b = (unsigned char *) bundle;
  unsigned char c;
  int lshift;
  int i;

  c = b[from_byte];
  if (from_byte == to_byte)
    c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8);
  result = c >> (from % 8);
  lshift = 8 - (from % 8);

  for (i = from_byte+1; i < to_byte; i++)
    {
      result |= ((long long) b[i]) << lshift;
      lshift += 8;
    }

  if (from_byte < to_byte && (to % 8 != 0))
    {
      c = b[to_byte];
      c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8);
      result |= ((long long) c) << lshift;
    }

  return result;
}

/* Replace the specified bits in an instruction bundle */

static void
replace_bit_field (char *bundle, long long val, int from, int len)
{
  int to = from + len;
  int from_byte = from / 8;
  int to_byte = to / 8;
  unsigned char *b = (unsigned char *) bundle;
  unsigned char c;

  if (from_byte == to_byte)
    {
      unsigned char left, right;
      c = b[from_byte];
      left = (c >> (to % 8)) << (to % 8);
      right = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8);
      c = (unsigned char) (val & 0xff);
      c = (unsigned char) (c << (from % 8 + 8 - to % 8)) >> (8 - to % 8);
      c |= right | left;
      b[from_byte] = c;
    }
  else
    {
      int i;
      c = b[from_byte];
      c = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8);
      c = c | (val << (from % 8));
      b[from_byte] = c;
      val >>= 8 - from % 8;

      for (i = from_byte+1; i < to_byte; i++)
	{
	  c = val & 0xff;
	  val >>= 8;
	  b[i] = c;
	}

      if (to % 8 != 0)
	{
	  unsigned char cv = (unsigned char) val;
	  c = b[to_byte];
	  c = c >> (to % 8) << (to % 8);
	  c |= ((unsigned char) (cv << (8 - to % 8))) >> (8 - to % 8);
	  b[to_byte] = c;
	}
    }
}

/* Return the contents of slot N (for N = 0, 1, or 2) in
   and instruction bundle */

static long long
slotN_contents (char *bundle, int slotnum)
{
  return extract_bit_field (bundle, 5+41*slotnum, 41);
}

/* Store an instruction in an instruction bundle */

static void
replace_slotN_contents (char *bundle, long long instr, int slotnum)
{
  replace_bit_field (bundle, instr, 5+41*slotnum, 41);
}

static const enum instruction_type template_encoding_table[32][3] =
{
  { M, I, I },				/* 00 */
  { M, I, I },				/* 01 */
  { M, I, I },				/* 02 */
  { M, I, I },				/* 03 */
  { M, L, X },				/* 04 */
  { M, L, X },				/* 05 */
  { undefined, undefined, undefined },  /* 06 */
  { undefined, undefined, undefined },  /* 07 */
  { M, M, I },				/* 08 */
  { M, M, I },				/* 09 */
  { M, M, I },				/* 0A */
  { M, M, I },				/* 0B */
  { M, F, I },				/* 0C */
  { M, F, I },				/* 0D */
  { M, M, F },				/* 0E */
  { M, M, F },				/* 0F */
  { M, I, B },				/* 10 */
  { M, I, B },				/* 11 */
  { M, B, B },				/* 12 */
  { M, B, B },				/* 13 */
  { undefined, undefined, undefined },  /* 14 */
  { undefined, undefined, undefined },  /* 15 */
  { B, B, B },				/* 16 */
  { B, B, B },				/* 17 */
  { M, M, B },				/* 18 */
  { M, M, B },				/* 19 */
  { undefined, undefined, undefined },  /* 1A */
  { undefined, undefined, undefined },  /* 1B */
  { M, F, B },				/* 1C */
  { M, F, B },				/* 1D */
  { undefined, undefined, undefined },  /* 1E */
  { undefined, undefined, undefined },  /* 1F */
};

/* Fetch and (partially) decode an instruction at ADDR and return the
   address of the next instruction to fetch.  */

static CORE_ADDR
fetch_instruction (CORE_ADDR addr, instruction_type *it, long long *instr)
{
  char bundle[BUNDLE_LEN];
  int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER;
  long long template;
  int val;

  /* Warn about slot numbers greater than 2.  We used to generate
     an error here on the assumption that the user entered an invalid
     address.  But, sometimes GDB itself requests an invalid address.
     This can (easily) happen when execution stops in a function for
     which there are no symbols.  The prologue scanner will attempt to
     find the beginning of the function - if the nearest symbol
     happens to not be aligned on a bundle boundary (16 bytes), the
     resulting starting address will cause GDB to think that the slot
     number is too large.

     So we warn about it and set the slot number to zero.  It is
     not necessarily a fatal condition, particularly if debugging
     at the assembly language level.  */
  if (slotnum > 2)
    {
      warning (_("Can't fetch instructions for slot numbers greater than 2.\n"
	       "Using slot 0 instead"));
      slotnum = 0;
    }

  addr &= ~0x0f;

  val = target_read_memory (addr, bundle, BUNDLE_LEN);

  if (val != 0)
    return 0;

  *instr = slotN_contents (bundle, slotnum);
  template = extract_bit_field (bundle, 0, 5);
  *it = template_encoding_table[(int)template][slotnum];

  if (slotnum == 2 || (slotnum == 1 && *it == L))
    addr += 16;
  else
    addr += (slotnum + 1) * SLOT_MULTIPLIER;

  return addr;
}

/* There are 5 different break instructions (break.i, break.b,
   break.m, break.f, and break.x), but they all have the same
   encoding.  (The five bit template in the low five bits of the
   instruction bundle distinguishes one from another.)
   
   The runtime architecture manual specifies that break instructions
   used for debugging purposes must have the upper two bits of the 21
   bit immediate set to a 0 and a 1 respectively.  A breakpoint
   instruction encodes the most significant bit of its 21 bit
   immediate at bit 36 of the 41 bit instruction.  The penultimate msb
   is at bit 25 which leads to the pattern below.  
   
   Originally, I had this set up to do, e.g, a "break.i 0x80000"  But
   it turns out that 0x80000 was used as the syscall break in the early
   simulators.  So I changed the pattern slightly to do "break.i 0x080001"
   instead.  But that didn't work either (I later found out that this
   pattern was used by the simulator that I was using.)  So I ended up
   using the pattern seen below.

   SHADOW_CONTENTS has byte-based addressing (PLACED_ADDRESS and SHADOW_LEN)
   while we need bit-based addressing as the instructions length is 41 bits and
   we must not modify/corrupt the adjacent slots in the same bundle.
   Fortunately we may store larger memory incl. the adjacent bits with the
   original memory content (not the possibly already stored breakpoints there).
   We need to be careful in ia64_memory_remove_breakpoint to always restore
   only the specific bits of this instruction ignoring any adjacent stored
   bits.

   We use the original addressing with the low nibble in the range <0..2> which
   gets incorrectly interpreted by generic non-ia64 breakpoint_restore_shadows
   as the direct byte offset of SHADOW_CONTENTS.  We store whole BUNDLE_LEN
   bytes just without these two possibly skipped bytes to not to exceed to the
   next bundle.

   If we would like to store the whole bundle to SHADOW_CONTENTS we would have
   to store already the base address (`address & ~0x0f') into PLACED_ADDRESS.
   In such case there is no other place where to store
   SLOTNUM (`adress & 0x0f', value in the range <0..2>).  We need to know
   SLOTNUM in ia64_memory_remove_breakpoint.

   There is one special case where we need to be extra careful:
   L-X instructions, which are instructions that occupy 2 slots
   (The L part is always in slot 1, and the X part is always in
   slot 2).  We must refuse to insert breakpoints for an address
   that points at slot 2 of a bundle where an L-X instruction is
   present, since there is logically no instruction at that address.
   However, to make things more interesting, the opcode of L-X
   instructions is located in slot 2.  This means that, to insert
   a breakpoint at an address that points to slot 1, we actually
   need to write the breakpoint in slot 2!  Slot 1 is actually
   the extended operand, so writing the breakpoint there would not
   have the desired effect.  Another side-effect of this issue
   is that we need to make sure that the shadow contents buffer
   does save byte 15 of our instruction bundle (this is the tail
   end of slot 2, which wouldn't be saved if we were to insert
   the breakpoint in slot 1).
   
   ia64 16-byte bundle layout:
   | 5 bits | slot 0 with 41 bits | slot 1 with 41 bits | slot 2 with 41 bits |
   
   The current addressing used by the code below:
   original PC   placed_address   placed_size             required    covered
                                  == bp_tgt->shadow_len   reqd \subset covered
   0xABCDE0      0xABCDE0         0x10                    <0x0...0x5> <0x0..0xF>
   0xABCDE1      0xABCDE1         0xF                     <0x5...0xA> <0x1..0xF>
   0xABCDE2      0xABCDE2         0xE                     <0xA...0xF> <0x2..0xF>

   L-X instructions are treated a little specially, as explained above:
   0xABCDE1      0xABCDE1         0xF                     <0xA...0xF> <0x1..0xF>

   `objdump -d' and some other tools show a bit unjustified offsets:
   original PC   byte where starts the instruction   objdump offset
   0xABCDE0      0xABCDE0                            0xABCDE0
   0xABCDE1      0xABCDE5                            0xABCDE6
   0xABCDE2      0xABCDEA                            0xABCDEC
   */

#define IA64_BREAKPOINT 0x00003333300LL

static int
ia64_memory_insert_breakpoint (struct gdbarch *gdbarch,
			       struct bp_target_info *bp_tgt)
{
  CORE_ADDR addr = bp_tgt->placed_address;
  gdb_byte bundle[BUNDLE_LEN];
  int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER, shadow_slotnum;
  long long instr_breakpoint;
  int val;
  int template;
  struct cleanup *cleanup;

  if (slotnum > 2)
    error (_("Can't insert breakpoint for slot numbers greater than 2."));

  addr &= ~0x0f;

  /* Enable the automatic memory restoration from breakpoints while
     we read our instruction bundle for the purpose of SHADOW_CONTENTS.
     Otherwise, we could possibly store into the shadow parts of the adjacent
     placed breakpoints.  It is due to our SHADOW_CONTENTS overlapping the real
     breakpoint instruction bits region.  */
  cleanup = make_show_memory_breakpoints_cleanup (0);
  val = target_read_memory (addr, bundle, BUNDLE_LEN);
  if (val != 0)
    {
      do_cleanups (cleanup);
      return val;
    }

  /* SHADOW_SLOTNUM saves the original slot number as expected by the caller
     for addressing the SHADOW_CONTENTS placement.  */
  shadow_slotnum = slotnum;

  /* Always cover the last byte of the bundle in case we are inserting
     a breakpoint on an L-X instruction.  */
  bp_tgt->shadow_len = BUNDLE_LEN - shadow_slotnum;

  template = extract_bit_field (bundle, 0, 5);
  if (template_encoding_table[template][slotnum] == X)
    {
      /* X unit types can only be used in slot 2, and are actually
	 part of a 2-slot L-X instruction.  We cannot break at this
	 address, as this is the second half of an instruction that
	 lives in slot 1 of that bundle.  */
      gdb_assert (slotnum == 2);
      error (_("Can't insert breakpoint for non-existing slot X"));
    }
  if (template_encoding_table[template][slotnum] == L)
    {
      /* L unit types can only be used in slot 1.  But the associated
	 opcode for that instruction is in slot 2, so bump the slot number
	 accordingly.  */
      gdb_assert (slotnum == 1);
      slotnum = 2;
    }

  /* Store the whole bundle, except for the initial skipped bytes by the slot
     number interpreted as bytes offset in PLACED_ADDRESS.  */
  memcpy (bp_tgt->shadow_contents, bundle + shadow_slotnum, bp_tgt->shadow_len);

  /* Re-read the same bundle as above except that, this time, read it in order
     to compute the new bundle inside which we will be inserting the
     breakpoint.  Therefore, disable the automatic memory restoration from
     breakpoints while we read our instruction bundle.  Otherwise, the general
     restoration mechanism kicks in and we would possibly remove parts of the
     adjacent placed breakpoints.  It is due to our SHADOW_CONTENTS overlapping
     the real breakpoint instruction bits region.  */
  make_show_memory_breakpoints_cleanup (1);
  val = target_read_memory (addr, bundle, BUNDLE_LEN);
  if (val != 0)
    {
      do_cleanups (cleanup);
      return val;
    }

  /* Breakpoints already present in the code will get deteacted and not get
     reinserted by bp_loc_is_permanent.  Multiple breakpoints at the same
     location cannot induce the internal error as they are optimized into
     a single instance by update_global_location_list.  */
  instr_breakpoint = slotN_contents (bundle, slotnum);
  if (instr_breakpoint == IA64_BREAKPOINT)
    internal_error (__FILE__, __LINE__,
		    _("Address %s already contains a breakpoint."),
		    paddress (gdbarch, bp_tgt->placed_address));
  replace_slotN_contents (bundle, IA64_BREAKPOINT, slotnum);

  bp_tgt->placed_size = bp_tgt->shadow_len;

  val = target_write_memory (addr + shadow_slotnum, bundle + shadow_slotnum,
			     bp_tgt->shadow_len);

  do_cleanups (cleanup);
  return val;
}

static int
ia64_memory_remove_breakpoint (struct gdbarch *gdbarch,
			       struct bp_target_info *bp_tgt)
{
  CORE_ADDR addr = bp_tgt->placed_address;
  gdb_byte bundle_mem[BUNDLE_LEN], bundle_saved[BUNDLE_LEN];
  int slotnum = (addr & 0x0f) / SLOT_MULTIPLIER, shadow_slotnum;
  long long instr_breakpoint, instr_saved;
  int val;
  int template;
  struct cleanup *cleanup;

  addr &= ~0x0f;

  /* Disable the automatic memory restoration from breakpoints while
     we read our instruction bundle.  Otherwise, the general restoration
     mechanism kicks in and we would possibly remove parts of the adjacent
     placed breakpoints.  It is due to our SHADOW_CONTENTS overlapping the real
     breakpoint instruction bits region.  */
  cleanup = make_show_memory_breakpoints_cleanup (1);
  val = target_read_memory (addr, bundle_mem, BUNDLE_LEN);
  if (val != 0)
    {
      do_cleanups (cleanup);
      return val;
    }

  /* SHADOW_SLOTNUM saves the original slot number as expected by the caller
     for addressing the SHADOW_CONTENTS placement.  */
  shadow_slotnum = slotnum;

  template = extract_bit_field (bundle_mem, 0, 5);
  if (template_encoding_table[template][slotnum] == X)
    {
      /* X unit types can only be used in slot 2, and are actually
	 part of a 2-slot L-X instruction.  We refuse to insert
	 breakpoints at this address, so there should be no reason
	 for us attempting to remove one there, except if the program's
	 code somehow got modified in memory.  */
      gdb_assert (slotnum == 2);
      warning (_("Cannot remove breakpoint at address %s from non-existing "
		 "X-type slot, memory has changed underneath"),
	       paddress (gdbarch, bp_tgt->placed_address));
      do_cleanups (cleanup);
      return -1;
    }
  if (template_encoding_table[template][slotnum] == L)
    {
      /* L unit types can only be used in slot 1.  But the breakpoint
	 was actually saved using slot 2, so update the slot number
	 accordingly.  */
      gdb_assert (slotnum == 1);
      slotnum = 2;
    }

  gdb_assert (bp_tgt->placed_size == BUNDLE_LEN - shadow_slotnum);
  gdb_assert (bp_tgt->placed_size == bp_tgt->shadow_len);

  instr_breakpoint = slotN_contents (bundle_mem, slotnum);
  if (instr_breakpoint != IA64_BREAKPOINT)
    {
      warning (_("Cannot remove breakpoint at address %s, "
		 "no break instruction at such address."),
	       paddress (gdbarch, bp_tgt->placed_address));
      do_cleanups (cleanup);
      return -1;
    }

  /* Extract the original saved instruction from SLOTNUM normalizing its
     bit-shift for INSTR_SAVED.  */
  memcpy (bundle_saved, bundle_mem, BUNDLE_LEN);
  memcpy (bundle_saved + shadow_slotnum, bp_tgt->shadow_contents,
	  bp_tgt->shadow_len);
  instr_saved = slotN_contents (bundle_saved, slotnum);

  /* In BUNDLE_MEM, be careful to modify only the bits belonging to SLOTNUM
     and not any of the other ones that are stored in SHADOW_CONTENTS.  */
  replace_slotN_contents (bundle_mem, instr_saved, slotnum);
  val = target_write_memory (addr, bundle_mem, BUNDLE_LEN);

  do_cleanups (cleanup);
  return val;
}

/* As gdbarch_breakpoint_from_pc ranges have byte granularity and ia64
   instruction slots ranges are bit-granular (41 bits) we have to provide an
   extended range as described for ia64_memory_insert_breakpoint.  We also take
   care of preserving the `break' instruction 21-bit (or 62-bit) parameter to
   make a match for permanent breakpoints.  */

static const gdb_byte *
ia64_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
{
  CORE_ADDR addr = *pcptr;
  static gdb_byte bundle[BUNDLE_LEN];
  int slotnum = (int) (*pcptr & 0x0f) / SLOT_MULTIPLIER, shadow_slotnum;
  long long instr_fetched;
  int val;
  int template;
  struct cleanup *cleanup;

  if (slotnum > 2)
    error (_("Can't insert breakpoint for slot numbers greater than 2."));

  addr &= ~0x0f;

  /* Enable the automatic memory restoration from breakpoints while
     we read our instruction bundle to match bp_loc_is_permanent.  */
  cleanup = make_show_memory_breakpoints_cleanup (0);
  val = target_read_memory (addr, bundle, BUNDLE_LEN);
  do_cleanups (cleanup);

  /* The memory might be unreachable.  This can happen, for instance,
     when the user inserts a breakpoint at an invalid address.  */
  if (val != 0)
    return NULL;

  /* SHADOW_SLOTNUM saves the original slot number as expected by the caller
     for addressing the SHADOW_CONTENTS placement.  */
  shadow_slotnum = slotnum;

  /* Cover always the last byte of the bundle for the L-X slot case.  */
  *lenptr = BUNDLE_LEN - shadow_slotnum;

  /* Check for L type instruction in slot 1, if present then bump up the slot
     number to the slot 2.  */
  template = extract_bit_field (bundle, 0, 5);
  if (template_encoding_table[template][slotnum] == X)
    {
      gdb_assert (slotnum == 2);
      error (_("Can't insert breakpoint for non-existing slot X"));
    }
  if (template_encoding_table[template][slotnum] == L)
    {
      gdb_assert (slotnum == 1);
      slotnum = 2;
    }

  /* A break instruction has its all its opcode bits cleared except for
     the parameter value.  For L+X slot pair we are at the X slot (slot 2) so
     we should not touch the L slot - the upper 41 bits of the parameter.  */
  instr_fetched = slotN_contents (bundle, slotnum);
  instr_fetched &= 0x1003ffffc0LL;
  replace_slotN_contents (bundle, instr_fetched, slotnum);

  return bundle + shadow_slotnum;
}

static CORE_ADDR
ia64_read_pc (struct regcache *regcache)
{
  ULONGEST psr_value, pc_value;
  int slot_num;

  regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr_value);
  regcache_cooked_read_unsigned (regcache, IA64_IP_REGNUM, &pc_value);
  slot_num = (psr_value >> 41) & 3;

  return pc_value | (slot_num * SLOT_MULTIPLIER);
}

void
ia64_write_pc (struct regcache *regcache, CORE_ADDR new_pc)
{
  int slot_num = (int) (new_pc & 0xf) / SLOT_MULTIPLIER;
  ULONGEST psr_value;

  regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr_value);
  psr_value &= ~(3LL << 41);
  psr_value |= (ULONGEST)(slot_num & 0x3) << 41;

  new_pc &= ~0xfLL;

  regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr_value);
  regcache_cooked_write_unsigned (regcache, IA64_IP_REGNUM, new_pc);
}

#define IS_NaT_COLLECTION_ADDR(addr) ((((addr) >> 3) & 0x3f) == 0x3f)

/* Returns the address of the slot that's NSLOTS slots away from
   the address ADDR. NSLOTS may be positive or negative. */
static CORE_ADDR
rse_address_add(CORE_ADDR addr, int nslots)
{
  CORE_ADDR new_addr;
  int mandatory_nat_slots = nslots / 63;
  int direction = nslots < 0 ? -1 : 1;

  new_addr = addr + 8 * (nslots + mandatory_nat_slots);

  if ((new_addr >> 9)  != ((addr + 8 * 64 * mandatory_nat_slots) >> 9))
    new_addr += 8 * direction;

  if (IS_NaT_COLLECTION_ADDR(new_addr))
    new_addr += 8 * direction;

  return new_addr;
}

static void
ia64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
                           int regnum, gdb_byte *buf)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  if (regnum >= V32_REGNUM && regnum <= V127_REGNUM)
    {
#ifdef HAVE_LIBUNWIND_IA64_H
      /* First try and use the libunwind special reg accessor, otherwise fallback to
	 standard logic.  */
      if (!libunwind_is_initialized ()
	  || libunwind_get_reg_special (gdbarch, regcache, regnum, buf) != 0)
#endif
	{
	  /* The fallback position is to assume that r32-r127 are found sequentially
	     in memory starting at $bof.  This isn't always true, but without libunwind,
	     this is the best we can do.  */
	  ULONGEST cfm;
	  ULONGEST bsp;
	  CORE_ADDR reg;
	  regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
	  regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
	  
	  /* The bsp points at the end of the register frame so we
	     subtract the size of frame from it to get start of register frame.  */
	  bsp = rse_address_add (bsp, -(cfm & 0x7f));
	  
	  if ((cfm & 0x7f) > regnum - V32_REGNUM) 
	    {
	      ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
	      reg = read_memory_integer ((CORE_ADDR)reg_addr, 8, byte_order);
	      store_unsigned_integer (buf, register_size (gdbarch, regnum),
				      byte_order, reg);
	    }
	  else
	    store_unsigned_integer (buf, register_size (gdbarch, regnum),
				    byte_order, 0);
	}
    }
  else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
    {
      ULONGEST unatN_val;
      ULONGEST unat;
      regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat);
      unatN_val = (unat & (1LL << (regnum - IA64_NAT0_REGNUM))) != 0;
      store_unsigned_integer (buf, register_size (gdbarch, regnum),
			      byte_order, unatN_val);
    }
  else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
    {
      ULONGEST natN_val = 0;
      ULONGEST bsp;
      ULONGEST cfm;
      CORE_ADDR gr_addr = 0;
      regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
      regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);

      /* The bsp points at the end of the register frame so we
	 subtract the size of frame from it to get start of register frame.  */
      bsp = rse_address_add (bsp, -(cfm & 0x7f));
 
      if ((cfm & 0x7f) > regnum - V32_REGNUM) 
	gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
      
      if (gr_addr != 0)
	{
	  /* Compute address of nat collection bits.  */
	  CORE_ADDR nat_addr = gr_addr | 0x1f8;
	  CORE_ADDR nat_collection;
	  int nat_bit;
	  /* If our nat collection address is bigger than bsp, we have to get
	     the nat collection from rnat.  Otherwise, we fetch the nat
	     collection from the computed address.  */
	  if (nat_addr >= bsp)
	    regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection);
	  else
	    nat_collection = read_memory_integer (nat_addr, 8, byte_order);
	  nat_bit = (gr_addr >> 3) & 0x3f;
	  natN_val = (nat_collection >> nat_bit) & 1;
	}
      
      store_unsigned_integer (buf, register_size (gdbarch, regnum),
			      byte_order, natN_val);
    }
  else if (regnum == VBOF_REGNUM)
    {
      /* A virtual register frame start is provided for user convenience.
         It can be calculated as the bsp - sof (sizeof frame). */
      ULONGEST bsp, vbsp;
      ULONGEST cfm;
      CORE_ADDR reg;
      regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
      regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);

      /* The bsp points at the end of the register frame so we
	 subtract the size of frame from it to get beginning of frame.  */
      vbsp = rse_address_add (bsp, -(cfm & 0x7f));
      store_unsigned_integer (buf, register_size (gdbarch, regnum),
			      byte_order, vbsp);
    }
  else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
    {
      ULONGEST pr;
      ULONGEST cfm;
      ULONGEST prN_val;
      CORE_ADDR reg;
      regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr);
      regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);

      if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
	{
	  /* Fetch predicate register rename base from current frame
	     marker for this frame. */
	  int rrb_pr = (cfm >> 32) & 0x3f;

	  /* Adjust the register number to account for register rotation. */
	  regnum = VP16_REGNUM 
	         + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
	}
      prN_val = (pr & (1LL << (regnum - VP0_REGNUM))) != 0;
      store_unsigned_integer (buf, register_size (gdbarch, regnum),
			      byte_order, prN_val);
    }
  else
    memset (buf, 0, register_size (gdbarch, regnum));
}

static void
ia64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
			    int regnum, const gdb_byte *buf)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

  if (regnum >= V32_REGNUM && regnum <= V127_REGNUM)
    {
      ULONGEST bsp;
      ULONGEST cfm;
      CORE_ADDR reg;
      regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
      regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);

      bsp = rse_address_add (bsp, -(cfm & 0x7f));
 
      if ((cfm & 0x7f) > regnum - V32_REGNUM) 
	{
	  ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
	  write_memory (reg_addr, (void *)buf, 8);
	}
    }
  else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
    {
      ULONGEST unatN_val, unat, unatN_mask;
      regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat);
      unatN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum),
					    byte_order);
      unatN_mask = (1LL << (regnum - IA64_NAT0_REGNUM));
      if (unatN_val == 0)
	unat &= ~unatN_mask;
      else if (unatN_val == 1)
	unat |= unatN_mask;
      regcache_cooked_write_unsigned (regcache, IA64_UNAT_REGNUM, unat);
    }
  else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
    {
      ULONGEST natN_val;
      ULONGEST bsp;
      ULONGEST cfm;
      CORE_ADDR gr_addr = 0;
      regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
      regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);

      /* The bsp points at the end of the register frame so we
	 subtract the size of frame from it to get start of register frame.  */
      bsp = rse_address_add (bsp, -(cfm & 0x7f));
 
      if ((cfm & 0x7f) > regnum - V32_REGNUM) 
	gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
      
      natN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum),
					   byte_order);

      if (gr_addr != 0 && (natN_val == 0 || natN_val == 1))
	{
	  /* Compute address of nat collection bits.  */
	  CORE_ADDR nat_addr = gr_addr | 0x1f8;
	  CORE_ADDR nat_collection;
	  int natN_bit = (gr_addr >> 3) & 0x3f;
	  ULONGEST natN_mask = (1LL << natN_bit);
	  /* If our nat collection address is bigger than bsp, we have to get
	     the nat collection from rnat.  Otherwise, we fetch the nat
	     collection from the computed address.  */
	  if (nat_addr >= bsp)
	    {
	      regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection);
	      if (natN_val)
		nat_collection |= natN_mask;
	      else
		nat_collection &= ~natN_mask;
	      regcache_cooked_write_unsigned (regcache, IA64_RNAT_REGNUM, nat_collection);
	    }
	  else
	    {
	      char nat_buf[8];
	      nat_collection = read_memory_integer (nat_addr, 8, byte_order);
	      if (natN_val)
		nat_collection |= natN_mask;
	      else
		nat_collection &= ~natN_mask;
	      store_unsigned_integer (nat_buf, register_size (gdbarch, regnum),
				      byte_order, nat_collection);
	      write_memory (nat_addr, nat_buf, 8);
	    }
	}
    }
  else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
    {
      ULONGEST pr;
      ULONGEST cfm;
      ULONGEST prN_val;
      ULONGEST prN_mask;

      regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr);
      regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);

      if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
	{
	  /* Fetch predicate register rename base from current frame
	     marker for this frame. */
	  int rrb_pr = (cfm >> 32) & 0x3f;

	  /* Adjust the register number to account for register rotation. */
	  regnum = VP16_REGNUM 
	         + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
	}
      prN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum),
					  byte_order);
      prN_mask = (1LL << (regnum - VP0_REGNUM));
      if (prN_val == 0)
	pr &= ~prN_mask;
      else if (prN_val == 1)
	pr |= prN_mask;
      regcache_cooked_write_unsigned (regcache, IA64_PR_REGNUM, pr);
    }
}

/* The ia64 needs to convert between various ieee floating-point formats
   and the special ia64 floating point register format.  */

static int
ia64_convert_register_p (struct gdbarch *gdbarch, int regno, struct type *type)
{
  return (regno >= IA64_FR0_REGNUM && regno <= IA64_FR127_REGNUM
	  && type != ia64_ext_type (gdbarch));
}

static void
ia64_register_to_value (struct frame_info *frame, int regnum,
                         struct type *valtype, gdb_byte *out)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  char in[MAX_REGISTER_SIZE];
  frame_register_read (frame, regnum, in);
  convert_typed_floating (in, ia64_ext_type (gdbarch), out, valtype);
}

static void
ia64_value_to_register (struct frame_info *frame, int regnum,
                         struct type *valtype, const gdb_byte *in)
{
  struct gdbarch *gdbarch = get_frame_arch (frame);
  char out[MAX_REGISTER_SIZE];
  convert_typed_floating (in, valtype, out, ia64_ext_type (gdbarch));
  put_frame_register (frame, regnum, out);
}


/* Limit the number of skipped non-prologue instructions since examining
   of the prologue is expensive.  */
static int max_skip_non_prologue_insns = 40;

/* Given PC representing the starting address of a function, and
   LIM_PC which is the (sloppy) limit to which to scan when looking
   for a prologue, attempt to further refine this limit by using
   the line data in the symbol table.  If successful, a better guess
   on where the prologue ends is returned, otherwise the previous
   value of lim_pc is returned.  TRUST_LIMIT is a pointer to a flag
   which will be set to indicate whether the returned limit may be
   used with no further scanning in the event that the function is
   frameless.  */

/* FIXME: cagney/2004-02-14: This function and logic have largely been
   superseded by skip_prologue_using_sal.  */

static CORE_ADDR
refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc, int *trust_limit)
{
  struct symtab_and_line prologue_sal;
  CORE_ADDR start_pc = pc;
  CORE_ADDR end_pc;

  /* The prologue can not possibly go past the function end itself,
     so we can already adjust LIM_PC accordingly.  */
  if (find_pc_partial_function (pc, NULL, NULL, &end_pc) && end_pc < lim_pc)
    lim_pc = end_pc;

  /* Start off not trusting the limit.  */
  *trust_limit = 0;

  prologue_sal = find_pc_line (pc, 0);
  if (prologue_sal.line != 0)
    {
      int i;
      CORE_ADDR addr = prologue_sal.end;

      /* Handle the case in which compiler's optimizer/scheduler
         has moved instructions into the prologue.  We scan ahead
	 in the function looking for address ranges whose corresponding
	 line number is less than or equal to the first one that we
	 found for the function.  (It can be less than when the
	 scheduler puts a body instruction before the first prologue
	 instruction.)  */
      for (i = 2 * max_skip_non_prologue_insns; 
           i > 0 && (lim_pc == 0 || addr < lim_pc);
	   i--)
        {
	  struct symtab_and_line sal;

	  sal = find_pc_line (addr, 0);
	  if (sal.line == 0)
	    break;
	  if (sal.line <= prologue_sal.line 
	      && sal.symtab == prologue_sal.symtab)
	    {
	      prologue_sal = sal;
	    }
	  addr = sal.end;
	}

      if (lim_pc == 0 || prologue_sal.end < lim_pc)
	{
	  lim_pc = prologue_sal.end;
	  if (start_pc == get_pc_function_start (lim_pc))
	    *trust_limit = 1;
	}
    }
  return lim_pc;
}

#define isScratch(_regnum_) ((_regnum_) == 2 || (_regnum_) == 3 \
  || (8 <= (_regnum_) && (_regnum_) <= 11) \
  || (14 <= (_regnum_) && (_regnum_) <= 31))
#define imm9(_instr_) \
  ( ((((_instr_) & 0x01000000000LL) ? -1 : 0) << 8) \
   | (((_instr_) & 0x00008000000LL) >> 20) \
   | (((_instr_) & 0x00000001fc0LL) >> 6))

/* Allocate and initialize a frame cache.  */

static struct ia64_frame_cache *
ia64_alloc_frame_cache (void)
{
  struct ia64_frame_cache *cache;
  int i;

  cache = FRAME_OBSTACK_ZALLOC (struct ia64_frame_cache);

  /* Base address.  */
  cache->base = 0;
  cache->pc = 0;
  cache->cfm = 0;
  cache->prev_cfm = 0;
  cache->sof = 0;
  cache->sol = 0;
  cache->sor = 0;
  cache->bsp = 0;
  cache->fp_reg = 0;
  cache->frameless = 1;

  for (i = 0; i < NUM_IA64_RAW_REGS; i++)
    cache->saved_regs[i] = 0;

  return cache;
}

static CORE_ADDR
examine_prologue (CORE_ADDR pc, CORE_ADDR lim_pc,
                  struct frame_info *this_frame,
                  struct ia64_frame_cache *cache)
{
  CORE_ADDR next_pc;
  CORE_ADDR last_prologue_pc = pc;
  instruction_type it;
  long long instr;
  int cfm_reg  = 0;
  int ret_reg  = 0;
  int fp_reg   = 0;
  int unat_save_reg = 0;
  int pr_save_reg = 0;
  int mem_stack_frame_size = 0;
  int spill_reg   = 0;
  CORE_ADDR spill_addr = 0;
  char instores[8];
  char infpstores[8];
  char reg_contents[256];
  int trust_limit;
  int frameless = 1;
  int i;
  CORE_ADDR addr;
  char buf[8];
  CORE_ADDR bof, sor, sol, sof, cfm, rrb_gr;

  memset (instores, 0, sizeof instores);
  memset (infpstores, 0, sizeof infpstores);
  memset (reg_contents, 0, sizeof reg_contents);

  if (cache->after_prologue != 0
      && cache->after_prologue <= lim_pc)
    return cache->after_prologue;

  lim_pc = refine_prologue_limit (pc, lim_pc, &trust_limit);
  next_pc = fetch_instruction (pc, &it, &instr);

  /* We want to check if we have a recognizable function start before we
     look ahead for a prologue.  */
  if (pc < lim_pc && next_pc 
      && it == M && ((instr & 0x1ee0000003fLL) == 0x02c00000000LL))
    {
      /* alloc - start of a regular function.  */
      int sor = (int) ((instr & 0x00078000000LL) >> 27);
      int sol = (int) ((instr & 0x00007f00000LL) >> 20);
      int sof = (int) ((instr & 0x000000fe000LL) >> 13);
      int rN = (int) ((instr & 0x00000001fc0LL) >> 6);

      /* Verify that the current cfm matches what we think is the
	 function start.  If we have somehow jumped within a function,
	 we do not want to interpret the prologue and calculate the
	 addresses of various registers such as the return address.  
	 We will instead treat the frame as frameless. */
      if (!this_frame ||
	  (sof == (cache->cfm & 0x7f) &&
	   sol == ((cache->cfm >> 7) & 0x7f)))
	frameless = 0;

      cfm_reg = rN;
      last_prologue_pc = next_pc;
      pc = next_pc;
    }
  else
    {
      /* Look for a leaf routine.  */
      if (pc < lim_pc && next_pc
	  && (it == I || it == M) 
          && ((instr & 0x1ee00000000LL) == 0x10800000000LL))
	{
	  /* adds rN = imm14, rM   (or mov rN, rM  when imm14 is 0) */
	  int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13) 
	                   | ((instr & 0x001f8000000LL) >> 20)
		           | ((instr & 0x000000fe000LL) >> 13));
	  int rM = (int) ((instr & 0x00007f00000LL) >> 20);
	  int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
	  int qp = (int) (instr & 0x0000000003fLL);
	  if (qp == 0 && rN == 2 && imm == 0 && rM == 12 && fp_reg == 0)
	    {
	      /* mov r2, r12 - beginning of leaf routine */
	      fp_reg = rN;
	      last_prologue_pc = next_pc;
	    }
	} 

      /* If we don't recognize a regular function or leaf routine, we are
	 done.  */
      if (!fp_reg)
	{
	  pc = lim_pc;	
	  if (trust_limit)
	    last_prologue_pc = lim_pc;
	}
    }

  /* Loop, looking for prologue instructions, keeping track of
     where preserved registers were spilled. */
  while (pc < lim_pc)
    {
      next_pc = fetch_instruction (pc, &it, &instr);
      if (next_pc == 0)
	break;

      if (it == B && ((instr & 0x1e1f800003fLL) != 0x04000000000LL))
	{
	  /* Exit loop upon hitting a non-nop branch instruction. */ 
	  if (trust_limit)
	    lim_pc = pc;
	  break;
	}
      else if (((instr & 0x3fLL) != 0LL) && 
	       (frameless || ret_reg != 0))
	{
	  /* Exit loop upon hitting a predicated instruction if
	     we already have the return register or if we are frameless.  */ 
	  if (trust_limit)
	    lim_pc = pc;
	  break;
	}
      else if (it == I && ((instr & 0x1eff8000000LL) == 0x00188000000LL))
        {
	  /* Move from BR */
	  int b2 = (int) ((instr & 0x0000000e000LL) >> 13);
	  int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
	  int qp = (int) (instr & 0x0000000003f);

	  if (qp == 0 && b2 == 0 && rN >= 32 && ret_reg == 0)
	    {
	      ret_reg = rN;
	      last_prologue_pc = next_pc;
	    }
	}
      else if ((it == I || it == M) 
          && ((instr & 0x1ee00000000LL) == 0x10800000000LL))
	{
	  /* adds rN = imm14, rM   (or mov rN, rM  when imm14 is 0) */
	  int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13) 
	                   | ((instr & 0x001f8000000LL) >> 20)
		           | ((instr & 0x000000fe000LL) >> 13));
	  int rM = (int) ((instr & 0x00007f00000LL) >> 20);
	  int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
	  int qp = (int) (instr & 0x0000000003fLL);

	  if (qp == 0 && rN >= 32 && imm == 0 && rM == 12 && fp_reg == 0)
	    {
	      /* mov rN, r12 */
	      fp_reg = rN;
	      last_prologue_pc = next_pc;
	    }
	  else if (qp == 0 && rN == 12 && rM == 12)
	    {
	      /* adds r12, -mem_stack_frame_size, r12 */
	      mem_stack_frame_size -= imm;
	      last_prologue_pc = next_pc;
	    }
	  else if (qp == 0 && rN == 2 
	        && ((rM == fp_reg && fp_reg != 0) || rM == 12))
	    {
	      char buf[MAX_REGISTER_SIZE];
	      CORE_ADDR saved_sp = 0;
	      /* adds r2, spilloffset, rFramePointer 
	           or
		 adds r2, spilloffset, r12

	         Get ready for stf.spill or st8.spill instructions.
		 The address to start spilling at is loaded into r2. 
		 FIXME:  Why r2?  That's what gcc currently uses; it
		 could well be different for other compilers.  */

	      /* Hmm... whether or not this will work will depend on
	         where the pc is.  If it's still early in the prologue
		 this'll be wrong.  FIXME */
	      if (this_frame)
		{
		  struct gdbarch *gdbarch = get_frame_arch (this_frame);
		  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
		  get_frame_register (this_frame, sp_regnum, buf);
		  saved_sp = extract_unsigned_integer (buf, 8, byte_order);
		}
	      spill_addr  = saved_sp
	                  + (rM == 12 ? 0 : mem_stack_frame_size) 
			  + imm;
	      spill_reg   = rN;
	      last_prologue_pc = next_pc;
	    }
	  else if (qp == 0 && rM >= 32 && rM < 40 && !instores[rM-32] && 
		   rN < 256 && imm == 0)
	    {
	      /* mov rN, rM where rM is an input register */
	      reg_contents[rN] = rM;
	      last_prologue_pc = next_pc;
	    }
	  else if (frameless && qp == 0 && rN == fp_reg && imm == 0 && 
		   rM == 2)
	    {
	      /* mov r12, r2 */
	      last_prologue_pc = next_pc;
	      break;
	    }
	}
      else if (it == M 
            && (   ((instr & 0x1efc0000000LL) == 0x0eec0000000LL)
                || ((instr & 0x1ffc8000000LL) == 0x0cec0000000LL) ))
	{
	  /* stf.spill [rN] = fM, imm9
	     or
	     stf.spill [rN] = fM  */

	  int imm = imm9(instr);
	  int rN = (int) ((instr & 0x00007f00000LL) >> 20);
	  int fM = (int) ((instr & 0x000000fe000LL) >> 13);
	  int qp = (int) (instr & 0x0000000003fLL);
	  if (qp == 0 && rN == spill_reg && spill_addr != 0
	      && ((2 <= fM && fM <= 5) || (16 <= fM && fM <= 31)))
	    {
	      cache->saved_regs[IA64_FR0_REGNUM + fM] = spill_addr;

              if ((instr & 0x1efc0000000LL) == 0x0eec0000000LL)
		spill_addr += imm;
	      else
		spill_addr = 0;		/* last one; must be done */
	      last_prologue_pc = next_pc;
	    }
	}
      else if ((it == M && ((instr & 0x1eff8000000LL) == 0x02110000000LL))
            || (it == I && ((instr & 0x1eff8000000LL) == 0x00050000000LL)) )
	{
	  /* mov.m rN = arM   
	       or 
	     mov.i rN = arM */

	  int arM = (int) ((instr & 0x00007f00000LL) >> 20);
	  int rN  = (int) ((instr & 0x00000001fc0LL) >> 6);
	  int qp  = (int) (instr & 0x0000000003fLL);
	  if (qp == 0 && isScratch (rN) && arM == 36 /* ar.unat */)
	    {
	      /* We have something like "mov.m r3 = ar.unat".  Remember the
		 r3 (or whatever) and watch for a store of this register... */
	      unat_save_reg = rN;
	      last_prologue_pc = next_pc;
	    }
	}
      else if (it == I && ((instr & 0x1eff8000000LL) == 0x00198000000LL))
	{
	  /* mov rN = pr */
	  int rN  = (int) ((instr & 0x00000001fc0LL) >> 6);
	  int qp  = (int) (instr & 0x0000000003fLL);
	  if (qp == 0 && isScratch (rN))
	    {
	      pr_save_reg = rN;
	      last_prologue_pc = next_pc;
	    }
	}
      else if (it == M 
            && (   ((instr & 0x1ffc8000000LL) == 0x08cc0000000LL)
	        || ((instr & 0x1efc0000000LL) == 0x0acc0000000LL)))
	{
	  /* st8 [rN] = rM 
	      or
	     st8 [rN] = rM, imm9 */
	  int rN = (int) ((instr & 0x00007f00000LL) >> 20);
	  int rM = (int) ((instr & 0x000000fe000LL) >> 13);
	  int qp = (int) (instr & 0x0000000003fLL);
	  int indirect = rM < 256 ? reg_contents[rM] : 0;
	  if (qp == 0 && rN == spill_reg && spill_addr != 0
	      && (rM == unat_save_reg || rM == pr_save_reg))
	    {
	      /* We've found a spill of either the UNAT register or the PR
	         register.  (Well, not exactly; what we've actually found is
		 a spill of the register that UNAT or PR was moved to).
		 Record that fact and move on... */
	      if (rM == unat_save_reg)
		{
		  /* Track UNAT register */
		  cache->saved_regs[IA64_UNAT_REGNUM] = spill_addr;
		  unat_save_reg = 0;
		}
	      else
	        {
		  /* Track PR register */
		  cache->saved_regs[IA64_PR_REGNUM] = spill_addr;
		  pr_save_reg = 0;
		}
	      if ((instr & 0x1efc0000000LL) == 0x0acc0000000LL)
		/* st8 [rN] = rM, imm9 */
		spill_addr += imm9(instr);
	      else
		spill_addr = 0;		/* must be done spilling */
	      last_prologue_pc = next_pc;
	    }
	  else if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32])
	    {
	      /* Allow up to one store of each input register. */
	      instores[rM-32] = 1;
	      last_prologue_pc = next_pc;
	    }
	  else if (qp == 0 && 32 <= indirect && indirect < 40 && 
		   !instores[indirect-32])
	    {
	      /* Allow an indirect store of an input register.  */
	      instores[indirect-32] = 1;
	      last_prologue_pc = next_pc;
	    }
	}
      else if (it == M && ((instr & 0x1ff08000000LL) == 0x08c00000000LL))
	{
	  /* One of
	       st1 [rN] = rM
	       st2 [rN] = rM
	       st4 [rN] = rM
	       st8 [rN] = rM
	     Note that the st8 case is handled in the clause above.
	     
	     Advance over stores of input registers. One store per input
	     register is permitted. */
	  int rM = (int) ((instr & 0x000000fe000LL) >> 13);
	  int qp = (int) (instr & 0x0000000003fLL);
	  int indirect = rM < 256 ? reg_contents[rM] : 0;
	  if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32])
	    {
	      instores[rM-32] = 1;
	      last_prologue_pc = next_pc;
	    }
	  else if (qp == 0 && 32 <= indirect && indirect < 40 && 
		   !instores[indirect-32])
	    {
	      /* Allow an indirect store of an input register.  */
	      instores[indirect-32] = 1;
	      last_prologue_pc = next_pc;
	    }
	}
      else if (it == M && ((instr & 0x1ff88000000LL) == 0x0cc80000000LL))
        {
	  /* Either
	       stfs [rN] = fM
	     or
	       stfd [rN] = fM

	     Advance over stores of floating point input registers.  Again
	     one store per register is permitted */
	  int fM = (int) ((instr & 0x000000fe000LL) >> 13);
	  int qp = (int) (instr & 0x0000000003fLL);
	  if (qp == 0 && 8 <= fM && fM < 16 && !infpstores[fM - 8])
	    {
	      infpstores[fM-8] = 1;
	      last_prologue_pc = next_pc;
	    }
	}
      else if (it == M
            && (   ((instr & 0x1ffc8000000LL) == 0x08ec0000000LL)
	        || ((instr & 0x1efc0000000LL) == 0x0aec0000000LL)))
	{
	  /* st8.spill [rN] = rM
	       or
	     st8.spill [rN] = rM, imm9 */
	  int rN = (int) ((instr & 0x00007f00000LL) >> 20);
	  int rM = (int) ((instr & 0x000000fe000LL) >> 13);
	  int qp = (int) (instr & 0x0000000003fLL);
	  if (qp == 0 && rN == spill_reg && 4 <= rM && rM <= 7)
	    {
	      /* We've found a spill of one of the preserved general purpose
	         regs.  Record the spill address and advance the spill
		 register if appropriate. */
	      cache->saved_regs[IA64_GR0_REGNUM + rM] = spill_addr;
	      if ((instr & 0x1efc0000000LL) == 0x0aec0000000LL)
	        /* st8.spill [rN] = rM, imm9 */
		spill_addr += imm9(instr);
	      else
		spill_addr = 0;		/* Done spilling */
	      last_prologue_pc = next_pc;
	    }
	}

      pc = next_pc;
    }

  /* If not frameless and we aren't called by skip_prologue, then we need
     to calculate registers for the previous frame which will be needed
     later.  */

  if (!frameless && this_frame)
    {
      struct gdbarch *gdbarch = get_frame_arch (this_frame);
      enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);

      /* Extract the size of the rotating portion of the stack
	 frame and the register rename base from the current
	 frame marker. */
      cfm = cache->cfm;
      sor = cache->sor;
      sof = cache->sof;
      sol = cache->sol;
      rrb_gr = (cfm >> 18) & 0x7f;

      /* Find the bof (beginning of frame).  */
      bof = rse_address_add (cache->bsp, -sof);
      
      for (i = 0, addr = bof;
	   i < sof;
	   i++, addr += 8)
	{
	  if (IS_NaT_COLLECTION_ADDR (addr))
	    {
	      addr += 8;
	    }
	  if (i+32 == cfm_reg)
	    cache->saved_regs[IA64_CFM_REGNUM] = addr;
	  if (i+32 == ret_reg)
	    cache->saved_regs[IA64_VRAP_REGNUM] = addr;
	  if (i+32 == fp_reg)
	    cache->saved_regs[IA64_VFP_REGNUM] = addr;
	}

      /* For the previous argument registers we require the previous bof.  
	 If we can't find the previous cfm, then we can do nothing.  */
      cfm = 0;
      if (cache->saved_regs[IA64_CFM_REGNUM] != 0)
	{
	  cfm = read_memory_integer (cache->saved_regs[IA64_CFM_REGNUM],
				     8, byte_order);
	}
      else if (cfm_reg != 0)
	{
	  get_frame_register (this_frame, cfm_reg, buf);
	  cfm = extract_unsigned_integer (buf, 8, byte_order);
	}
      cache->prev_cfm = cfm;
      
      if (cfm != 0)
	{
	  sor = ((cfm >> 14) & 0xf) * 8;
	  sof = (cfm & 0x7f);
	  sol = (cfm >> 7) & 0x7f;
	  rrb_gr = (cfm >> 18) & 0x7f;

	  /* The previous bof only requires subtraction of the sol (size of
             locals) due to the overlap between output and input of
             subsequent frames.  */
	  bof = rse_address_add (bof, -sol);
	  
	  for (i = 0, addr = bof;
	       i < sof;
	       i++, addr += 8)
	    {
	      if (IS_NaT_COLLECTION_ADDR (addr))
		{
		  addr += 8;
		}
	      if (i < sor)
		cache->saved_regs[IA64_GR32_REGNUM + ((i + (sor - rrb_gr)) % sor)] 
		  = addr;
	      else
		cache->saved_regs[IA64_GR32_REGNUM + i] = addr;
	    }
	  
	}
    }
      
  /* Try and trust the lim_pc value whenever possible.  */
  if (trust_limit && lim_pc >= last_prologue_pc)
    last_prologue_pc = lim_pc;

  cache->frameless = frameless;
  cache->after_prologue = last_prologue_pc;
  cache->mem_stack_frame_size = mem_stack_frame_size;
  cache->fp_reg = fp_reg;

  return last_prologue_pc;
}

CORE_ADDR
ia64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  struct ia64_frame_cache cache;
  cache.base = 0;
  cache.after_prologue = 0;
  cache.cfm = 0;
  cache.bsp = 0;

  /* Call examine_prologue with - as third argument since we don't have a next frame pointer to send.  */
  return examine_prologue (pc, pc+1024, 0, &cache);
}


/* Normal frames.  */

static struct ia64_frame_cache *
ia64_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct ia64_frame_cache *cache;
  char buf[8];
  CORE_ADDR cfm, sof, sol, bsp, psr;
  int i;

  if (*this_cache)
    return *this_cache;

  cache = ia64_alloc_frame_cache ();
  *this_cache = cache;

  get_frame_register (this_frame, sp_regnum, buf);
  cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);

  /* We always want the bsp to point to the end of frame.
     This way, we can always get the beginning of frame (bof)
     by subtracting frame size.  */
  get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
  cache->bsp = extract_unsigned_integer (buf, 8, byte_order);
  
  get_frame_register (this_frame, IA64_PSR_REGNUM, buf);
  psr = extract_unsigned_integer (buf, 8, byte_order);

  get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
  cfm = extract_unsigned_integer (buf, 8, byte_order);

  cache->sof = (cfm & 0x7f);
  cache->sol = (cfm >> 7) & 0x7f;
  cache->sor = ((cfm >> 14) & 0xf) * 8;

  cache->cfm = cfm;

  cache->pc = get_frame_func (this_frame);

  if (cache->pc != 0)
    examine_prologue (cache->pc, get_frame_pc (this_frame), this_frame, cache);
  
  cache->base = cache->saved_sp + cache->mem_stack_frame_size;

  return cache;
}

static void
ia64_frame_this_id (struct frame_info *this_frame, void **this_cache,
		    struct frame_id *this_id)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct ia64_frame_cache *cache =
    ia64_frame_cache (this_frame, this_cache);

  /* If outermost frame, mark with null frame id.  */
  if (cache->base != 0)
    (*this_id) = frame_id_build_special (cache->base, cache->pc, cache->bsp);
  if (gdbarch_debug >= 1)
    fprintf_unfiltered (gdb_stdlog,
			"regular frame id: code %s, stack %s, special %s, this_frame %s\n",
			paddress (gdbarch, this_id->code_addr),
			paddress (gdbarch, this_id->stack_addr),
			paddress (gdbarch, cache->bsp),
			host_address_to_string (this_frame));
}

static struct value *
ia64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
			  int regnum)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct ia64_frame_cache *cache = ia64_frame_cache (this_frame, this_cache);
  char buf[8];

  gdb_assert (regnum >= 0);

  if (!target_has_registers)
    error (_("No registers."));

  if (regnum == gdbarch_sp_regnum (gdbarch))
    return frame_unwind_got_constant (this_frame, regnum, cache->base);

  else if (regnum == IA64_BSP_REGNUM)
    {
      struct value *val;
      CORE_ADDR prev_cfm, bsp, prev_bsp;

      /* We want to calculate the previous bsp as the end of the previous
         register stack frame.  This corresponds to what the hardware bsp
         register will be if we pop the frame back which is why we might
         have been called.  We know the beginning of the current frame is
         cache->bsp - cache->sof.  This value in the previous frame points
         to the start of the output registers.  We can calculate the end of
         that frame by adding the size of output:
            (sof (size of frame) - sol (size of locals)).  */
      val = ia64_frame_prev_register (this_frame, this_cache, IA64_CFM_REGNUM);
      prev_cfm = extract_unsigned_integer (value_contents_all (val),
					   8, byte_order);
      bsp = rse_address_add (cache->bsp, -(cache->sof));
      prev_bsp =
        rse_address_add (bsp, (prev_cfm & 0x7f) - ((prev_cfm >> 7) & 0x7f));

      return frame_unwind_got_constant (this_frame, regnum, prev_bsp);
    }

  else if (regnum == IA64_CFM_REGNUM)
    {
      CORE_ADDR addr = cache->saved_regs[IA64_CFM_REGNUM];
      
      if (addr != 0)
        return frame_unwind_got_memory (this_frame, regnum, addr);

      if (cache->prev_cfm)
        return frame_unwind_got_constant (this_frame, regnum, cache->prev_cfm);

      if (cache->frameless)
        return frame_unwind_got_register (this_frame, IA64_PFS_REGNUM,
                                          IA64_PFS_REGNUM);
      return frame_unwind_got_register (this_frame, regnum, 0);
    }

  else if (regnum == IA64_VFP_REGNUM)
    {
      /* If the function in question uses an automatic register (r32-r127)
         for the frame pointer, it'll be found by ia64_find_saved_register()
	 above.  If the function lacks one of these frame pointers, we can
	 still provide a value since we know the size of the frame.  */
      return frame_unwind_got_constant (this_frame, regnum, cache->base);
    }

  else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
    {
      struct value *pr_val;
      ULONGEST prN;
      
      pr_val = ia64_frame_prev_register (this_frame, this_cache,
                                         IA64_PR_REGNUM);
      if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
	{
	  /* Fetch predicate register rename base from current frame
	     marker for this frame.  */
	  int rrb_pr = (cache->cfm >> 32) & 0x3f;

	  /* Adjust the register number to account for register rotation.  */
	  regnum = VP16_REGNUM + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
	}
      prN = extract_bit_field (value_contents_all (pr_val),
                               regnum - VP0_REGNUM, 1);
      return frame_unwind_got_constant (this_frame, regnum, prN);
    }

  else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
    {
      struct value *unat_val;
      ULONGEST unatN;
      unat_val = ia64_frame_prev_register (this_frame, this_cache,
                                           IA64_UNAT_REGNUM);
      unatN = extract_bit_field (value_contents_all (unat_val),
                                 regnum - IA64_NAT0_REGNUM, 1);
      return frame_unwind_got_constant (this_frame, regnum, unatN);
    }

  else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
    {
      int natval = 0;
      /* Find address of general register corresponding to nat bit we're
         interested in.  */
      CORE_ADDR gr_addr;

      gr_addr = cache->saved_regs[regnum - IA64_NAT0_REGNUM + IA64_GR0_REGNUM];

      if (gr_addr != 0)
	{
	  /* Compute address of nat collection bits.  */
	  CORE_ADDR nat_addr = gr_addr | 0x1f8;
	  CORE_ADDR bsp;
	  CORE_ADDR nat_collection;
	  int nat_bit;

	  /* If our nat collection address is bigger than bsp, we have to get
	     the nat collection from rnat.  Otherwise, we fetch the nat
	     collection from the computed address.  */
	  get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
	  bsp = extract_unsigned_integer (buf, 8, byte_order);
	  if (nat_addr >= bsp)
	    {
	      get_frame_register (this_frame, IA64_RNAT_REGNUM, buf);
	      nat_collection = extract_unsigned_integer (buf, 8, byte_order);
	    }
	  else
	    nat_collection = read_memory_integer (nat_addr, 8, byte_order);
	  nat_bit = (gr_addr >> 3) & 0x3f;
	  natval = (nat_collection >> nat_bit) & 1;
	}

      return frame_unwind_got_constant (this_frame, regnum, natval);
    }

  else if (regnum == IA64_IP_REGNUM)
    {
      CORE_ADDR pc = 0;
      CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];

      if (addr != 0)
        {
          read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM));
          pc = extract_unsigned_integer (buf, 8, byte_order);
        }
      else if (cache->frameless)
	{
	  get_frame_register (this_frame, IA64_BR0_REGNUM, buf);
	  pc = extract_unsigned_integer (buf, 8, byte_order);
	}
      pc &= ~0xf;
      return frame_unwind_got_constant (this_frame, regnum, pc);
    }

  else if (regnum == IA64_PSR_REGNUM)
    {
      /* We don't know how to get the complete previous PSR, but we need it
         for the slot information when we unwind the pc (pc is formed of IP
         register plus slot information from PSR).  To get the previous
         slot information, we mask it off the return address.  */
      ULONGEST slot_num = 0;
      CORE_ADDR pc = 0;
      CORE_ADDR psr = 0;
      CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];

      get_frame_register (this_frame, IA64_PSR_REGNUM, buf);
      psr = extract_unsigned_integer (buf, 8, byte_order);

      if (addr != 0)
	{
	  read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM));
	  pc = extract_unsigned_integer (buf, 8, byte_order);
	}
      else if (cache->frameless)
	{
	  get_frame_register (this_frame, IA64_BR0_REGNUM, buf);
	  pc = extract_unsigned_integer (buf, 8, byte_order);
	}
      psr &= ~(3LL << 41);
      slot_num = pc & 0x3LL;
      psr |= (CORE_ADDR)slot_num << 41;
      return frame_unwind_got_constant (this_frame, regnum, psr);
    }

  else if (regnum == IA64_BR0_REGNUM)
    {
      CORE_ADDR addr = cache->saved_regs[IA64_BR0_REGNUM];

      if (addr != 0)
        return frame_unwind_got_memory (this_frame, regnum, addr);

      return frame_unwind_got_constant (this_frame, regnum, 0);
    }

  else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM)
           || (regnum >= V32_REGNUM && regnum <= V127_REGNUM))
    {
      CORE_ADDR addr = 0;

      if (regnum >= V32_REGNUM)
	regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
      addr = cache->saved_regs[regnum];
      if (addr != 0)
        return frame_unwind_got_memory (this_frame, regnum, addr);

      if (cache->frameless)
        {
          struct value *reg_val;
          CORE_ADDR prev_cfm, prev_bsp, prev_bof;

          /* FIXME: brobecker/2008-05-01: Doesn't this seem redundant
             with the same code above?  */
	  if (regnum >= V32_REGNUM)
	    regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
          reg_val = ia64_frame_prev_register (this_frame, this_cache,
                                              IA64_CFM_REGNUM);
	  prev_cfm = extract_unsigned_integer (value_contents_all (reg_val),
                                               8, byte_order);
	  reg_val = ia64_frame_prev_register (this_frame, this_cache,
                                              IA64_BSP_REGNUM);
	  prev_bsp = extract_unsigned_integer (value_contents_all (reg_val),
                                               8, byte_order);
	  prev_bof = rse_address_add (prev_bsp, -(prev_cfm & 0x7f));

	  addr = rse_address_add (prev_bof, (regnum - IA64_GR32_REGNUM));
          return frame_unwind_got_memory (this_frame, regnum, addr);
        }
      
      return frame_unwind_got_constant (this_frame, regnum, 0);
    }

  else /* All other registers.  */
    {
      CORE_ADDR addr = 0;

      if (IA64_FR32_REGNUM <= regnum && regnum <= IA64_FR127_REGNUM)
	{
	  /* Fetch floating point register rename base from current
	     frame marker for this frame.  */
	  int rrb_fr = (cache->cfm >> 25) & 0x7f;

	  /* Adjust the floating point register number to account for
	     register rotation.  */
	  regnum = IA64_FR32_REGNUM
	         + ((regnum - IA64_FR32_REGNUM) + rrb_fr) % 96;
	}

      /* If we have stored a memory address, access the register.  */
      addr = cache->saved_regs[regnum];
      if (addr != 0)
        return frame_unwind_got_memory (this_frame, regnum, addr);
      /* Otherwise, punt and get the current value of the register.  */
      else 
        return frame_unwind_got_register (this_frame, regnum, regnum);
    }
}
 
static const struct frame_unwind ia64_frame_unwind =
{
  NORMAL_FRAME,
  &ia64_frame_this_id,
  &ia64_frame_prev_register,
  NULL,
  default_frame_sniffer
};

/* Signal trampolines.  */

static void
ia64_sigtramp_frame_init_saved_regs (struct frame_info *this_frame,
				     struct ia64_frame_cache *cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  if (tdep->sigcontext_register_address)
    {
      int regno;

      cache->saved_regs[IA64_VRAP_REGNUM] = 
	tdep->sigcontext_register_address (gdbarch, cache->base, IA64_IP_REGNUM);
      cache->saved_regs[IA64_CFM_REGNUM] = 
	tdep->sigcontext_register_address (gdbarch, cache->base, IA64_CFM_REGNUM);
      cache->saved_regs[IA64_PSR_REGNUM] = 
	tdep->sigcontext_register_address (gdbarch, cache->base, IA64_PSR_REGNUM);
      cache->saved_regs[IA64_BSP_REGNUM] = 
	tdep->sigcontext_register_address (gdbarch, cache->base, IA64_BSP_REGNUM);
      cache->saved_regs[IA64_RNAT_REGNUM] = 
	tdep->sigcontext_register_address (gdbarch, cache->base, IA64_RNAT_REGNUM);
      cache->saved_regs[IA64_CCV_REGNUM] = 
	tdep->sigcontext_register_address (gdbarch, cache->base, IA64_CCV_REGNUM);
      cache->saved_regs[IA64_UNAT_REGNUM] = 
	tdep->sigcontext_register_address (gdbarch, cache->base, IA64_UNAT_REGNUM);
      cache->saved_regs[IA64_FPSR_REGNUM] = 
	tdep->sigcontext_register_address (gdbarch, cache->base, IA64_FPSR_REGNUM);
      cache->saved_regs[IA64_PFS_REGNUM] = 
	tdep->sigcontext_register_address (gdbarch, cache->base, IA64_PFS_REGNUM);
      cache->saved_regs[IA64_LC_REGNUM] = 
	tdep->sigcontext_register_address (gdbarch, cache->base, IA64_LC_REGNUM);
      for (regno = IA64_GR1_REGNUM; regno <= IA64_GR31_REGNUM; regno++)
	cache->saved_regs[regno] =
	  tdep->sigcontext_register_address (gdbarch, cache->base, regno);
      for (regno = IA64_BR0_REGNUM; regno <= IA64_BR7_REGNUM; regno++)
	cache->saved_regs[regno] =
	  tdep->sigcontext_register_address (gdbarch, cache->base, regno);
      for (regno = IA64_FR2_REGNUM; regno <= IA64_FR31_REGNUM; regno++)
	cache->saved_regs[regno] =
	  tdep->sigcontext_register_address (gdbarch, cache->base, regno);
    }
}

static struct ia64_frame_cache *
ia64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct ia64_frame_cache *cache;
  CORE_ADDR addr;
  char buf[8];
  int i;

  if (*this_cache)
    return *this_cache;

  cache = ia64_alloc_frame_cache ();

  get_frame_register (this_frame, sp_regnum, buf);
  /* Note that frame size is hard-coded below.  We cannot calculate it
     via prologue examination.  */
  cache->base = extract_unsigned_integer (buf, 8, byte_order) + 16;

  get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
  cache->bsp = extract_unsigned_integer (buf, 8, byte_order);

  get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
  cache->cfm = extract_unsigned_integer (buf, 8, byte_order);
  cache->sof = cache->cfm & 0x7f;

  ia64_sigtramp_frame_init_saved_regs (this_frame, cache);

  *this_cache = cache;
  return cache;
}

static void
ia64_sigtramp_frame_this_id (struct frame_info *this_frame,
			     void **this_cache, struct frame_id *this_id)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct ia64_frame_cache *cache =
    ia64_sigtramp_frame_cache (this_frame, this_cache);

  (*this_id) = frame_id_build_special (cache->base,
                                       get_frame_pc (this_frame),
                                       cache->bsp);
  if (gdbarch_debug >= 1)
    fprintf_unfiltered (gdb_stdlog,
			"sigtramp frame id: code %s, stack %s, special %s, this_frame %s\n",
			paddress (gdbarch, this_id->code_addr),
			paddress (gdbarch, this_id->stack_addr),
			paddress (gdbarch, cache->bsp),
			host_address_to_string (this_frame));
}

static struct value *
ia64_sigtramp_frame_prev_register (struct frame_info *this_frame,
				   void **this_cache, int regnum)
{
  char buf[MAX_REGISTER_SIZE];

  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct ia64_frame_cache *cache =
    ia64_sigtramp_frame_cache (this_frame, this_cache);

  gdb_assert (regnum >= 0);

  if (!target_has_registers)
    error (_("No registers."));

  if (regnum == IA64_IP_REGNUM)
    {
      CORE_ADDR pc = 0;
      CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];

      if (addr != 0)
	{
	  read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM));
	  pc = extract_unsigned_integer (buf, 8, byte_order);
	}
      pc &= ~0xf;
      return frame_unwind_got_constant (this_frame, regnum, pc);
    }

  else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM)
           || (regnum >= V32_REGNUM && regnum <= V127_REGNUM))
    {
      CORE_ADDR addr = 0;

      if (regnum >= V32_REGNUM)
	regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
      addr = cache->saved_regs[regnum];
      if (addr != 0)
        return frame_unwind_got_memory (this_frame, regnum, addr);

      return frame_unwind_got_constant (this_frame, regnum, 0);
    }

  else  /* All other registers not listed above.  */
    {
      CORE_ADDR addr = cache->saved_regs[regnum];

      if (addr != 0)
        return frame_unwind_got_memory (this_frame, regnum, addr);

      return frame_unwind_got_constant (this_frame, regnum, 0);
    }
}

static int
ia64_sigtramp_frame_sniffer (const struct frame_unwind *self,
                             struct frame_info *this_frame,
                             void **this_cache)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
  if (tdep->pc_in_sigtramp)
    {
      CORE_ADDR pc = get_frame_pc (this_frame);

      if (tdep->pc_in_sigtramp (pc))
	return 1;
    }

  return 0;
}

static const struct frame_unwind ia64_sigtramp_frame_unwind =
{
  SIGTRAMP_FRAME,
  ia64_sigtramp_frame_this_id,
  ia64_sigtramp_frame_prev_register,
  NULL,
  ia64_sigtramp_frame_sniffer
};



static CORE_ADDR
ia64_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
  struct ia64_frame_cache *cache = ia64_frame_cache (this_frame, this_cache);

  return cache->base;
}

static const struct frame_base ia64_frame_base =
{
  &ia64_frame_unwind,
  ia64_frame_base_address,
  ia64_frame_base_address,
  ia64_frame_base_address
};

#ifdef HAVE_LIBUNWIND_IA64_H

struct ia64_unwind_table_entry
  {
    unw_word_t start_offset;
    unw_word_t end_offset;
    unw_word_t info_offset;
  };

static __inline__ uint64_t
ia64_rse_slot_num (uint64_t addr)
{
  return (addr >> 3) & 0x3f;
}

/* Skip over a designated number of registers in the backing
   store, remembering every 64th position is for NAT.  */
static __inline__ uint64_t
ia64_rse_skip_regs (uint64_t addr, long num_regs)
{
  long delta = ia64_rse_slot_num(addr) + num_regs;

  if (num_regs < 0)
    delta -= 0x3e;
  return addr + ((num_regs + delta/0x3f) << 3);
}
  
/* Gdb libunwind-frame callback function to convert from an ia64 gdb register 
   number to a libunwind register number.  */
static int
ia64_gdb2uw_regnum (int regnum)
{
  if (regnum == sp_regnum)
    return UNW_IA64_SP;
  else if (regnum == IA64_BSP_REGNUM)
    return UNW_IA64_BSP;
  else if ((unsigned) (regnum - IA64_GR0_REGNUM) < 128)
    return UNW_IA64_GR + (regnum - IA64_GR0_REGNUM);
  else if ((unsigned) (regnum - V32_REGNUM) < 95)
    return UNW_IA64_GR + 32 + (regnum - V32_REGNUM);
  else if ((unsigned) (regnum - IA64_FR0_REGNUM) < 128)
    return UNW_IA64_FR + (regnum - IA64_FR0_REGNUM);
  else if ((unsigned) (regnum - IA64_PR0_REGNUM) < 64)
    return -1;
  else if ((unsigned) (regnum - IA64_BR0_REGNUM) < 8)
    return UNW_IA64_BR + (regnum - IA64_BR0_REGNUM);
  else if (regnum == IA64_PR_REGNUM)
    return UNW_IA64_PR;
  else if (regnum == IA64_IP_REGNUM)
    return UNW_REG_IP;
  else if (regnum == IA64_CFM_REGNUM)
    return UNW_IA64_CFM;
  else if ((unsigned) (regnum - IA64_AR0_REGNUM) < 128)
    return UNW_IA64_AR + (regnum - IA64_AR0_REGNUM);
  else if ((unsigned) (regnum - IA64_NAT0_REGNUM) < 128)
    return UNW_IA64_NAT + (regnum - IA64_NAT0_REGNUM);
  else
    return -1;
}
  
/* Gdb libunwind-frame callback function to convert from a libunwind register 
   number to a ia64 gdb register number.  */
static int
ia64_uw2gdb_regnum (int uw_regnum)
{
  if (uw_regnum == UNW_IA64_SP)
    return sp_regnum;
  else if (uw_regnum == UNW_IA64_BSP)
    return IA64_BSP_REGNUM;
  else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 32)
    return IA64_GR0_REGNUM + (uw_regnum - UNW_IA64_GR);
  else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 128)
    return V32_REGNUM + (uw_regnum - (IA64_GR0_REGNUM + 32));
  else if ((unsigned) (uw_regnum - UNW_IA64_FR) < 128)
    return IA64_FR0_REGNUM + (uw_regnum - UNW_IA64_FR);
  else if ((unsigned) (uw_regnum - UNW_IA64_BR) < 8)
    return IA64_BR0_REGNUM + (uw_regnum - UNW_IA64_BR);
  else if (uw_regnum == UNW_IA64_PR)
    return IA64_PR_REGNUM;
  else if (uw_regnum == UNW_REG_IP)
    return IA64_IP_REGNUM;
  else if (uw_regnum == UNW_IA64_CFM)
    return IA64_CFM_REGNUM;
  else if ((unsigned) (uw_regnum - UNW_IA64_AR) < 128)
    return IA64_AR0_REGNUM + (uw_regnum - UNW_IA64_AR);
  else if ((unsigned) (uw_regnum - UNW_IA64_NAT) < 128)
    return IA64_NAT0_REGNUM + (uw_regnum - UNW_IA64_NAT);
  else
    return -1;
}

/* Gdb libunwind-frame callback function to reveal if register is a float 
   register or not.  */
static int
ia64_is_fpreg (int uw_regnum)
{
  return unw_is_fpreg (uw_regnum);
}
  
/* Libunwind callback accessor function for general registers.  */
static int
ia64_access_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val, 
		 int write, void *arg)
{
  int regnum = ia64_uw2gdb_regnum (uw_regnum);
  unw_word_t bsp, sof, sol, cfm, psr, ip;
  struct frame_info *this_frame = arg;
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  long new_sof, old_sof;
  char buf[MAX_REGISTER_SIZE];
  
  /* We never call any libunwind routines that need to write registers.  */
  gdb_assert (!write);

  switch (uw_regnum)
    {
      case UNW_REG_IP:
	/* Libunwind expects to see the pc value which means the slot number
	   from the psr must be merged with the ip word address.  */
	get_frame_register (this_frame, IA64_IP_REGNUM, buf);
	ip = extract_unsigned_integer (buf, 8, byte_order);
	get_frame_register (this_frame, IA64_PSR_REGNUM, buf);
	psr = extract_unsigned_integer (buf, 8, byte_order);
	*val = ip | ((psr >> 41) & 0x3);
	break;
 
      case UNW_IA64_AR_BSP:
	/* Libunwind expects to see the beginning of the current register
	   frame so we must account for the fact that ptrace() will return a value
	   for bsp that points *after* the current register frame.  */
	get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
	bsp = extract_unsigned_integer (buf, 8, byte_order);
	get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
	cfm = extract_unsigned_integer (buf, 8, byte_order);
	sof = (cfm & 0x7f);
	*val = ia64_rse_skip_regs (bsp, -sof);
	break;

      case UNW_IA64_AR_BSPSTORE:
	/* Libunwind wants bspstore to be after the current register frame.
	   This is what ptrace() and gdb treats as the regular bsp value.  */
	get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
	*val = extract_unsigned_integer (buf, 8, byte_order);
	break;

      default:
	/* For all other registers, just unwind the value directly.  */
	get_frame_register (this_frame, regnum, buf);
	*val = extract_unsigned_integer (buf, 8, byte_order);
	break;
    }
      
  if (gdbarch_debug >= 1)
    fprintf_unfiltered (gdb_stdlog, 
			"  access_reg: from cache: %4s=%s\n",
			(((unsigned) regnum <= IA64_NAT127_REGNUM)
			? ia64_register_names[regnum] : "r??"), 
			paddress (gdbarch, *val));
  return 0;
}

/* Libunwind callback accessor function for floating-point registers.  */
static int
ia64_access_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_fpreg_t *val, 
		   int write, void *arg)
{
  int regnum = ia64_uw2gdb_regnum (uw_regnum);
  struct frame_info *this_frame = arg;
  
  /* We never call any libunwind routines that need to write registers.  */
  gdb_assert (!write);

  get_frame_register (this_frame, regnum, (char *) val);

  return 0;
}

/* Libunwind callback accessor function for top-level rse registers.  */
static int
ia64_access_rse_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val, 
		     int write, void *arg)
{
  int regnum = ia64_uw2gdb_regnum (uw_regnum);
  unw_word_t bsp, sof, sol, cfm, psr, ip;
  struct regcache *regcache = arg;
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  long new_sof, old_sof;
  char buf[MAX_REGISTER_SIZE];
  
  /* We never call any libunwind routines that need to write registers.  */
  gdb_assert (!write);

  switch (uw_regnum)
    {
      case UNW_REG_IP:
	/* Libunwind expects to see the pc value which means the slot number
	   from the psr must be merged with the ip word address.  */
	regcache_cooked_read (regcache, IA64_IP_REGNUM, buf);
	ip = extract_unsigned_integer (buf, 8, byte_order);
	regcache_cooked_read (regcache, IA64_PSR_REGNUM, buf);
	psr = extract_unsigned_integer (buf, 8, byte_order);
	*val = ip | ((psr >> 41) & 0x3);
	break;
	  
      case UNW_IA64_AR_BSP:
	/* Libunwind expects to see the beginning of the current register
	   frame so we must account for the fact that ptrace() will return a value
	   for bsp that points *after* the current register frame.  */
	regcache_cooked_read (regcache, IA64_BSP_REGNUM, buf);
	bsp = extract_unsigned_integer (buf, 8, byte_order);
	regcache_cooked_read (regcache, IA64_CFM_REGNUM, buf);
	cfm = extract_unsigned_integer (buf, 8, byte_order);
	sof = (cfm & 0x7f);
	*val = ia64_rse_skip_regs (bsp, -sof);
	break;
	  
      case UNW_IA64_AR_BSPSTORE:
	/* Libunwind wants bspstore to be after the current register frame.
	   This is what ptrace() and gdb treats as the regular bsp value.  */
	regcache_cooked_read (regcache, IA64_BSP_REGNUM, buf);
	*val = extract_unsigned_integer (buf, 8, byte_order);
	break;

      default:
        /* For all other registers, just unwind the value directly.  */
	regcache_cooked_read (regcache, regnum, buf);
	*val = extract_unsigned_integer (buf, 8, byte_order);
	break;
    }
      
  if (gdbarch_debug >= 1)
    fprintf_unfiltered (gdb_stdlog, 
			"  access_rse_reg: from cache: %4s=%s\n",
			(((unsigned) regnum <= IA64_NAT127_REGNUM)
			 ? ia64_register_names[regnum] : "r??"), 
			paddress (gdbarch, *val));

  return 0;
}

/* Libunwind callback accessor function for top-level fp registers.  */
static int
ia64_access_rse_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum,
		       unw_fpreg_t *val, int write, void *arg)
{
  int regnum = ia64_uw2gdb_regnum (uw_regnum);
  struct regcache *regcache = arg;
  
  /* We never call any libunwind routines that need to write registers.  */
  gdb_assert (!write);

  regcache_cooked_read (regcache, regnum, (char *) val);

  return 0;
}

/* Libunwind callback accessor function for accessing memory.  */
static int
ia64_access_mem (unw_addr_space_t as,
		 unw_word_t addr, unw_word_t *val,
		 int write, void *arg)
{
  if (addr - KERNEL_START < ktab_size)
    {
      unw_word_t *laddr = (unw_word_t*) ((char *) ktab
                          + (addr - KERNEL_START));
		
      if (write)
        *laddr = *val; 
      else 
        *val = *laddr;
      return 0;
    }

  /* XXX do we need to normalize byte-order here?  */
  if (write)
    return target_write_memory (addr, (char *) val, sizeof (unw_word_t));
  else
    return target_read_memory (addr, (char *) val, sizeof (unw_word_t));
}

/* Call low-level function to access the kernel unwind table.  */
static LONGEST
getunwind_table (gdb_byte **buf_p)
{
  LONGEST x;

  /* FIXME drow/2005-09-10: This code used to call
     ia64_linux_xfer_unwind_table directly to fetch the unwind table
     for the currently running ia64-linux kernel.  That data should
     come from the core file and be accessed via the auxv vector; if
     we want to preserve fall back to the running kernel's table, then
     we should find a way to override the corefile layer's
     xfer_partial method.  */

  x = target_read_alloc (&current_target, TARGET_OBJECT_UNWIND_TABLE,
			 NULL, buf_p);

  return x;
}

/* Get the kernel unwind table.  */				 
static int
get_kernel_table (unw_word_t ip, unw_dyn_info_t *di)
{
  static struct ia64_table_entry *etab;

  if (!ktab) 
    {
      gdb_byte *ktab_buf;
      LONGEST size;

      size = getunwind_table (&ktab_buf);
      if (size <= 0)
	return -UNW_ENOINFO;

      ktab = (struct ia64_table_entry *) ktab_buf;
      ktab_size = size;

      for (etab = ktab; etab->start_offset; ++etab)
        etab->info_offset += KERNEL_START;
    }
  
  if (ip < ktab[0].start_offset || ip >= etab[-1].end_offset)
    return -UNW_ENOINFO;
  
  di->format = UNW_INFO_FORMAT_TABLE;
  di->gp = 0;
  di->start_ip = ktab[0].start_offset;
  di->end_ip = etab[-1].end_offset;
  di->u.ti.name_ptr = (unw_word_t) "<kernel>";
  di->u.ti.segbase = 0;
  di->u.ti.table_len = ((char *) etab - (char *) ktab) / sizeof (unw_word_t);
  di->u.ti.table_data = (unw_word_t *) ktab;
  
  if (gdbarch_debug >= 1)
    fprintf_unfiltered (gdb_stdlog, "get_kernel_table: found table `%s': "
			"segbase=%s, length=%s, gp=%s\n",
			(char *) di->u.ti.name_ptr, 
			hex_string (di->u.ti.segbase),
			pulongest (di->u.ti.table_len), 
			hex_string (di->gp));
  return 0;
}

/* Find the unwind table entry for a specified address.  */
static int
ia64_find_unwind_table (struct objfile *objfile, unw_word_t ip,
			unw_dyn_info_t *dip, void **buf)
{
  Elf_Internal_Phdr *phdr, *p_text = NULL, *p_unwind = NULL;
  Elf_Internal_Ehdr *ehdr;
  unw_word_t segbase = 0;
  CORE_ADDR load_base;
  bfd *bfd;
  int i;

  bfd = objfile->obfd;
  
  ehdr = elf_tdata (bfd)->elf_header;
  phdr = elf_tdata (bfd)->phdr;

  load_base = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));

  for (i = 0; i < ehdr->e_phnum; ++i)
    {
      switch (phdr[i].p_type)
	{
	case PT_LOAD:
	  if ((unw_word_t) (ip - load_base - phdr[i].p_vaddr)
	      < phdr[i].p_memsz)
	    p_text = phdr + i;
	  break;

	case PT_IA_64_UNWIND:
	  p_unwind = phdr + i;
	  break;

	default:
	  break;
	}
    }

  if (!p_text || !p_unwind)
    return -UNW_ENOINFO;

  /* Verify that the segment that contains the IP also contains
     the static unwind table.  If not, we may be in the Linux kernel's
     DSO gate page in which case the unwind table is another segment. 
     Otherwise, we are dealing with runtime-generated code, for which we 
     have no info here.  */
  segbase = p_text->p_vaddr + load_base;

  if ((p_unwind->p_vaddr - p_text->p_vaddr) >= p_text->p_memsz)
    {
      int ok = 0;
      for (i = 0; i < ehdr->e_phnum; ++i)
        {
          if (phdr[i].p_type == PT_LOAD
	      && (p_unwind->p_vaddr - phdr[i].p_vaddr) < phdr[i].p_memsz)
	    {
              ok = 1;
	      /* Get the segbase from the section containing the
		 libunwind table.  */
	      segbase = phdr[i].p_vaddr + load_base;
	    }
	}
      if (!ok)
        return -UNW_ENOINFO;
    }

  dip->start_ip = p_text->p_vaddr + load_base;
  dip->end_ip = dip->start_ip + p_text->p_memsz;
  dip->gp = ia64_find_global_pointer (get_objfile_arch (objfile), ip);
  dip->format = UNW_INFO_FORMAT_REMOTE_TABLE;
  dip->u.rti.name_ptr = (unw_word_t) bfd_get_filename (bfd);
  dip->u.rti.segbase = segbase;
  dip->u.rti.table_len = p_unwind->p_memsz / sizeof (unw_word_t);
  dip->u.rti.table_data = p_unwind->p_vaddr + load_base;

  return 0;
}

/* Libunwind callback accessor function to acquire procedure unwind-info.  */
static int
ia64_find_proc_info_x (unw_addr_space_t as, unw_word_t ip, unw_proc_info_t *pi,
		       int need_unwind_info, void *arg)
{
  struct obj_section *sec = find_pc_section (ip);
  unw_dyn_info_t di;
  int ret;
  void *buf = NULL;

  if (!sec)
    {
      /* XXX This only works if the host and the target architecture are
	 both ia64 and if the have (more or less) the same kernel
	 version.  */
      if (get_kernel_table (ip, &di) < 0)
	return -UNW_ENOINFO;

      if (gdbarch_debug >= 1)
	fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: %s -> "
			    "(name=`%s',segbase=%s,start=%s,end=%s,gp=%s,"
			    "length=%s,data=%s)\n",
			    hex_string (ip), (char *)di.u.ti.name_ptr,
			    hex_string (di.u.ti.segbase),
			    hex_string (di.start_ip), hex_string (di.end_ip),
			    hex_string (di.gp),
			    pulongest (di.u.ti.table_len), 
			    hex_string ((CORE_ADDR)di.u.ti.table_data));
    }
  else
    {
      ret = ia64_find_unwind_table (sec->objfile, ip, &di, &buf);
      if (ret < 0)
	return ret;

      if (gdbarch_debug >= 1)
	fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: %s -> "
			    "(name=`%s',segbase=%s,start=%s,end=%s,gp=%s,"
			    "length=%s,data=%s)\n",
			    hex_string (ip), (char *)di.u.rti.name_ptr,
			    hex_string (di.u.rti.segbase),
			    hex_string (di.start_ip), hex_string (di.end_ip),
			    hex_string (di.gp),
			    pulongest (di.u.rti.table_len), 
			    hex_string (di.u.rti.table_data));
    }

  ret = libunwind_search_unwind_table (&as, ip, &di, pi, need_unwind_info,
				       arg);

  /* We no longer need the dyn info storage so free it.  */
  xfree (buf);

  return ret;
}

/* Libunwind callback accessor function for cleanup.  */
static void
ia64_put_unwind_info (unw_addr_space_t as,
		      unw_proc_info_t *pip, void *arg)
{
  /* Nothing required for now.  */
}

/* Libunwind callback accessor function to get head of the dynamic 
   unwind-info registration list.  */ 
static int
ia64_get_dyn_info_list (unw_addr_space_t as,
			unw_word_t *dilap, void *arg)
{
  struct obj_section *text_sec;
  struct objfile *objfile;
  unw_word_t ip, addr;
  unw_dyn_info_t di;
  int ret;

  if (!libunwind_is_initialized ())
    return -UNW_ENOINFO;

  for (objfile = object_files; objfile; objfile = objfile->next)
    {
      void *buf = NULL;

      text_sec = objfile->sections + SECT_OFF_TEXT (objfile);
      ip = obj_section_addr (text_sec);
      ret = ia64_find_unwind_table (objfile, ip, &di, &buf);
      if (ret >= 0)
	{
	  addr = libunwind_find_dyn_list (as, &di, arg);
	  /* We no longer need the dyn info storage so free it.  */
	  xfree (buf);

	  if (addr)
	    {
	      if (gdbarch_debug >= 1)
		fprintf_unfiltered (gdb_stdlog,
				    "dynamic unwind table in objfile %s "
				    "at %s (gp=%s)\n",
				    bfd_get_filename (objfile->obfd),
				    hex_string (addr), hex_string (di.gp));
	      *dilap = addr;
	      return 0;
	    }
	}
    }
  return -UNW_ENOINFO;
}


/* Frame interface functions for libunwind.  */

static void
ia64_libunwind_frame_this_id (struct frame_info *this_frame, void **this_cache,
			      struct frame_id *this_id)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct frame_id id = outer_frame_id;
  char buf[8];
  CORE_ADDR bsp;

  libunwind_frame_this_id (this_frame, this_cache, &id);
  if (frame_id_eq (id, outer_frame_id))
    {
      (*this_id) = outer_frame_id;
      return;
    }

  /* We must add the bsp as the special address for frame comparison 
     purposes.  */
  get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
  bsp = extract_unsigned_integer (buf, 8, byte_order);

  (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp);

  if (gdbarch_debug >= 1)
    fprintf_unfiltered (gdb_stdlog,
			"libunwind frame id: code %s, stack %s, special %s, this_frame %s\n",
			paddress (gdbarch, id.code_addr),
			paddress (gdbarch, id.stack_addr),
			paddress (gdbarch, bsp),
			host_address_to_string (this_frame));
}

static struct value *
ia64_libunwind_frame_prev_register (struct frame_info *this_frame,
				    void **this_cache, int regnum)
{
  int reg = regnum;
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct value *val;

  if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
    reg = IA64_PR_REGNUM;
  else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
    reg = IA64_UNAT_REGNUM;

  /* Let libunwind do most of the work.  */
  val = libunwind_frame_prev_register (this_frame, this_cache, reg);

  if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
    {
      ULONGEST prN_val;

      if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
	{
	  int rrb_pr = 0;
	  ULONGEST cfm;
	  unsigned char buf[MAX_REGISTER_SIZE];

	  /* Fetch predicate register rename base from current frame
	     marker for this frame.  */
	  get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
	  cfm = extract_unsigned_integer (buf, 8, byte_order);
	  rrb_pr = (cfm >> 32) & 0x3f;
	  
	  /* Adjust the register number to account for register rotation.  */
	  regnum = VP16_REGNUM + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
	}
      prN_val = extract_bit_field (value_contents_all (val),
				   regnum - VP0_REGNUM, 1);
      return frame_unwind_got_constant (this_frame, regnum, prN_val);
    }

  else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
    {
      ULONGEST unatN_val;

      unatN_val = extract_bit_field (value_contents_all (val),
                                     regnum - IA64_NAT0_REGNUM, 1);
      return frame_unwind_got_constant (this_frame, regnum, unatN_val);
    }

  else if (regnum == IA64_BSP_REGNUM)
    {
      struct value *cfm_val;
      CORE_ADDR prev_bsp, prev_cfm;

      /* We want to calculate the previous bsp as the end of the previous
         register stack frame.  This corresponds to what the hardware bsp
         register will be if we pop the frame back which is why we might
         have been called.  We know that libunwind will pass us back the
         beginning of the current frame so we should just add sof to it. */
      prev_bsp = extract_unsigned_integer (value_contents_all (val),
					   8, byte_order);
      cfm_val = libunwind_frame_prev_register (this_frame, this_cache,
                                               IA64_CFM_REGNUM);
      prev_cfm = extract_unsigned_integer (value_contents_all (cfm_val),
					   8, byte_order);
      prev_bsp = rse_address_add (prev_bsp, (prev_cfm & 0x7f));

      return frame_unwind_got_constant (this_frame, regnum, prev_bsp);
    }
  else
    return val;
}

static int
ia64_libunwind_frame_sniffer (const struct frame_unwind *self,
                              struct frame_info *this_frame,
                              void **this_cache)
{
  if (libunwind_is_initialized ()
      && libunwind_frame_sniffer (self, this_frame, this_cache))
    return 1;

  return 0;
}

static const struct frame_unwind ia64_libunwind_frame_unwind =
{
  NORMAL_FRAME,
  ia64_libunwind_frame_this_id,
  ia64_libunwind_frame_prev_register,
  NULL,
  ia64_libunwind_frame_sniffer,
  libunwind_frame_dealloc_cache
};

static void
ia64_libunwind_sigtramp_frame_this_id (struct frame_info *this_frame,
                                       void **this_cache,
				       struct frame_id *this_id)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  char buf[8];
  CORE_ADDR bsp;
  struct frame_id id = outer_frame_id;
  CORE_ADDR prev_ip;

  libunwind_frame_this_id (this_frame, this_cache, &id);
  if (frame_id_eq (id, outer_frame_id))
    {
      (*this_id) = outer_frame_id;
      return;
    }

  /* We must add the bsp as the special address for frame comparison 
     purposes.  */
  get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
  bsp = extract_unsigned_integer (buf, 8, byte_order);

  /* For a sigtramp frame, we don't make the check for previous ip being 0.  */
  (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp);

  if (gdbarch_debug >= 1)
    fprintf_unfiltered (gdb_stdlog,
			"libunwind sigtramp frame id: code %s, stack %s, special %s, this_frame %s\n",
			paddress (gdbarch, id.code_addr),
			paddress (gdbarch, id.stack_addr),
			paddress (gdbarch, bsp),
			host_address_to_string (this_frame));
}

static struct value *
ia64_libunwind_sigtramp_frame_prev_register (struct frame_info *this_frame,
					     void **this_cache, int regnum)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct value *prev_ip_val;
  CORE_ADDR prev_ip;

  /* If the previous frame pc value is 0, then we want to use the SIGCONTEXT
     method of getting previous registers.  */
  prev_ip_val = libunwind_frame_prev_register (this_frame, this_cache,
                                               IA64_IP_REGNUM);
  prev_ip = extract_unsigned_integer (value_contents_all (prev_ip_val),
				      8, byte_order);

  if (prev_ip == 0)
    {
      void *tmp_cache = NULL;
      return ia64_sigtramp_frame_prev_register (this_frame, &tmp_cache,
                                                regnum);
    }
  else
    return ia64_libunwind_frame_prev_register (this_frame, this_cache, regnum);
}

static int
ia64_libunwind_sigtramp_frame_sniffer (const struct frame_unwind *self,
                                       struct frame_info *this_frame,
                                       void **this_cache)
{
  if (libunwind_is_initialized ())
    {
      if (libunwind_sigtramp_frame_sniffer (self, this_frame, this_cache))
        return 1;
      return 0;
    }
  else
    return ia64_sigtramp_frame_sniffer (self, this_frame, this_cache);
}

static const struct frame_unwind ia64_libunwind_sigtramp_frame_unwind =
{
  SIGTRAMP_FRAME,
  ia64_libunwind_sigtramp_frame_this_id,
  ia64_libunwind_sigtramp_frame_prev_register,
  NULL,
  ia64_libunwind_sigtramp_frame_sniffer
};

/* Set of libunwind callback acccessor functions.  */
static unw_accessors_t ia64_unw_accessors =
{
  ia64_find_proc_info_x,
  ia64_put_unwind_info,
  ia64_get_dyn_info_list,
  ia64_access_mem,
  ia64_access_reg,
  ia64_access_fpreg,
  /* resume */
  /* get_proc_name */
};

/* Set of special libunwind callback acccessor functions specific for accessing
   the rse registers.  At the top of the stack, we want libunwind to figure out
   how to read r32 - r127.  Though usually they are found sequentially in memory
   starting from $bof, this is not always true.  */
static unw_accessors_t ia64_unw_rse_accessors =
{
  ia64_find_proc_info_x,
  ia64_put_unwind_info,
  ia64_get_dyn_info_list,
  ia64_access_mem,
  ia64_access_rse_reg,
  ia64_access_rse_fpreg,
  /* resume */
  /* get_proc_name */
};

/* Set of ia64 gdb libunwind-frame callbacks and data for generic libunwind-frame code to use.  */
static struct libunwind_descr ia64_libunwind_descr =
{
  ia64_gdb2uw_regnum, 
  ia64_uw2gdb_regnum, 
  ia64_is_fpreg, 
  &ia64_unw_accessors,
  &ia64_unw_rse_accessors,
};

#endif /* HAVE_LIBUNWIND_IA64_H  */

static int
ia64_use_struct_convention (struct type *type)
{
  struct type *float_elt_type;

  /* Don't use the struct convention for anything but structure,
     union, or array types.  */
  if (!(TYPE_CODE (type) == TYPE_CODE_STRUCT
	|| TYPE_CODE (type) == TYPE_CODE_UNION
	|| TYPE_CODE (type) == TYPE_CODE_ARRAY))
    return 0;

  /* HFAs are structures (or arrays) consisting entirely of floating
     point values of the same length.  Up to 8 of these are returned
     in registers.  Don't use the struct convention when this is the
     case.  */
  float_elt_type = is_float_or_hfa_type (type);
  if (float_elt_type != NULL
      && TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type) <= 8)
    return 0;

  /* Other structs of length 32 or less are returned in r8-r11.
     Don't use the struct convention for those either.  */
  return TYPE_LENGTH (type) > 32;
}

static void
ia64_extract_return_value (struct type *type, struct regcache *regcache,
			   gdb_byte *valbuf)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct type *float_elt_type;

  float_elt_type = is_float_or_hfa_type (type);
  if (float_elt_type != NULL)
    {
      char from[MAX_REGISTER_SIZE];
      int offset = 0;
      int regnum = IA64_FR8_REGNUM;
      int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type);

      while (n-- > 0)
	{
	  regcache_cooked_read (regcache, regnum, from);
	  convert_typed_floating (from, ia64_ext_type (gdbarch),
				  (char *)valbuf + offset, float_elt_type);	  
	  offset += TYPE_LENGTH (float_elt_type);
	  regnum++;
	}
    }
  else
    {
      ULONGEST val;
      int offset = 0;
      int regnum = IA64_GR8_REGNUM;
      int reglen = TYPE_LENGTH (register_type (gdbarch, IA64_GR8_REGNUM));
      int n = TYPE_LENGTH (type) / reglen;
      int m = TYPE_LENGTH (type) % reglen;

      while (n-- > 0)
	{
	  ULONGEST val;
	  regcache_cooked_read_unsigned (regcache, regnum, &val);
	  memcpy ((char *)valbuf + offset, &val, reglen);
	  offset += reglen;
	  regnum++;
	}

      if (m)
	{
          regcache_cooked_read_unsigned (regcache, regnum, &val);
	  memcpy ((char *)valbuf + offset, &val, m);
	}
    }
}

static void
ia64_store_return_value (struct type *type, struct regcache *regcache, 
			 const gdb_byte *valbuf)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  struct type *float_elt_type;

  float_elt_type = is_float_or_hfa_type (type);
  if (float_elt_type != NULL)
    {
      char to[MAX_REGISTER_SIZE];
      int offset = 0;
      int regnum = IA64_FR8_REGNUM;
      int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type);

      while (n-- > 0)
	{
	  convert_typed_floating ((char *)valbuf + offset, float_elt_type,
				  to, ia64_ext_type (gdbarch));
	  regcache_cooked_write (regcache, regnum, to);
	  offset += TYPE_LENGTH (float_elt_type);
	  regnum++;
	}
    }
  else
    {
      ULONGEST val;
      int offset = 0;
      int regnum = IA64_GR8_REGNUM;
      int reglen = TYPE_LENGTH (register_type (gdbarch, IA64_GR8_REGNUM));
      int n = TYPE_LENGTH (type) / reglen;
      int m = TYPE_LENGTH (type) % reglen;

      while (n-- > 0)
	{
	  ULONGEST val;
	  memcpy (&val, (char *)valbuf + offset, reglen);
	  regcache_cooked_write_unsigned (regcache, regnum, val);
	  offset += reglen;
	  regnum++;
	}

      if (m)
	{
	  memcpy (&val, (char *)valbuf + offset, m);
          regcache_cooked_write_unsigned (regcache, regnum, val);
	}
    }
}
  
static enum return_value_convention
ia64_return_value (struct gdbarch *gdbarch, struct type *func_type,
		   struct type *valtype, struct regcache *regcache,
		   gdb_byte *readbuf, const gdb_byte *writebuf)
{
  int struct_return = ia64_use_struct_convention (valtype);

  if (writebuf != NULL)
    {
      gdb_assert (!struct_return);
      ia64_store_return_value (valtype, regcache, writebuf);
    }

  if (readbuf != NULL)
    {
      gdb_assert (!struct_return);
      ia64_extract_return_value (valtype, regcache, readbuf);
    }

  if (struct_return)
    return RETURN_VALUE_STRUCT_CONVENTION;
  else
    return RETURN_VALUE_REGISTER_CONVENTION;
}

static int
is_float_or_hfa_type_recurse (struct type *t, struct type **etp)
{
  switch (TYPE_CODE (t))
    {
    case TYPE_CODE_FLT:
      if (*etp)
	return TYPE_LENGTH (*etp) == TYPE_LENGTH (t);
      else
	{
	  *etp = t;
	  return 1;
	}
      break;
    case TYPE_CODE_ARRAY:
      return
	is_float_or_hfa_type_recurse (check_typedef (TYPE_TARGET_TYPE (t)),
				      etp);
      break;
    case TYPE_CODE_STRUCT:
      {
	int i;

	for (i = 0; i < TYPE_NFIELDS (t); i++)
	  if (!is_float_or_hfa_type_recurse
	      (check_typedef (TYPE_FIELD_TYPE (t, i)), etp))
	    return 0;
	return 1;
      }
      break;
    default:
      return 0;
      break;
    }
}

/* Determine if the given type is one of the floating point types or
   and HFA (which is a struct, array, or combination thereof whose
   bottom-most elements are all of the same floating point type).  */

static struct type *
is_float_or_hfa_type (struct type *t)
{
  struct type *et = 0;

  return is_float_or_hfa_type_recurse (t, &et) ? et : 0;
}


/* Return 1 if the alignment of T is such that the next even slot
   should be used.  Return 0, if the next available slot should
   be used.  (See section 8.5.1 of the IA-64 Software Conventions
   and Runtime manual).  */

static int
slot_alignment_is_next_even (struct type *t)
{
  switch (TYPE_CODE (t))
    {
    case TYPE_CODE_INT:
    case TYPE_CODE_FLT:
      if (TYPE_LENGTH (t) > 8)
	return 1;
      else
	return 0;
    case TYPE_CODE_ARRAY:
      return
	slot_alignment_is_next_even (check_typedef (TYPE_TARGET_TYPE (t)));
    case TYPE_CODE_STRUCT:
      {
	int i;

	for (i = 0; i < TYPE_NFIELDS (t); i++)
	  if (slot_alignment_is_next_even
	      (check_typedef (TYPE_FIELD_TYPE (t, i))))
	    return 1;
	return 0;
      }
    default:
      return 0;
    }
}

/* Attempt to find (and return) the global pointer for the given
   function.

   This is a rather nasty bit of code searchs for the .dynamic section
   in the objfile corresponding to the pc of the function we're trying
   to call.  Once it finds the addresses at which the .dynamic section
   lives in the child process, it scans the Elf64_Dyn entries for a
   DT_PLTGOT tag.  If it finds one of these, the corresponding
   d_un.d_ptr value is the global pointer.  */

static CORE_ADDR
ia64_find_global_pointer (struct gdbarch *gdbarch, CORE_ADDR faddr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct obj_section *faddr_sect;
     
  faddr_sect = find_pc_section (faddr);
  if (faddr_sect != NULL)
    {
      struct obj_section *osect;

      ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
	{
	  if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0)
	    break;
	}

      if (osect < faddr_sect->objfile->sections_end)
	{
	  CORE_ADDR addr, endaddr;

	  addr = obj_section_addr (osect);
	  endaddr = obj_section_endaddr (osect);

	  while (addr < endaddr)
	    {
	      int status;
	      LONGEST tag;
	      char buf[8];

	      status = target_read_memory (addr, buf, sizeof (buf));
	      if (status != 0)
		break;
	      tag = extract_signed_integer (buf, sizeof (buf), byte_order);

	      if (tag == DT_PLTGOT)
		{
		  CORE_ADDR global_pointer;

		  status = target_read_memory (addr + 8, buf, sizeof (buf));
		  if (status != 0)
		    break;
		  global_pointer = extract_unsigned_integer (buf, sizeof (buf),
							     byte_order);

		  /* The payoff... */
		  return global_pointer;
		}

	      if (tag == DT_NULL)
		break;

	      addr += 16;
	    }
	}
    }
  return 0;
}

/* Given a function's address, attempt to find (and return) the
   corresponding (canonical) function descriptor.  Return 0 if
   not found.  */
static CORE_ADDR
find_extant_func_descr (struct gdbarch *gdbarch, CORE_ADDR faddr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct obj_section *faddr_sect;

  /* Return early if faddr is already a function descriptor.  */
  faddr_sect = find_pc_section (faddr);
  if (faddr_sect && strcmp (faddr_sect->the_bfd_section->name, ".opd") == 0)
    return faddr;

  if (faddr_sect != NULL)
    {
      struct obj_section *osect;
      ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
	{
	  if (strcmp (osect->the_bfd_section->name, ".opd") == 0)
	    break;
	}

      if (osect < faddr_sect->objfile->sections_end)
	{
	  CORE_ADDR addr, endaddr;

	  addr = obj_section_addr (osect);
	  endaddr = obj_section_endaddr (osect);

	  while (addr < endaddr)
	    {
	      int status;
	      LONGEST faddr2;
	      char buf[8];

	      status = target_read_memory (addr, buf, sizeof (buf));
	      if (status != 0)
		break;
	      faddr2 = extract_signed_integer (buf, sizeof (buf), byte_order);

	      if (faddr == faddr2)
		return addr;

	      addr += 16;
	    }
	}
    }
  return 0;
}

/* Attempt to find a function descriptor corresponding to the
   given address.  If none is found, construct one on the
   stack using the address at fdaptr.  */

static CORE_ADDR
find_func_descr (struct regcache *regcache, CORE_ADDR faddr, CORE_ADDR *fdaptr)
{
  struct gdbarch *gdbarch = get_regcache_arch (regcache);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR fdesc;

  fdesc = find_extant_func_descr (gdbarch, faddr);

  if (fdesc == 0)
    {
      ULONGEST global_pointer;
      char buf[16];

      fdesc = *fdaptr;
      *fdaptr += 16;

      global_pointer = ia64_find_global_pointer (gdbarch, faddr);

      if (global_pointer == 0)
	regcache_cooked_read_unsigned (regcache,
				       IA64_GR1_REGNUM, &global_pointer);

      store_unsigned_integer (buf, 8, byte_order, faddr);
      store_unsigned_integer (buf + 8, 8, byte_order, global_pointer);

      write_memory (fdesc, buf, 16);
    }

  return fdesc; 
}

/* Use the following routine when printing out function pointers
   so the user can see the function address rather than just the
   function descriptor.  */
static CORE_ADDR
ia64_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
				 struct target_ops *targ)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  struct obj_section *s;
  gdb_byte buf[8];

  s = find_pc_section (addr);

  /* check if ADDR points to a function descriptor.  */
  if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
    return read_memory_unsigned_integer (addr, 8, byte_order);

  /* Normally, functions live inside a section that is executable.
     So, if ADDR points to a non-executable section, then treat it
     as a function descriptor and return the target address iff
     the target address itself points to a section that is executable.
     Check first the memory of the whole length of 8 bytes is readable.  */
  if (s && (s->the_bfd_section->flags & SEC_CODE) == 0
      && target_read_memory (addr, buf, 8) == 0)
    {
      CORE_ADDR pc = extract_unsigned_integer (buf, 8, byte_order);
      struct obj_section *pc_section = find_pc_section (pc);

      if (pc_section && (pc_section->the_bfd_section->flags & SEC_CODE))
        return pc;
    }

  /* There are also descriptors embedded in vtables.  */
  if (s)
    {
      struct minimal_symbol *minsym;

      minsym = lookup_minimal_symbol_by_pc (addr);

      if (minsym && is_vtable_name (SYMBOL_LINKAGE_NAME (minsym)))
	return read_memory_unsigned_integer (addr, 8, byte_order);
    }

  return addr;
}

static CORE_ADDR
ia64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
{
  return sp & ~0xfLL;
}

static CORE_ADDR
ia64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
		      struct regcache *regcache, CORE_ADDR bp_addr,
		      int nargs, struct value **args, CORE_ADDR sp,
		      int struct_return, CORE_ADDR struct_addr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int argno;
  struct value *arg;
  struct type *type;
  int len, argoffset;
  int nslots, rseslots, memslots, slotnum, nfuncargs;
  int floatreg;
  ULONGEST bsp, cfm, pfs, new_bsp;
  CORE_ADDR funcdescaddr, pc, global_pointer;
  CORE_ADDR func_addr = find_function_addr (function, NULL);

  nslots = 0;
  nfuncargs = 0;
  /* Count the number of slots needed for the arguments.  */
  for (argno = 0; argno < nargs; argno++)
    {
      arg = args[argno];
      type = check_typedef (value_type (arg));
      len = TYPE_LENGTH (type);

      if ((nslots & 1) && slot_alignment_is_next_even (type))
	nslots++;

      if (TYPE_CODE (type) == TYPE_CODE_FUNC)
	nfuncargs++;

      nslots += (len + 7) / 8;
    }

  /* Divvy up the slots between the RSE and the memory stack.  */
  rseslots = (nslots > 8) ? 8 : nslots;
  memslots = nslots - rseslots;

  /* Allocate a new RSE frame.  */
  regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);

  regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
  new_bsp = rse_address_add (bsp, rseslots);
  regcache_cooked_write_unsigned (regcache, IA64_BSP_REGNUM, new_bsp);

  regcache_cooked_read_unsigned (regcache, IA64_PFS_REGNUM, &pfs);
  pfs &= 0xc000000000000000LL;
  pfs |= (cfm & 0xffffffffffffLL);
  regcache_cooked_write_unsigned (regcache, IA64_PFS_REGNUM, pfs);

  cfm &= 0xc000000000000000LL;
  cfm |= rseslots;
  regcache_cooked_write_unsigned (regcache, IA64_CFM_REGNUM, cfm);
  
  /* We will attempt to find function descriptors in the .opd segment,
     but if we can't we'll construct them ourselves.  That being the
     case, we'll need to reserve space on the stack for them.  */
  funcdescaddr = sp - nfuncargs * 16;
  funcdescaddr &= ~0xfLL;

  /* Adjust the stack pointer to it's new value.  The calling conventions
     require us to have 16 bytes of scratch, plus whatever space is
     necessary for the memory slots and our function descriptors.  */
  sp = sp - 16 - (memslots + nfuncargs) * 8;
  sp &= ~0xfLL;				/* Maintain 16 byte alignment.  */

  /* Place the arguments where they belong.  The arguments will be
     either placed in the RSE backing store or on the memory stack.
     In addition, floating point arguments or HFAs are placed in
     floating point registers.  */
  slotnum = 0;
  floatreg = IA64_FR8_REGNUM;
  for (argno = 0; argno < nargs; argno++)
    {
      struct type *float_elt_type;

      arg = args[argno];
      type = check_typedef (value_type (arg));
      len = TYPE_LENGTH (type);

      /* Special handling for function parameters.  */
      if (len == 8 
          && TYPE_CODE (type) == TYPE_CODE_PTR 
	  && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
	{
	  char val_buf[8];
	  ULONGEST faddr = extract_unsigned_integer (value_contents (arg),
						     8, byte_order);
	  store_unsigned_integer (val_buf, 8, byte_order,
				  find_func_descr (regcache, faddr,
						   &funcdescaddr));
	  if (slotnum < rseslots)
	    write_memory (rse_address_add (bsp, slotnum), val_buf, 8);
	  else
	    write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8);
	  slotnum++;
	  continue;
	}

      /* Normal slots.  */

      /* Skip odd slot if necessary...  */
      if ((slotnum & 1) && slot_alignment_is_next_even (type))
	slotnum++;

      argoffset = 0;
      while (len > 0)
	{
	  char val_buf[8];

	  memset (val_buf, 0, 8);
	  memcpy (val_buf, value_contents (arg) + argoffset, (len > 8) ? 8 : len);

	  if (slotnum < rseslots)
	    write_memory (rse_address_add (bsp, slotnum), val_buf, 8);
	  else
	    write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8);

	  argoffset += 8;
	  len -= 8;
	  slotnum++;
	}

      /* Handle floating point types (including HFAs).  */
      float_elt_type = is_float_or_hfa_type (type);
      if (float_elt_type != NULL)
	{
	  argoffset = 0;
	  len = TYPE_LENGTH (type);
	  while (len > 0 && floatreg < IA64_FR16_REGNUM)
	    {
	      char to[MAX_REGISTER_SIZE];
	      convert_typed_floating (value_contents (arg) + argoffset, float_elt_type,
				      to, ia64_ext_type (gdbarch));
	      regcache_cooked_write (regcache, floatreg, (void *)to);
	      floatreg++;
	      argoffset += TYPE_LENGTH (float_elt_type);
	      len -= TYPE_LENGTH (float_elt_type);
	    }
	}
    }

  /* Store the struct return value in r8 if necessary.  */
  if (struct_return)
    {
      regcache_cooked_write_unsigned (regcache, IA64_GR8_REGNUM, (ULONGEST)struct_addr);
    }

  global_pointer = ia64_find_global_pointer (gdbarch, func_addr);

  if (global_pointer != 0)
    regcache_cooked_write_unsigned (regcache, IA64_GR1_REGNUM, global_pointer);

  regcache_cooked_write_unsigned (regcache, IA64_BR0_REGNUM, bp_addr);

  regcache_cooked_write_unsigned (regcache, sp_regnum, sp);

  return sp;
}

static struct frame_id
ia64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  char buf[8];
  CORE_ADDR sp, bsp;

  get_frame_register (this_frame, sp_regnum, buf);
  sp = extract_unsigned_integer (buf, 8, byte_order);

  get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
  bsp = extract_unsigned_integer (buf, 8, byte_order);

  if (gdbarch_debug >= 1)
    fprintf_unfiltered (gdb_stdlog,
			"dummy frame id: code %s, stack %s, special %s\n",
			paddress (gdbarch, get_frame_pc (this_frame)),
			paddress (gdbarch, sp), paddress (gdbarch, bsp));

  return frame_id_build_special (sp, get_frame_pc (this_frame), bsp);
}

static CORE_ADDR 
ia64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  char buf[8];
  CORE_ADDR ip, psr, pc;

  frame_unwind_register (next_frame, IA64_IP_REGNUM, buf);
  ip = extract_unsigned_integer (buf, 8, byte_order);
  frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf);
  psr = extract_unsigned_integer (buf, 8, byte_order);
 
  pc = (ip & ~0xf) | ((psr >> 41) & 3);
  return pc;
}

static int
ia64_print_insn (bfd_vma memaddr, struct disassemble_info *info)
{
  info->bytes_per_line = SLOT_MULTIPLIER;
  return print_insn_ia64 (memaddr, info);
}

static struct gdbarch *
ia64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;
  struct gdbarch_tdep *tdep;

  /* If there is already a candidate, use it.  */
  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return arches->gdbarch;

  tdep = xzalloc (sizeof (struct gdbarch_tdep));
  gdbarch = gdbarch_alloc (&info, tdep);

  /* According to the ia64 specs, instructions that store long double
     floats in memory use a long-double format different than that
     used in the floating registers.  The memory format matches the
     x86 extended float format which is 80 bits.  An OS may choose to
     use this format (e.g. GNU/Linux) or choose to use a different
     format for storing long doubles (e.g. HPUX).  In the latter case,
     the setting of the format may be moved/overridden in an
     OS-specific tdep file.  */
  set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);

  set_gdbarch_short_bit (gdbarch, 16);
  set_gdbarch_int_bit (gdbarch, 32);
  set_gdbarch_long_bit (gdbarch, 64);
  set_gdbarch_long_long_bit (gdbarch, 64);
  set_gdbarch_float_bit (gdbarch, 32);
  set_gdbarch_double_bit (gdbarch, 64);
  set_gdbarch_long_double_bit (gdbarch, 128);
  set_gdbarch_ptr_bit (gdbarch, 64);

  set_gdbarch_num_regs (gdbarch, NUM_IA64_RAW_REGS);
  set_gdbarch_num_pseudo_regs (gdbarch, LAST_PSEUDO_REGNUM - FIRST_PSEUDO_REGNUM);
  set_gdbarch_sp_regnum (gdbarch, sp_regnum);
  set_gdbarch_fp0_regnum (gdbarch, IA64_FR0_REGNUM);

  set_gdbarch_register_name (gdbarch, ia64_register_name);
  set_gdbarch_register_type (gdbarch, ia64_register_type);

  set_gdbarch_pseudo_register_read (gdbarch, ia64_pseudo_register_read);
  set_gdbarch_pseudo_register_write (gdbarch, ia64_pseudo_register_write);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, ia64_dwarf_reg_to_regnum);
  set_gdbarch_register_reggroup_p (gdbarch, ia64_register_reggroup_p);
  set_gdbarch_convert_register_p (gdbarch, ia64_convert_register_p);
  set_gdbarch_register_to_value (gdbarch, ia64_register_to_value);
  set_gdbarch_value_to_register (gdbarch, ia64_value_to_register);

  set_gdbarch_skip_prologue (gdbarch, ia64_skip_prologue);

  set_gdbarch_return_value (gdbarch, ia64_return_value);

  set_gdbarch_memory_insert_breakpoint (gdbarch, ia64_memory_insert_breakpoint);
  set_gdbarch_memory_remove_breakpoint (gdbarch, ia64_memory_remove_breakpoint);
  set_gdbarch_breakpoint_from_pc (gdbarch, ia64_breakpoint_from_pc);
  set_gdbarch_read_pc (gdbarch, ia64_read_pc);
  set_gdbarch_write_pc (gdbarch, ia64_write_pc);

  /* Settings for calling functions in the inferior.  */
  set_gdbarch_push_dummy_call (gdbarch, ia64_push_dummy_call);
  set_gdbarch_frame_align (gdbarch, ia64_frame_align);
  set_gdbarch_dummy_id (gdbarch, ia64_dummy_id);

  set_gdbarch_unwind_pc (gdbarch, ia64_unwind_pc);
#ifdef HAVE_LIBUNWIND_IA64_H
  frame_unwind_append_unwinder (gdbarch,
                                &ia64_libunwind_sigtramp_frame_unwind);
  frame_unwind_append_unwinder (gdbarch, &ia64_libunwind_frame_unwind);
  frame_unwind_append_unwinder (gdbarch, &ia64_sigtramp_frame_unwind);
  libunwind_frame_set_descr (gdbarch, &ia64_libunwind_descr);
#else
  frame_unwind_append_unwinder (gdbarch, &ia64_sigtramp_frame_unwind);
#endif
  frame_unwind_append_unwinder (gdbarch, &ia64_frame_unwind);
  frame_base_set_default (gdbarch, &ia64_frame_base);

  /* Settings that should be unnecessary.  */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);

  set_gdbarch_print_insn (gdbarch, ia64_print_insn);
  set_gdbarch_convert_from_func_ptr_addr (gdbarch, ia64_convert_from_func_ptr_addr);

  /* The virtual table contains 16-byte descriptors, not pointers to
     descriptors.  */
  set_gdbarch_vtable_function_descriptors (gdbarch, 1);

  /* Hook in ABI-specific overrides, if they have been registered.  */
  gdbarch_init_osabi (info, gdbarch);

  return gdbarch;
}

extern initialize_file_ftype _initialize_ia64_tdep; /* -Wmissing-prototypes */

void
_initialize_ia64_tdep (void)
{
  gdbarch_register (bfd_arch_ia64, ia64_gdbarch_init, NULL);
}