summaryrefslogtreecommitdiff
path: root/gdb/i386-linux-tdep.c
blob: 26f838e8e7fd1086326e23c8dc6669ace206a2f5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
/* Target-dependent code for GNU/Linux running on i386's, for GDB.

   Copyright 2000, 2001, 2002, 2003 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include "defs.h"
#include "gdbcore.h"
#include "frame.h"
#include "value.h"
#include "regcache.h"
#include "inferior.h"
#include "reggroups.h"
#include "gdb_assert.h"

/* For i386_linux_skip_solib_resolver.  */
#include "symtab.h"
#include "symfile.h"
#include "objfiles.h"

#include "solib-svr4.h"		/* For struct link_map_offsets.  */

#include "osabi.h"

#include "i386-tdep.h"
#include "i387-tdep.h"
#include "i386-linux-tdep.h"


/* The register sets used in GNU/Linux ELF core-dumps are identical to
   the register sets in `struct user' that is used for a.out
   core-dumps, and is also used by `ptrace'.  The corresponding types
   are `elf_gregset_t' for the general-purpose registers (with
   `elf_greg_t' the type of a single GP register) and `elf_fpregset_t'
   for the floating-point registers.

   Those types used to be available under the names `gregset_t' and
   `fpregset_t' too, and this file used those names in the past.  But
   those names are now used for the register sets used in the
   `mcontext_t' type, and have a different size and layout.  */

enum user_regs {
  USER_INVALID = -1,
  USER_EBX,
  USER_ECX,
  USER_EDX,
  USER_ESI,
  USER_EDI,
  USER_EBP,
  USER_EAX,
  USER_DS,
  USER_ES,
  USER_FS,
  USER_GS,
  USER_ORIG_EAX,
  USER_EIP,
  USER_CS,
  USER_EFL,
  USER_UESP,
  USER_SS,
  USER_MAX
};

struct regnum_map
{
  enum i386_regnums regnum;
  enum user_regs user;
};

struct regnum_to_user
{
  long nr;
  const struct regnum_map *map;
};

long
i386_linux_greg_offset (int regnum)
{
  /* Mapping between the general-purpose registers in `struct user'
     format and GDB's register array layout.  */
  static const struct regnum_map regnum_map[] = 
  {
    { I386_EAX_REGNUM, USER_EAX },
    { I386_ECX_REGNUM, USER_ECX },
    { I386_EDX_REGNUM, USER_EDX },
    { I386_EBX_REGNUM, USER_EBX },
    { I386_ESP_REGNUM, USER_UESP },
    { I386_EBP_REGNUM, USER_EBP },
    { I386_ESI_REGNUM, USER_ESI },
    { I386_EDI_REGNUM, USER_EDI },
    { I386_EIP_REGNUM, USER_EIP },
    { I386_EFLAGS_REGNUM, USER_EFL },
    { I386_CS_REGNUM, USER_CS },
    { I386_SS_REGNUM, USER_SS },
    { I386_DS_REGNUM, USER_DS },
    { I386_ES_REGNUM, USER_ES },
    { I386_FS_REGNUM, USER_FS },
    { I386_GS_REGNUM, USER_GS },
    { I386_ST0_REGNUM, USER_INVALID },
    { I386_ST1_REGNUM, USER_INVALID },
    { I386_ST2_REGNUM, USER_INVALID },
    { I386_ST3_REGNUM, USER_INVALID },
    { I386_ST4_REGNUM, USER_INVALID },
    { I386_ST5_REGNUM, USER_INVALID },
    { I386_ST6_REGNUM, USER_INVALID },
    { I386_ST7_REGNUM, USER_INVALID },
    { I386_FCTRL_REGNUM, USER_INVALID },
    { I386_FSTAT_REGNUM, USER_INVALID },
    { I386_FTAG_REGNUM, USER_INVALID },
    { I386_FISEG_REGNUM, USER_INVALID },
    { I386_FIOFF_REGNUM, USER_INVALID },
    { I386_FOSEG_REGNUM, USER_INVALID },
    { I386_FOOFF_REGNUM, USER_INVALID },
    { I386_FOP_REGNUM, USER_INVALID },
    { I386_XMM0_REGNUM, USER_INVALID },
    { I386_XMM1_REGNUM, USER_INVALID },
    { I386_XMM2_REGNUM, USER_INVALID },
    { I386_XMM3_REGNUM, USER_INVALID },
    { I386_XMM4_REGNUM, USER_INVALID },
    { I386_XMM5_REGNUM, USER_INVALID },
    { I386_XMM6_REGNUM, USER_INVALID },
    { I386_XMM6_REGNUM, USER_INVALID },
    { I386_MXCSR_REGNUM, USER_INVALID },
    { I386_LINUX_ORIG_EAX_REGNUM, USER_ORIG_EAX }
  };
  const static struct regnum_to_user regnum_to_user =
  {
    ARRAY_SIZE (regnum_map), regnum_map
  };

  gdb_assert (TARGET_ARCHITECTURE->arch == bfd_arch_i386);
  if (regnum < 0)
    return USER_MAX * 4;
  if (regnum >= regnum_to_user.nr)
    return -1;
  gdb_assert (regnum_to_user.map[regnum].regnum == regnum);
  if (regnum_to_user.map[regnum].user < 0)
    return -1;
  return regnum_to_user.map[regnum].user * 4;
}


/* Return the name of register REG.  */

static const char *
i386_linux_register_name (int reg)
{
  /* Deal with the extra "orig_eax" pseudo register.  */
  if (reg == I386_LINUX_ORIG_EAX_REGNUM)
    return "orig_eax";

  return i386_register_name (reg);
}

/* Return non-zero, when the register is in the corresponding register
   group.  Put the LINUX_ORIG_EAX register in the system group.  */
static int
i386_linux_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
				struct reggroup *group)
{
  if (regnum == I386_LINUX_ORIG_EAX_REGNUM)
    return (group == system_reggroup
	    || group == save_reggroup
	    || group == restore_reggroup);
  return i386_register_reggroup_p (gdbarch, regnum, group);
}


/* Recognizing signal handler frames.  */

/* GNU/Linux has two flavors of signals.  Normal signal handlers, and
   "realtime" (RT) signals.  The RT signals can provide additional
   information to the signal handler if the SA_SIGINFO flag is set
   when establishing a signal handler using `sigaction'.  It is not
   unlikely that future versions of GNU/Linux will support SA_SIGINFO
   for normal signals too.  */

/* When the i386 Linux kernel calls a signal handler and the
   SA_RESTORER flag isn't set, the return address points to a bit of
   code on the stack.  This function returns whether the PC appears to
   be within this bit of code.

   The instruction sequence for normal signals is
       pop    %eax
       mov    $0x77, %eax
       int    $0x80
   or 0x58 0xb8 0x77 0x00 0x00 0x00 0xcd 0x80.

   Checking for the code sequence should be somewhat reliable, because
   the effect is to call the system call sigreturn.  This is unlikely
   to occur anywhere other than a signal trampoline.

   It kind of sucks that we have to read memory from the process in
   order to identify a signal trampoline, but there doesn't seem to be
   any other way.  The PC_IN_SIGTRAMP macro in tm-linux.h arranges to
   only call us if no function name could be identified, which should
   be the case since the code is on the stack.

   Detection of signal trampolines for handlers that set the
   SA_RESTORER flag is in general not possible.  Unfortunately this is
   what the GNU C Library has been doing for quite some time now.
   However, as of version 2.1.2, the GNU C Library uses signal
   trampolines (named __restore and __restore_rt) that are identical
   to the ones used by the kernel.  Therefore, these trampolines are
   supported too.  */

#define LINUX_SIGTRAMP_INSN0	0x58	/* pop %eax */
#define LINUX_SIGTRAMP_OFFSET0	0
#define LINUX_SIGTRAMP_INSN1	0xb8	/* mov $NNNN, %eax */
#define LINUX_SIGTRAMP_OFFSET1	1
#define LINUX_SIGTRAMP_INSN2	0xcd	/* int */
#define LINUX_SIGTRAMP_OFFSET2	6

static const unsigned char linux_sigtramp_code[] =
{
  LINUX_SIGTRAMP_INSN0,					/* pop %eax */
  LINUX_SIGTRAMP_INSN1, 0x77, 0x00, 0x00, 0x00,		/* mov $0x77, %eax */
  LINUX_SIGTRAMP_INSN2, 0x80				/* int $0x80 */
};

#define LINUX_SIGTRAMP_LEN (sizeof linux_sigtramp_code)

/* If PC is in a sigtramp routine, return the address of the start of
   the routine.  Otherwise, return 0.  */

static CORE_ADDR
i386_linux_sigtramp_start (CORE_ADDR pc)
{
  unsigned char buf[LINUX_SIGTRAMP_LEN];

  /* We only recognize a signal trampoline if PC is at the start of
     one of the three instructions.  We optimize for finding the PC at
     the start, as will be the case when the trampoline is not the
     first frame on the stack.  We assume that in the case where the
     PC is not at the start of the instruction sequence, there will be
     a few trailing readable bytes on the stack.  */

  if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
    return 0;

  if (buf[0] != LINUX_SIGTRAMP_INSN0)
    {
      int adjust;

      switch (buf[0])
	{
	case LINUX_SIGTRAMP_INSN1:
	  adjust = LINUX_SIGTRAMP_OFFSET1;
	  break;
	case LINUX_SIGTRAMP_INSN2:
	  adjust = LINUX_SIGTRAMP_OFFSET2;
	  break;
	default:
	  return 0;
	}

      pc -= adjust;

      if (read_memory_nobpt (pc, (char *) buf, LINUX_SIGTRAMP_LEN) != 0)
	return 0;
    }

  if (memcmp (buf, linux_sigtramp_code, LINUX_SIGTRAMP_LEN) != 0)
    return 0;

  return pc;
}

/* This function does the same for RT signals.  Here the instruction
   sequence is
       mov    $0xad, %eax
       int    $0x80
   or 0xb8 0xad 0x00 0x00 0x00 0xcd 0x80.

   The effect is to call the system call rt_sigreturn.  */

#define LINUX_RT_SIGTRAMP_INSN0		0xb8 /* mov $NNNN, %eax */
#define LINUX_RT_SIGTRAMP_OFFSET0	0
#define LINUX_RT_SIGTRAMP_INSN1		0xcd /* int */
#define LINUX_RT_SIGTRAMP_OFFSET1	5

static const unsigned char linux_rt_sigtramp_code[] =
{
  LINUX_RT_SIGTRAMP_INSN0, 0xad, 0x00, 0x00, 0x00,	/* mov $0xad, %eax */
  LINUX_RT_SIGTRAMP_INSN1, 0x80				/* int $0x80 */
};

#define LINUX_RT_SIGTRAMP_LEN (sizeof linux_rt_sigtramp_code)

/* If PC is in a RT sigtramp routine, return the address of the start
   of the routine.  Otherwise, return 0.  */

static CORE_ADDR
i386_linux_rt_sigtramp_start (CORE_ADDR pc)
{
  unsigned char buf[LINUX_RT_SIGTRAMP_LEN];

  /* We only recognize a signal trampoline if PC is at the start of
     one of the two instructions.  We optimize for finding the PC at
     the start, as will be the case when the trampoline is not the
     first frame on the stack.  We assume that in the case where the
     PC is not at the start of the instruction sequence, there will be
     a few trailing readable bytes on the stack.  */

  if (read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0)
    return 0;

  if (buf[0] != LINUX_RT_SIGTRAMP_INSN0)
    {
      if (buf[0] != LINUX_RT_SIGTRAMP_INSN1)
	return 0;

      pc -= LINUX_RT_SIGTRAMP_OFFSET1;

      if (read_memory_nobpt (pc, (char *) buf, LINUX_RT_SIGTRAMP_LEN) != 0)
	return 0;
    }

  if (memcmp (buf, linux_rt_sigtramp_code, LINUX_RT_SIGTRAMP_LEN) != 0)
    return 0;

  return pc;
}

/* Return whether PC is in a GNU/Linux sigtramp routine.  */

static int
i386_linux_pc_in_sigtramp (CORE_ADDR pc, char *name)
{
  /* If we have NAME, we can optimize the search.  The trampolines are
     named __restore and __restore_rt.  However, they aren't dynamically
     exported from the shared C library, so the trampoline may appear to
     be part of the preceding function.  This should always be sigaction,
     __sigaction, or __libc_sigaction (all aliases to the same function).  */
  if (name == NULL || strstr (name, "sigaction") != NULL)
    return (i386_linux_sigtramp_start (pc) != 0
	    || i386_linux_rt_sigtramp_start (pc) != 0);

  return (strcmp ("__restore", name) == 0
	  || strcmp ("__restore_rt", name) == 0);
}

/* Offset to struct sigcontext in ucontext, from <asm/ucontext.h>.  */
#define I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET 20

/* Assuming NEXT_FRAME is a frame following a GNU/Linux sigtramp
   routine, return the address of the associated sigcontext structure.  */

static CORE_ADDR
i386_linux_sigcontext_addr (struct frame_info *next_frame)
{
  CORE_ADDR pc;
  CORE_ADDR sp;
  char buf[4];

  frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
  sp = extract_unsigned_integer (buf, 4);

  pc = i386_linux_sigtramp_start (frame_pc_unwind (next_frame));
  if (pc)
    {
      /* The sigcontext structure lives on the stack, right after
	 the signum argument.  We determine the address of the
	 sigcontext structure by looking at the frame's stack
	 pointer.  Keep in mind that the first instruction of the
	 sigtramp code is "pop %eax".  If the PC is after this
	 instruction, adjust the returned value accordingly.  */
      if (pc == frame_pc_unwind (next_frame))
	return sp + 4;
      return sp;
    }

  pc = i386_linux_rt_sigtramp_start (frame_pc_unwind (next_frame));
  if (pc)
    {
      CORE_ADDR ucontext_addr;

      /* The sigcontext structure is part of the user context.  A
	 pointer to the user context is passed as the third argument
	 to the signal handler.  */
      read_memory (sp + 8, buf, 4);
      ucontext_addr = extract_unsigned_integer (buf, 4) + 20;
      return ucontext_addr + I386_LINUX_UCONTEXT_SIGCONTEXT_OFFSET;
    }

  error ("Couldn't recognize signal trampoline.");
  return 0;
}

/* Set the program counter for process PTID to PC.  */

static void
i386_linux_write_pc (CORE_ADDR pc, ptid_t ptid)
{
  write_register_pid (I386_EIP_REGNUM, pc, ptid);

  /* We must be careful with modifying the program counter.  If we
     just interrupted a system call, the kernel might try to restart
     it when we resume the inferior.  On restarting the system call,
     the kernel will try backing up the program counter even though it
     no longer points at the system call.  This typically results in a
     SIGSEGV or SIGILL.  We can prevent this by writing `-1' in the
     "orig_eax" pseudo-register.

     Note that "orig_eax" is saved when setting up a dummy call frame.
     This means that it is properly restored when that frame is
     popped, and that the interrupted system call will be restarted
     when we resume the inferior on return from a function call from
     within GDB.  In all other cases the system call will not be
     restarted.  */
  write_register_pid (I386_LINUX_ORIG_EAX_REGNUM, -1, ptid);
}

/* Calling functions in shared libraries.  */

/* Find the minimal symbol named NAME, and return both the minsym
   struct and its objfile.  This probably ought to be in minsym.c, but
   everything there is trying to deal with things like C++ and
   SOFUN_ADDRESS_MAYBE_TURQUOISE, ...  Since this is so simple, it may
   be considered too special-purpose for general consumption.  */

static struct minimal_symbol *
find_minsym_and_objfile (char *name, struct objfile **objfilep)
{
  struct objfile *objfile;

  ALL_OBJFILES (objfile)
    {
      struct minimal_symbol *msym;

      ALL_OBJFILE_MSYMBOLS (objfile, msym)
	{
	  if (SYMBOL_LINKAGE_NAME (msym)
	      && strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
	    {
	      *objfilep = objfile;
	      return msym;
	    }
	}
    }

  return 0;
}

static CORE_ADDR
skip_gnu_resolver (CORE_ADDR pc)
{
  /* The GNU dynamic linker is part of the GNU C library, so many
     GNU/Linux distributions use it.  (All ELF versions, as far as I
     know.)  An unresolved PLT entry points to "_dl_runtime_resolve",
     which calls "fixup" to patch the PLT, and then passes control to
     the function.

     We look for the symbol `_dl_runtime_resolve', and find `fixup' in
     the same objfile.  If we are at the entry point of `fixup', then
     we set a breakpoint at the return address (at the top of the
     stack), and continue.
  
     It's kind of gross to do all these checks every time we're
     called, since they don't change once the executable has gotten
     started.  But this is only a temporary hack --- upcoming versions
     of GNU/Linux will provide a portable, efficient interface for
     debugging programs that use shared libraries.  */

  struct objfile *objfile;
  struct minimal_symbol *resolver 
    = find_minsym_and_objfile ("_dl_runtime_resolve", &objfile);

  if (resolver)
    {
      struct minimal_symbol *fixup
	= lookup_minimal_symbol ("fixup", NULL, objfile);

      if (fixup && SYMBOL_VALUE_ADDRESS (fixup) == pc)
	return frame_pc_unwind (get_current_frame ()); 
    }

  return 0;
}      

/* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c.
   This function:
   1) decides whether a PLT has sent us into the linker to resolve
      a function reference, and 
   2) if so, tells us where to set a temporary breakpoint that will
      trigger when the dynamic linker is done.  */

CORE_ADDR
i386_linux_skip_solib_resolver (CORE_ADDR pc)
{
  CORE_ADDR result;

  /* Plug in functions for other kinds of resolvers here.  */
  result = skip_gnu_resolver (pc);
  if (result)
    return result;

  return 0;
}

/* Fetch (and possibly build) an appropriate link_map_offsets
   structure for native GNU/Linux x86 targets using the struct offsets
   defined in link.h (but without actual reference to that file).

   This makes it possible to access GNU/Linux x86 shared libraries
   from a GDB that was not built on an GNU/Linux x86 host (for cross
   debugging).  */

static struct link_map_offsets *
i386_linux_svr4_fetch_link_map_offsets (void)
{
  static struct link_map_offsets lmo;
  static struct link_map_offsets *lmp = NULL;

  if (lmp == NULL)
    {
      lmp = &lmo;

      lmo.r_debug_size = 8;	/* The actual size is 20 bytes, but
				   this is all we need.  */
      lmo.r_map_offset = 4;
      lmo.r_map_size   = 4;

      lmo.link_map_size = 20;	/* The actual size is 552 bytes, but
				   this is all we need.  */
      lmo.l_addr_offset = 0;
      lmo.l_addr_size   = 4;

      lmo.l_name_offset = 4;
      lmo.l_name_size   = 4;

      lmo.l_next_offset = 12;
      lmo.l_next_size   = 4;

      lmo.l_prev_offset = 16;
      lmo.l_prev_size   = 4;
    }

  return lmp;
}


/* From <asm/sigcontext.h>.  */
static int i386_linux_sc_reg_offset[I386_NUM_GREGS] =
{
  11 * 4,			/* %eax */
  10 * 4,			/* %ecx */
  9 * 4,			/* %edx */
  8 * 4,			/* %ebx */
  7 * 4,			/* %esp */
  6 * 4,			/* %ebp */
  5 * 4,			/* %esi */
  4 * 4,			/* %edi */
  14 * 4,			/* %eip */
  16 * 4,			/* %eflags */
  15 * 4,			/* %cs */
  18 * 4,			/* %ss */
  3 * 4,			/* %ds */
  2 * 4,			/* %es */
  1 * 4,			/* %fs */
  0 * 4				/* %gs */
};

static void
i386_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);

  /* GNU/Linux uses ELF.  */
  i386_elf_init_abi (info, gdbarch);

  /* We support the SSE registers on GNU/Linux.  */
  tdep->num_xmm_regs = I386_NUM_XREGS - 1;
  /* set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS); */

  /* Since we have the extra "orig_eax" register on GNU/Linux, we have
     to adjust a few things.  */

  set_gdbarch_write_pc (gdbarch, i386_linux_write_pc);
  set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS + 1);
  set_gdbarch_register_name (gdbarch, i386_linux_register_name);
  set_gdbarch_register_reggroup_p (gdbarch, i386_linux_register_reggroup_p);

  tdep->jb_pc_offset = 20;	/* From <bits/setjmp.h>.  */

  tdep->sigcontext_addr = i386_linux_sigcontext_addr;
  tdep->sc_reg_offset = i386_linux_sc_reg_offset;
  tdep->sc_num_regs = I386_NUM_GREGS;

  /* When the i386 Linux kernel calls a signal handler, the return
     address points to a bit of code on the stack.  This function is
     used to identify this bit of code as a signal trampoline in order
     to support backtracing through calls to signal handlers.  */
  set_gdbarch_pc_in_sigtramp (gdbarch, i386_linux_pc_in_sigtramp);

  set_solib_svr4_fetch_link_map_offsets (gdbarch,
				       i386_linux_svr4_fetch_link_map_offsets);
}



/* Interpreting register set info found in core files and ptrace
   buffers.  */

/* Fill GDB's register array with the floating-point register values in
   *FPREGSETP.  */

/* Fill the XMM registers in the register array with dummy values.  For
   cases where we don't have access to the XMM registers.  I think
   this is cleaner than printing a warning.  For a cleaner solution,
   we should gdbarchify the i386 family.  */

static void
dummy_sse_values (void)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
  int reg;
  /* Assume i386 is always little endian.  */
  static const char mxcsr[MAX_REGISTER_SIZE] = { 0x80, 0x1f };
  /* C doesn't have a syntax for NaN's (0xffffffffff), so generate it
     on the fly.  */
  char nan[MAX_REGISTER_SIZE];
  memset (nan, -1, sizeof nan);

  for (reg = 0; reg < tdep->num_xmm_regs; reg++)
    supply_register (XMM0_REGNUM + reg, (char *) nan);
  if (tdep->num_xmm_regs > 0)
    supply_register (MXCSR_REGNUM, (char *) &mxcsr);
}

void 
i386_linux_supply_fpregset (void *fpregset)
{
  i387_supply_fsave (fpregset);
  dummy_sse_values ();
}

/* Fill GDB's register array with the general-purpose register values
   in *GREGSETP.  */

void
i386_linux_supply_gregset (void *gregset)
{
  bfd_byte *regp = gregset;
  int i;

  for (i = 0; i < I386_NUM_GREGS; i++)
    {
      long offset = i386_linux_greg_offset (i);
      if (offset >= 0)
	supply_register (i, regp + offset);
    }

  if (I386_LINUX_ORIG_EAX_REGNUM < NUM_REGS)
    {
      long offset = i386_linux_greg_offset (I386_LINUX_ORIG_EAX_REGNUM);
      if (offset >= 0)
	supply_register (I386_LINUX_ORIG_EAX_REGNUM, regp + offset);
    }
}

/* Fill GDB's register array with the floating-point and SSE register
   values in *FPXREGSETP.  */

void
i386_linux_supply_fpxregset (void *fpxregsetp)
{
  i387_supply_fxsave (fpxregsetp);
}


/* Provide registers to GDB from a core file.

   (We can't use the generic version of this function in
   core-regset.c, because GNU/Linux has *three* different kinds of
   register set notes.  core-regset.c would have to call
   supply_fpxregset, which most platforms don't have.)

   CORE_REG_SECT points to an array of bytes, which are the contents
   of a `note' from a core file which BFD thinks might contain
   register contents.  CORE_REG_SIZE is its size.

   WHICH says which register set corelow suspects this is:
     0 --- the general-purpose register set, in elf_gregset_t format
     2 --- the floating-point register set, in elf_fpregset_t format
     3 --- the extended floating-point register set, in elf_fpxregset_t format

   REG_ADDR isn't used on GNU/Linux.  */

static void
fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
				 int which, CORE_ADDR reg_addr)
{
  switch (which)
    {
    case 0:
      if (core_reg_size < i386_linux_greg_offset (-1))
 	warning ("Wrong size register set in core file.");
      else
	i386_linux_supply_gregset (core_reg_sect);
      break;

    case 2:
      if (core_reg_size < 108)
	warning ("Wrong size fpregset in core file.");
      else
	i386_linux_supply_fpregset (core_reg_sect);
      break;

    case 3:
      if (core_reg_size < 512)
	warning ("Wrong size fpxregset in core file.");
      else
	i386_linux_supply_fpxregset (core_reg_sect);
      break;

    default:
      /* We've covered all the kinds of registers we know about here,
         so this must be something we wouldn't know what to do with
         anyway.  Just ignore it.  */
      break;
    }
}

static int
i386_linux_core_sniffer (struct core_fns *our_fns, bfd *abfd)
{
  int result;

  result = ((bfd_get_flavour (abfd) == our_fns -> core_flavour)
	    && bfd_get_arch (abfd) == bfd_arch_i386
	    && (bfd_get_mach (abfd) == bfd_mach_i386_i386
		|| bfd_get_mach (abfd) == bfd_mach_i386_i386_intel_syntax));
  return (result);
}

static struct core_fns i386_linux_core_fns = 
{
  bfd_target_elf_flavour,		/* core_flavour */
  default_check_format,			/* check_format */
  i386_linux_core_sniffer,		/* core_sniffer */
  fetch_core_registers,			/* core_read_registers */
  NULL					/* next */
};


/* Provide a prototype to silence -Wmissing-prototypes.  */
extern void _initialize_i386_linux_tdep (void);

void
_initialize_i386_linux_tdep (void)
{
  add_core_fns (&i386_linux_core_fns);
  gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_LINUX,
			  i386_linux_init_abi);
}