summaryrefslogtreecommitdiff
path: root/gdb/hppah-nat.c
blob: 4587715ce92fc75cc4c4f9552072347a7f95bb26 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
/* Native support code for HPUX PA-RISC.
   Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1998
   Free Software Foundation, Inc.

   Contributed by the Center for Software Science at the
   University of Utah (pa-gdb-bugs@cs.utah.edu).

This file is part of GDB.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */


#include "defs.h"
#include "inferior.h"
#include "target.h"
#include <sys/ptrace.h>
#include "gdbcore.h"
#include <wait.h>

extern CORE_ADDR text_end;

static void fetch_register PARAMS ((int));

void
fetch_inferior_registers (regno)
     int regno;
{
  if (regno == -1)
    for (regno = 0; regno < NUM_REGS; regno++)
      fetch_register (regno);
  else
    fetch_register (regno);
}

/* Store our register values back into the inferior.
   If REGNO is -1, do this for all registers.
   Otherwise, REGNO specifies which register (so we can save time).  */

void
store_inferior_registers (regno)
     int regno;
{
  register unsigned int regaddr;
  char buf[80];
  extern char registers[];
  register int i;
  unsigned int offset = U_REGS_OFFSET;
  int scratch;

  if (regno >= 0)
    {
      if (CANNOT_STORE_REGISTER (regno))
	return;
      regaddr = register_addr (regno, offset);
      errno = 0;
      if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM)
        {
          scratch = *(int *) &registers[REGISTER_BYTE (regno)] | 0x3;
          call_ptrace (PT_WUREGS, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
                  scratch);
          if (errno != 0)
            {
	      /* Error, even if attached.  Failing to write these two
		 registers is pretty serious.  */
              sprintf (buf, "writing register number %d", regno);
              perror_with_name (buf);
            }
        }
      else
	for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof(int))
	  {
	    errno = 0;
	    call_ptrace (PT_WUREGS, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
		    *(int *) &registers[REGISTER_BYTE (regno) + i]);
	    if (errno != 0)
	      {
		/* Warning, not error, in case we are attached; sometimes the
		   kernel doesn't let us at the registers.  */
		char *err = safe_strerror (errno);
		char *msg = alloca (strlen (err) + 128);
		sprintf (msg, "writing register %s: %s",
			 REGISTER_NAME (regno), err);
		warning (msg);
		return;
	      }
	    regaddr += sizeof(int);
	  }
    }
  else
    for (regno = 0; regno < NUM_REGS; regno++)
      store_inferior_registers (regno);
}

/* Fetch one register.  */

static void
fetch_register (regno)
     int regno;
{
  register unsigned int regaddr;
  char buf[MAX_REGISTER_RAW_SIZE];
  register int i;

  /* Offset of registers within the u area.  */
  unsigned int offset;

  offset = U_REGS_OFFSET;

  regaddr = register_addr (regno, offset);
  for (i = 0; i < REGISTER_RAW_SIZE (regno); i += sizeof (int))
    {
      errno = 0;
      *(int *) &buf[i] = call_ptrace (PT_RUREGS, inferior_pid,
				 (PTRACE_ARG3_TYPE) regaddr, 0);
      regaddr += sizeof (int);
      if (errno != 0)
	{
	  /* Warning, not error, in case we are attached; sometimes the
	   * kernel doesn't let us at the registers.
	   */
	  char *err = safe_strerror (errno);
	  char *msg = alloca (strlen (err) + 128);
	  sprintf (msg, "reading register %s: %s", REGISTER_NAME (regno), err);
	  warning (msg);
	  goto error_exit;
	}
    }
  if (regno == PCOQ_HEAD_REGNUM || regno == PCOQ_TAIL_REGNUM)
    buf[3] &= ~0x3;
  supply_register (regno, buf);
 error_exit:;
}

/* Copy LEN bytes to or from inferior's memory starting at MEMADDR
   to debugger memory starting at MYADDR.   Copy to inferior if
   WRITE is nonzero.
  
   Returns the length copied, which is either the LEN argument or zero.
   This xfer function does not do partial moves, since child_ops
   doesn't allow memory operations to cross below us in the target stack
   anyway.  */

int
child_xfer_memory (memaddr, myaddr, len, write, target)
     CORE_ADDR memaddr;
     char *myaddr;
     int len;
     int write;
     struct target_ops *target;		/* ignored */
{
  register int i;
  /* Round starting address down to longword boundary.  */
  register CORE_ADDR addr = memaddr & - sizeof (int);
  /* Round ending address up; get number of longwords that makes.  */
  register int count
    = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);

  /* Allocate buffer of that many longwords.  */
  /* Note (RT) - This code formerly used alloca, which I have
   * replaced with xmalloc and a matching free() at the end.
   * The problem with alloca() is that there is no guarantee of
   * when it'll be freed, and we were seeing cases of memory
   * leaks on:
   * (gdb) watch x
   * (gdb) cont
   * where the piled-up alloca's for the child_xfer_memory buffers
   * were not getting freed.
   */
  register int *buffer = (int *) xmalloc (count * sizeof (int));

  if (write)
    {
      /* Fill start and end extra bytes of buffer with existing memory data.  */

      if (addr != memaddr || len < (int)sizeof (int)) {
	/* Need part of initial word -- fetch it.  */
        buffer[0] = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER, 
			    inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
      }

      if (count > 1)		/* FIXME, avoid if even boundary */
	{
	  buffer[count - 1]
	    = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER, inferior_pid,
		      (PTRACE_ARG3_TYPE) (addr + (count - 1) * sizeof (int)),
		      0);
	}

      /* Copy data to be written over corresponding part of buffer */

      memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);

      /* Write the entire buffer.  */

      for (i = 0; i < count; i++, addr += sizeof (int))
	{
          int  pt_status;
          int  pt_request;
	  /* The HP-UX kernel crashes if you use PT_WDUSER to write into the text
	     segment.  FIXME -- does it work to write into the data segment using
	     WIUSER, or do these idiots really expect us to figure out which segment
	     the address is in, so we can use a separate system call for it??!  */
	  errno = 0;
          pt_request = (addr < text_end) ? PT_WIUSER : PT_WDUSER;
	  pt_status = call_ptrace (pt_request,
                                   inferior_pid, 
                                   (PTRACE_ARG3_TYPE) addr,
                                   buffer[i]);

          /* Did we fail?  Might we've guessed wrong about which
             segment this address resides in?  Try the other request,
             and see if that works...
             */
	  if ((pt_status == -1) && errno) {
            errno = 0;
            pt_request = (pt_request == PT_WIUSER) ? PT_WDUSER : PT_WIUSER;
            pt_status = call_ptrace (pt_request,
                                     inferior_pid, 
                                     (PTRACE_ARG3_TYPE) addr,
                                     buffer[i]);

            /* No, we still fail.  Okay, time to punt. */
            if ((pt_status == -1) && errno)
              {
                free(buffer);
                return 0;
              }
	  }
	}
    }
  else
    {
      /* Read all the longwords */
      for (i = 0; i < count; i++, addr += sizeof (int))
	{
	  errno = 0;
	  buffer[i] = call_ptrace (addr < text_end ? PT_RIUSER : PT_RDUSER, 
			      inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
	  if (errno) {
	    free(buffer);
	    return 0;
	  }
	  QUIT;
	}

      /* Copy appropriate bytes out of the buffer.  */
      memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
    }
  free(buffer);
  return len;
}


void
child_post_follow_inferior_by_clone ()
{
  int  status;

  /* This function is used when following both the parent and child
     of a fork.  In this case, the debugger clones itself.  The original
     debugger follows the parent, the clone follows the child.  The
     original detaches from the child, delivering a SIGSTOP to it to
     keep it from running away until the clone can attach itself.

     At this point, the clone has attached to the child.  Because of
     the SIGSTOP, we must now deliver a SIGCONT to the child, or it
     won't behave properly. */
  status = kill (inferior_pid, SIGCONT);
}


void
child_post_follow_vfork (parent_pid, followed_parent, child_pid, followed_child)
     int  parent_pid;
     int  followed_parent;
     int  child_pid;
     int  followed_child;
{

  /* Are we a debugger that followed the parent of a vfork?  If so,
     then recall that the child's vfork event was delivered to us
     first.  And, that the parent was suspended by the OS until the
     child's exec or exit events were received.

     Upon receiving that child vfork, then, we were forced to remove
     all breakpoints in the child and continue it so that it could
     reach the exec or exit point.

     But also recall that the parent and child of a vfork share the
     same address space.  Thus, removing bp's in the child also
     removed them from the parent.

     Now that the child has safely exec'd or exited, we must restore
     the parent's breakpoints before we continue it.  Else, we may
     cause it run past expected stopping points. */
  if (followed_parent)
    {
      reattach_breakpoints (parent_pid);
    }

  /* Are we a debugger that followed the child of a vfork?  If so,
     then recall that we don't actually acquire control of the child
     until after it has exec'd or exited.
     */
  if (followed_child)
    {
      /* If the child has exited, then there's nothing for us to do.
         In the case of an exec event, we'll let that be handled by
         the normal mechanism that notices and handles exec events, in
         resume(). */

    }
}

/* Format a process id, given a pid.  Be sure to terminate
 * this with a null--it's going to be printed via a "%s".
 */
char *
hppa_pid_to_str( pid )
    pid_t pid;
{
    static char buf[30]; /* Static because address returned */

    sprintf( buf, "process %d\0\0\0\0", pid );
             /* Extra NULLs for paranoia's sake */
             
    return buf;
}

/* Format a thread id, given a tid.  Be sure to terminate
 * this with a null--it's going to be printed via a "%s".
 *
 * Note: This is a core-gdb tid, not the actual system tid.
 *       See infttrace.c for details.
 */
char *
hppa_tid_to_str( tid )
    pid_t tid;
{
    static char buf[30]; /* Static because address returned */

    sprintf( buf, "system thread %d\0\0\0\0", tid );
             /* Extra NULLs for paranoia's sake */
             
    return buf;
}

#if !defined (GDB_NATIVE_HPUX_11)

/* The following code is a substitute for the infttrace.c versions used
   with ttrace() in HPUX 11.  */

/* This value is an arbitrary integer. */
#define PT_VERSION 123456

/* This semaphore is used to coordinate the child and parent processes
   after a fork(), and before an exec() by the child.  See
   parent_attach_all for details.  */

typedef struct {
    int parent_channel[2];  /* Parent "talks" to [1], child "listens" to [0] */
    int child_channel[2];   /* Child "talks" to [1], parent "listens" to [0] */
} startup_semaphore_t;

#define SEM_TALK (1)
#define SEM_LISTEN (0)

static startup_semaphore_t  startup_semaphore;

extern int parent_attach_all PARAMS ((int, PTRACE_ARG3_TYPE, int));

#ifdef PT_SETTRC
/* This function causes the caller's process to be traced by its
   parent.  This is intended to be called after GDB forks itself,
   and before the child execs the target.

   Note that HP-UX ptrace is rather funky in how this is done.
   If the parent wants to get the initial exec event of a child,
   it must set the ptrace event mask of the child to include execs.
   (The child cannot do this itself.)  This must be done after the
   child is forked, but before it execs.

   To coordinate the parent and child, we implement a semaphore using
   pipes.  After SETTRC'ing itself, the child tells the parent that
   it is now traceable by the parent, and waits for the parent's
   acknowledgement.  The parent can then set the child's event mask,
   and notify the child that it can now exec.

   (The acknowledgement by parent happens as a result of a call to
   child_acknowledge_created_inferior.)  */

int
parent_attach_all (pid, addr, data)
     int pid;
     PTRACE_ARG3_TYPE addr;
     int data;
{
  int pt_status = 0;

  /* We need a memory home for a constant.  */
  int tc_magic_child = PT_VERSION;
  int tc_magic_parent = 0;

  /* The remainder of this function is only useful for HPUX 10.0 and
     later, as it depends upon the ability to request notification
     of specific kinds of events by the kernel.  */
#if defined(PT_SET_EVENT_MASK)

  /* Notify the parent that we're potentially ready to exec(). */
  write (startup_semaphore.child_channel[SEM_TALK],
         &tc_magic_child,
         sizeof (tc_magic_child));

  /* Wait for acknowledgement from the parent. */
  read (startup_semaphore.parent_channel[SEM_LISTEN],
        &tc_magic_parent,
        sizeof (tc_magic_parent));
  if (tc_magic_child != tc_magic_parent)
      warning ("mismatched semaphore magic");

  /* Discard our copy of the semaphore. */
  (void) close (startup_semaphore.parent_channel[SEM_LISTEN]);
  (void) close (startup_semaphore.parent_channel[SEM_TALK]);
  (void) close (startup_semaphore.child_channel[SEM_LISTEN]);
  (void) close (startup_semaphore.child_channel[SEM_TALK]);
#endif
  
  return 0;
}
#endif

int
hppa_require_attach (pid)
     int pid;
{
  int pt_status;
  CORE_ADDR  pc;
  CORE_ADDR  pc_addr;
  unsigned int regs_offset;

  /* Are we already attached?  There appears to be no explicit way to
     answer this via ptrace, so we try something which should be
     innocuous if we are attached.  If that fails, then we assume
     we're not attached, and so attempt to make it so. */

  errno = 0;
  regs_offset = U_REGS_OFFSET;
  pc_addr = register_addr (PC_REGNUM, regs_offset);
  pc = call_ptrace (PT_READ_U, pid, (PTRACE_ARG3_TYPE) pc_addr, 0);

  if (errno)
    {
      errno = 0;
      pt_status = call_ptrace (PT_ATTACH, pid, (PTRACE_ARG3_TYPE) 0, 0);

      if (errno)
        return -1;

      /* Now we really are attached. */
      errno = 0;
    }
  attach_flag = 1;
  return pid;
}

int
hppa_require_detach (pid, signal)
  int pid;
  int signal;
{
  errno = 0;
  call_ptrace (PT_DETACH, pid, (PTRACE_ARG3_TYPE) 1, signal);
  errno = 0;  /* Ignore any errors. */
  return pid;
}

/* Since ptrace doesn't support memory page-protection events, which
   are used to implement "hardware" watchpoints on HP-UX, these are
   dummy versions, which perform no useful work.  */

void
hppa_enable_page_protection_events (pid)
     int pid;
{
}

void
hppa_disable_page_protection_events (pid)
     int pid;
{
}

int
hppa_insert_hw_watchpoint (pid, start, len, type)
     int pid;
     CORE_ADDR start;
     LONGEST len;
     int type;
{
  error ("Hardware watchpoints not implemented on this platform.");
}

int
hppa_remove_hw_watchpoint (pid, start, len, type)
     int pid;
     CORE_ADDR start;
     LONGEST len;
     enum bptype type;
{
  error ("Hardware watchpoints not implemented on this platform.");
}

int
hppa_can_use_hw_watchpoint (type, cnt, ot)
     enum bptype type;
     int cnt;
     enum bptype ot;
{
  return 0;
}

int
hppa_range_profitable_for_hw_watchpoint (pid, start, len)
     int pid;
     CORE_ADDR start;
     LONGEST len;
{
  error ("Hardware watchpoints not implemented on this platform.");
}

char *
hppa_pid_or_tid_to_str (id)
     pid_t id;
{
  /* In the ptrace world, there are only processes. */
  return hppa_pid_to_str (id);
}

/* This function has no meaning in a non-threaded world.  Thus, we
   return 0 (FALSE).  See the use of "hppa_prepare_to_proceed" in
   hppa-tdep.c. */

pid_t
hppa_switched_threads (pid)
     pid_t pid;
{
  return (pid_t) 0;
}

void
hppa_ensure_vforking_parent_remains_stopped (pid)
     int pid;
{
  /* This assumes that the vforked parent is presently stopped, and
     that the vforked child has just delivered its first exec event.
     Calling kill() this way will cause the SIGTRAP to be delivered as
     soon as the parent is resumed, which happens as soon as the
     vforked child is resumed.  See wait_for_inferior for the use of
     this function.  */
  kill (pid, SIGTRAP);
}

int
hppa_resume_execd_vforking_child_to_get_parent_vfork ()
{
  return 1;  /* Yes, the child must be resumed. */
}

#if defined(HPPA_GET_PROCESS_EVENTS)
process_event_vector
hppa_get_process_events (pid, wait_status, must_continue_pid_after)
  int pid;
  int wait_status;
  int * must_continue_pid_after;
{
  int pt_status;
  ptrace_state_t ptrace_state;
  process_event_vector events = PEVT_NONE;

  /* This is always TRUE with ptrace. */
  *must_continue_pid_after = 1;

  errno = 0;
  pt_status = call_ptrace (PT_GET_PROCESS_STATE,
                      pid,
                      (PTRACE_ARG3_TYPE) &ptrace_state,
                      sizeof (ptrace_state));
  if (errno)
    perror_with_name ("ptrace");
  if (pt_status < 0)
    return events;

  if (ptrace_state.pe_report_event & PTRACE_SIGNAL)
    events |= PEVT_SIGNAL;
  if (ptrace_state.pe_report_event & PTRACE_FORK)
    events |= PEVT_FORK;
  if (ptrace_state.pe_report_event & PTRACE_VFORK)
    events |= PEVT_VFORK;
  if (ptrace_state.pe_report_event & PTRACE_EXEC)
    events |= PEVT_EXEC;
  if (ptrace_state.pe_report_event & PTRACE_EXIT)
    events |= PEVT_EXIT;

  return events;
}
#endif /* HPPA_GET_PROCESS_EVENTS */

void
require_notification_of_events (pid)
  int pid;
{
#if defined(PT_SET_EVENT_MASK)
  int pt_status;
  ptrace_event_t ptrace_events;

  /* Instruct the kernel as to the set of events we wish to be
     informed of.  (This support does not exist before HPUX 10.0.
     We'll assume if PT_SET_EVENT_MASK has not been defined by
     <sys/ptrace.h>, then we're being built on pre-10.0.)
     */
  memset (&ptrace_events, 0, sizeof (ptrace_events));

  /* Note: By default, all signals are visible to us.  If we wish
     the kernel to keep certain signals hidden from us, we do it
     by calling sigdelset (ptrace_events.pe_signals, signal) for
     each such signal here, before doing PT_SET_EVENT_MASK.
     */
  sigemptyset (&ptrace_events.pe_signals);

  ptrace_events.pe_set_event = 0;

  ptrace_events.pe_set_event |= PTRACE_SIGNAL;
  ptrace_events.pe_set_event |= PTRACE_EXEC;
  ptrace_events.pe_set_event |= PTRACE_FORK;
  ptrace_events.pe_set_event |= PTRACE_VFORK;
  /* ??rehrauer: Add this one when we're prepared to catch it...
  ptrace_events.pe_set_event |= PTRACE_EXIT;
  */

  errno = 0;
  pt_status = call_ptrace (PT_SET_EVENT_MASK,
                      pid,
                      (PTRACE_ARG3_TYPE) &ptrace_events,
                      sizeof (ptrace_events));
  if (errno)
    perror_with_name ("ptrace");
  if (pt_status < 0)
    return;
#endif
}

void
require_notification_of_exec_events (pid)
  int pid;
{
#if defined(PT_SET_EVENT_MASK)
  int pt_status;
  ptrace_event_t ptrace_events;

  /* Instruct the kernel as to the set of events we wish to be
     informed of.  (This support does not exist before HPUX 10.0.
     We'll assume if PT_SET_EVENT_MASK has not been defined by
     <sys/ptrace.h>, then we're being built on pre-10.0.)
     */
  memset (&ptrace_events, 0, sizeof (ptrace_events));

  /* Note: By default, all signals are visible to us.  If we wish
     the kernel to keep certain signals hidden from us, we do it
     by calling sigdelset (ptrace_events.pe_signals, signal) for
     each such signal here, before doing PT_SET_EVENT_MASK.
     */
  sigemptyset (&ptrace_events.pe_signals);

  ptrace_events.pe_set_event = 0;

  ptrace_events.pe_set_event |= PTRACE_EXEC;
  /* ??rehrauer: Add this one when we're prepared to catch it...
  ptrace_events.pe_set_event |= PTRACE_EXIT;
  */

  errno = 0;
  pt_status = call_ptrace (PT_SET_EVENT_MASK,
                      pid,
                      (PTRACE_ARG3_TYPE) &ptrace_events,
                      sizeof (ptrace_events));
  if (errno)
    perror_with_name ("ptrace");
  if (pt_status < 0)
    return;
#endif
}

/* This function is called by the parent process, with pid being the
   ID of the child process, after the debugger has forked.  */

void
child_acknowledge_created_inferior (pid)
    int pid;
{
  /* We need a memory home for a constant.  */
  int tc_magic_parent = PT_VERSION;
  int tc_magic_child = 0;

  /* Wait for the child to tell us that it has forked. */
  read (startup_semaphore.child_channel[SEM_LISTEN],
        &tc_magic_child,
        sizeof(tc_magic_child));

  /* Notify the child that it can exec.

     In the infttrace.c variant of this function, we set the child's
     event mask after the fork but before the exec.  In the ptrace
     world, it seems we can't set the event mask until after the exec.  */

  write (startup_semaphore.parent_channel[SEM_TALK],
         &tc_magic_parent,
         sizeof (tc_magic_parent));

  /* We'd better pause a bit before trying to set the event mask,
     though, to ensure that the exec has happened.  We don't want to
     wait() on the child, because that'll screw up the upper layers
     of gdb's execution control that expect to see the exec event.

     After an exec, the child is no longer executing gdb code.  Hence,
     we can't have yet another synchronization via the pipes.  We'll
     just sleep for a second, and hope that's enough delay...  */

  sleep (1);

  /* Instruct the kernel as to the set of events we wish to be
     informed of.  */

  require_notification_of_exec_events (pid);

  /* Discard our copy of the semaphore. */
  (void) close (startup_semaphore.parent_channel[SEM_LISTEN]);
  (void) close (startup_semaphore.parent_channel[SEM_TALK]);
  (void) close (startup_semaphore.child_channel[SEM_LISTEN]);
  (void) close (startup_semaphore.child_channel[SEM_TALK]);
}

void
child_post_startup_inferior (pid)
  int pid;

{
  require_notification_of_events (pid);
}

void
child_post_attach (pid)
  int pid;
{
  require_notification_of_events (pid);
}

int
child_insert_fork_catchpoint (pid)
  int pid;
{
  /* This request is only available on HPUX 10.0 and later.  */
#if !defined(PT_SET_EVENT_MASK)
  error ("Unable to catch forks prior to HPUX 10.0");
#else
  /* Enable reporting of fork events from the kernel. */
  /* ??rehrauer: For the moment, we're always enabling these events,
     and just ignoring them if there's no catchpoint to catch them.
     */
  return 0;
#endif
}

int
child_remove_fork_catchpoint (pid)
  int pid;
{
  /* This request is only available on HPUX 10.0 and later.  */
#if !defined(PT_SET_EVENT_MASK)
  error ("Unable to catch forks prior to HPUX 10.0");
#else
  /* Disable reporting of fork events from the kernel. */
  /* ??rehrauer: For the moment, we're always enabling these events,
     and just ignoring them if there's no catchpoint to catch them.  */
  return 0;
#endif
}

int
child_insert_vfork_catchpoint (pid)
  int pid;
{
  /* This request is only available on HPUX 10.0 and later.  */
#if !defined(PT_SET_EVENT_MASK)
  error ("Unable to catch vforks prior to HPUX 10.0");
#else
  /* Enable reporting of vfork events from the kernel. */
  /* ??rehrauer: For the moment, we're always enabling these events,
     and just ignoring them if there's no catchpoint to catch them.  */
  return 0;
#endif
}

int
child_remove_vfork_catchpoint (pid)
  int pid;
{
  /* This request is only available on HPUX 10.0 and later.  */
#if !defined(PT_SET_EVENT_MASK)
  error ("Unable to catch vforks prior to HPUX 10.0");
#else
  /* Disable reporting of vfork events from the kernel. */
  /* ??rehrauer: For the moment, we're always enabling these events,
     and just ignoring them if there's no catchpoint to catch them.  */
  return 0;
#endif
}

int
child_has_forked (pid, childpid)
  int pid;
  int *  childpid;
{
  /* This request is only available on HPUX 10.0 and later.  */
#if !defined(PT_GET_PROCESS_STATE)
  *childpid = 0;
  return 0;
#else
  int pt_status;
  ptrace_state_t  ptrace_state;

  errno = 0;
  pt_status = call_ptrace (PT_GET_PROCESS_STATE,
                      pid,
                      (PTRACE_ARG3_TYPE) &ptrace_state,
                      sizeof (ptrace_state));
  if (errno)
    perror_with_name ("ptrace");
  if (pt_status < 0)
    return 0;

  if (ptrace_state.pe_report_event & PTRACE_FORK)
    {
      *childpid = ptrace_state.pe_other_pid;
      return 1;
    }

  return 0;
#endif
}

int
child_has_vforked (pid, childpid)
  int pid;
  int * childpid;
{
  /* This request is only available on HPUX 10.0 and later.  */
#if !defined(PT_GET_PROCESS_STATE)
  *childpid = 0;
  return 0;

#else
  int pt_status;
  ptrace_state_t  ptrace_state;

  errno = 0;
  pt_status = call_ptrace (PT_GET_PROCESS_STATE,
                      pid,
                      (PTRACE_ARG3_TYPE) &ptrace_state,
                      sizeof (ptrace_state));
  if (errno)
    perror_with_name ("ptrace");
  if (pt_status < 0)
    return 0;

  if (ptrace_state.pe_report_event & PTRACE_VFORK)
    {
      *childpid = ptrace_state.pe_other_pid;
      return 1;
    }

  return 0;
#endif
}

int
child_can_follow_vfork_prior_to_exec ()
{
  /* ptrace doesn't allow this. */
  return 0;
}

int
child_insert_exec_catchpoint (pid)
  int pid;
{
  /* This request is only available on HPUX 10.0 and later.
     */
#if !defined(PT_SET_EVENT_MASK)
  error ("Unable to catch execs prior to HPUX 10.0");

#else
  /* Enable reporting of exec events from the kernel. */
  /* ??rehrauer: For the moment, we're always enabling these events,
     and just ignoring them if there's no catchpoint to catch them.
     */
  return 0;
#endif
}

int
child_remove_exec_catchpoint (pid)
  int pid;
{
  /* This request is only available on HPUX 10.0 and later.
     */
#if !defined(PT_SET_EVENT_MASK)
  error ("Unable to catch execs prior to HPUX 10.0");

#else
  /* Disable reporting of exec events from the kernel. */
  /* ??rehrauer: For the moment, we're always enabling these events,
     and just ignoring them if there's no catchpoint to catch them.
     */
  return 0;
#endif
}

int
child_has_execd (pid, execd_pathname)
  int pid;
  char **  execd_pathname;
{

  /* This request is only available on HPUX 10.0 and later.
     */
#if !defined(PT_GET_PROCESS_STATE)
  *execd_pathname = NULL;
  return 0;

#else
  int pt_status;
  ptrace_state_t  ptrace_state;

  errno = 0;
  pt_status = call_ptrace (PT_GET_PROCESS_STATE,
                      pid,
                      (PTRACE_ARG3_TYPE) &ptrace_state,
                      sizeof (ptrace_state));
  if (errno)
    perror_with_name ("ptrace");
  if (pt_status < 0)
    return 0;

  if (ptrace_state.pe_report_event & PTRACE_EXEC)
    {
      char *  exec_file = target_pid_to_exec_file (pid);
      *execd_pathname = savestring (exec_file, strlen (exec_file));
      return 1;
    }

  return 0;
#endif
}

int
child_reported_exec_events_per_exec_call ()
{
  return 2;  /* ptrace reports the event twice per call. */
}

int
child_has_syscall_event (pid, kind, syscall_id)
     int pid;
     enum target_waitkind *kind;
     int *syscall_id;
{
  /* This request is only available on HPUX 10.30 and later, via
     the ttrace interface.  */

  *kind = TARGET_WAITKIND_SPURIOUS;
  *syscall_id = -1;
  return 0;
}

char *
child_pid_to_exec_file (pid)
    int pid;
{
  static char  exec_file_buffer[1024];
  int pt_status;
  CORE_ADDR  top_of_stack;
  char  four_chars[4];
  int name_index;
  int i;
  int saved_inferior_pid;
  boolean  done;
  
  /* As of 10.x HP-UX, there's an explicit request to get the pathname. */
  pt_status = call_ptrace (PT_GET_PROCESS_PATHNAME,
                           pid,
                           (PTRACE_ARG3_TYPE) exec_file_buffer,
                           sizeof (exec_file_buffer) - 1);
  if (pt_status == 0)
    return exec_file_buffer;

  /* It appears that this request is broken prior to 10.30.
     If it fails, try a really, truly amazingly gross hack
     that DDE uses, of pawing through the process' data
     segment to find the pathname.  */

  top_of_stack = 0x7b03a000;
  name_index = 0;
  done = 0;

  /* On the chance that pid != inferior_pid, set inferior_pid
     to pid, so that (grrrr!) implicit uses of inferior_pid get
     the right id.  */

  saved_inferior_pid = inferior_pid;
  inferior_pid = pid;

  /* Try to grab a null-terminated string. */
  while (! done)
    {
      if (target_read_memory (top_of_stack, four_chars, 4) != 0)
	{
	  inferior_pid = saved_inferior_pid;
	  return NULL;
	}
      for (i = 0; i < 4; i++)
	{
	  exec_file_buffer[name_index++] = four_chars[i];
	  done = (four_chars[i] == '\0');
	  if (done)
	    break;
	}
      top_of_stack += 4;
    }

  if (exec_file_buffer[0] == '\0')
    {
      inferior_pid = saved_inferior_pid;
      return NULL;
    }

  inferior_pid = saved_inferior_pid;
  return exec_file_buffer;
}

void
pre_fork_inferior ()
{
  int status;

  status = pipe (startup_semaphore.parent_channel);
  if (status < 0)
    {
      warning ("error getting parent pipe for startup semaphore");
      return;
    }

  status = pipe (startup_semaphore.child_channel);
  if (status < 0)
    {
      warning ("error getting child pipe for startup semaphore");
      return;
    }
}


/* Check to see if the given thread is alive.

   This is a no-op, as ptrace doesn't support threads, so we just
   return "TRUE".  */

int
child_thread_alive (pid)
     int pid;
{
   return 1;
}

#endif /* ! GDB_NATIVE_HPUX_11 */