1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
|
/* Target-machine dependent code for Hitachi H8/500, for GDB.
Copyright (C) 1993 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
/*
Contributed by Steve Chamberlain
sac@cygnus.com
*/
#include "defs.h"
#include "frame.h"
#include "obstack.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "value.h"
#include "dis-asm.h"
#include "../opcodes/h8500-opc.h"
;
#define UNSIGNED_SHORT(X) ((X) & 0xffff)
/* Shape of an H8/500 frame :
arg-n
..
arg-2
arg-1
return address <2 or 4 bytes>
old fp <2 bytes>
auto-n
..
auto-1
saved registers
*/
/* an easy to debug H8 stack frame looks like:
0x6df6 push r6
0x0d76 mov.w r7,r6
0x6dfn push reg
0x7905 nnnn mov.w #n,r5 or 0x1b87 subs #2,sp
0x1957 sub.w r5,sp
*/
#define IS_PUSH(x) (((x) & 0xff00)==0x6d00)
#define IS_LINK_8(x) ((x) == 0x17)
#define IS_LINK_16(x) ((x) == 0x1f)
#define IS_MOVE_FP(x) ((x) == 0x0d76)
#define IS_MOV_SP_FP(x) ((x) == 0x0d76)
#define IS_SUB2_SP(x) ((x) == 0x1b87)
#define IS_MOVK_R5(x) ((x) == 0x7905)
#define IS_SUB_R5SP(x) ((x) == 0x1957)
#define LINK_8 0x17
#define LINK_16 0x1f
int minimum_mode = 1;
CORE_ADDR examine_prologue ();
void frame_find_saved_regs ();
int regoff[NUM_REGS] =
{0, 2, 4, 6, 8, 10, 12, 14, /* r0->r7 */
16, 18, /* ccr, pc */
20, 21, 22, 23}; /* cp, dp, ep, tp */
CORE_ADDR
h8500_skip_prologue (start_pc)
CORE_ADDR start_pc;
{
short int w;
w = read_memory_integer (start_pc, 1);
if (w == LINK_8)
{
start_pc += 2;
w = read_memory_integer (start_pc, 1);
}
if (w == LINK_16)
{
start_pc += 3;
w = read_memory_integer (start_pc, 2);
}
return start_pc;
}
int
print_insn (memaddr, stream)
CORE_ADDR memaddr;
GDB_FILE *stream;
{
disassemble_info info;
GDB_INIT_DISASSEMBLE_INFO (info, stream);
return print_insn_h8500 (memaddr, &info);
}
/* Given a GDB frame, determine the address of the calling function's frame.
This will be used to create a new GDB frame struct, and then
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
For us, the frame address is its stack pointer value, so we look up
the function prologue to determine the caller's sp value, and return it. */
FRAME_ADDR
h8500_frame_chain (thisframe)
FRAME thisframe;
{
if (!inside_entry_file (thisframe->pc))
return (read_memory_integer (thisframe->frame, 2) & 0xffff)
| (read_register (SEG_T_REGNUM) << 16);
else
return 0;
}
/* Put here the code to store, into a struct frame_saved_regs,
the addresses of the saved registers of frame described by FRAME_INFO.
This includes special registers such as pc and fp saved in special
ways in the stack frame. sp is even more special:
the address we return for it IS the sp for the next frame.
We cache the result of doing this in the frame_cache_obstack, since
it is fairly expensive. */
#if 0
void
frame_find_saved_regs (fi, fsr)
struct frame_info *fi;
struct frame_saved_regs *fsr;
{
register CORE_ADDR next_addr;
register CORE_ADDR *saved_regs;
register int regnum;
register struct frame_saved_regs *cache_fsr;
extern struct obstack frame_cache_obstack;
CORE_ADDR ip;
struct symtab_and_line sal;
CORE_ADDR limit;
if (!fi->fsr)
{
cache_fsr = (struct frame_saved_regs *)
obstack_alloc (&frame_cache_obstack,
sizeof (struct frame_saved_regs));
memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
fi->fsr = cache_fsr;
/* Find the start and end of the function prologue. If the PC
is in the function prologue, we only consider the part that
has executed already. */
ip = get_pc_function_start (fi->pc);
sal = find_pc_line (ip, 0);
limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
/* This will fill in fields in *fi as well as in cache_fsr. */
examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
}
if (fsr)
*fsr = *fi->fsr;
}
#endif
/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
is not the address of a valid instruction, the address of the next
instruction beyond ADDR otherwise. *PWORD1 receives the first word
of the instruction.*/
CORE_ADDR
NEXT_PROLOGUE_INSN (addr, lim, pword1)
CORE_ADDR addr;
CORE_ADDR lim;
char *pword1;
{
if (addr < lim + 8)
{
read_memory (addr, pword1, 1);
read_memory (addr, pword1 + 1, 1);
return 1;
}
return 0;
}
/* Examine the prologue of a function. `ip' points to the first instruction.
`limit' is the limit of the prologue (e.g. the addr of the first
linenumber, or perhaps the program counter if we're stepping through).
`frame_sp' is the stack pointer value in use in this frame.
`fsr' is a pointer to a frame_saved_regs structure into which we put
info about the registers saved by this frame.
`fi' is a struct frame_info pointer; we fill in various fields in it
to reflect the offsets of the arg pointer and the locals pointer. */
#if 0
static CORE_ADDR
examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
register CORE_ADDR ip;
register CORE_ADDR limit;
FRAME_ADDR after_prolog_fp;
struct frame_saved_regs *fsr;
struct frame_info *fi;
{
register CORE_ADDR next_ip;
int r;
int i;
int have_fp = 0;
register int src;
register struct pic_prologue_code *pcode;
char insn[2];
int size, offset;
unsigned int reg_save_depth = 2; /* Number of things pushed onto
stack, starts at 2, 'cause the
PC is already there */
unsigned int auto_depth = 0; /* Number of bytes of autos */
char in_frame[8]; /* One for each reg */
memset (in_frame, 1, 8);
for (r = 0; r < 8; r++)
{
fsr->regs[r] = 0;
}
if (after_prolog_fp == 0)
{
after_prolog_fp = read_register (SP_REGNUM);
}
if (ip == 0 || ip & ~0xffffff)
return 0;
ok = NEXT_PROLOGUE_INSN (ip, limit, &insn[0]);
/* Skip over any fp push instructions */
fsr->regs[6] = after_prolog_fp;
if (ok && IS_LINK_8 (insn[0]))
{
ip++;
in_frame[6] = reg_save_depth;
reg_save_depth += 2;
}
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
/* Is this a move into the fp */
if (next_ip && IS_MOV_SP_FP (insn_word))
{
ip = next_ip;
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
have_fp = 1;
}
/* Skip over any stack adjustment, happens either with a number of
sub#2,sp or a mov #x,r5 sub r5,sp */
if (next_ip && IS_SUB2_SP (insn_word))
{
while (next_ip && IS_SUB2_SP (insn_word))
{
auto_depth += 2;
ip = next_ip;
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
}
}
else
{
if (next_ip && IS_MOVK_R5 (insn_word))
{
ip = next_ip;
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
auto_depth += insn_word;
next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
auto_depth += insn_word;
}
}
/* Work out which regs are stored where */
while (next_ip && IS_PUSH (insn_word))
{
ip = next_ip;
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
fsr->regs[r] = after_prolog_fp + auto_depth;
auto_depth += 2;
}
/* The args are always reffed based from the stack pointer */
fi->args_pointer = after_prolog_fp;
/* Locals are always reffed based from the fp */
fi->locals_pointer = after_prolog_fp;
/* The PC is at a known place */
fi->from_pc = read_memory_short (after_prolog_fp + 2);
/* Rememeber any others too */
in_frame[PC_REGNUM] = 0;
if (have_fp)
/* We keep the old FP in the SP spot */
fsr->regs[SP_REGNUM] = (read_memory_short (fsr->regs[6]));
else
fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
return (ip);
}
#endif
/* Return the saved PC from this frame. */
CORE_ADDR
frame_saved_pc (frame)
FRAME frame;
{
return read_memory_integer ((frame)->frame + 2, PTR_SIZE);
}
CORE_ADDR
frame_locals_address (fi)
struct frame_info *fi;
{
return fi->frame;
}
/* Return the address of the argument block for the frame
described by FI. Returns 0 if the address is unknown. */
CORE_ADDR
frame_args_address (fi)
struct frame_info *fi;
{
return fi->frame;
}
void
h8300_pop_frame ()
{
unsigned regnum;
struct frame_saved_regs fsr;
struct frame_info *fi;
FRAME frame = get_current_frame ();
fi = get_frame_info (frame);
get_frame_saved_regs (fi, &fsr);
for (regnum = 0; regnum < 8; regnum++)
{
if (fsr.regs[regnum])
{
write_register (regnum, read_memory_short (fsr.regs[regnum]));
}
flush_cached_frames ();
set_current_frame (create_new_frame (read_register (FP_REGNUM),
read_pc ()));
}
}
void
print_register_hook (regno)
{
if (regno == CCR_REGNUM)
{
/* CCR register */
int C, Z, N, V;
unsigned char b[2];
unsigned char l;
read_relative_register_raw_bytes (regno, b);
l = b[1];
printf_unfiltered ("\t");
printf_unfiltered ("I-%d - ", (l & 0x80) != 0);
N = (l & 0x8) != 0;
Z = (l & 0x4) != 0;
V = (l & 0x2) != 0;
C = (l & 0x1) != 0;
printf_unfiltered ("N-%d ", N);
printf_unfiltered ("Z-%d ", Z);
printf_unfiltered ("V-%d ", V);
printf_unfiltered ("C-%d ", C);
if ((C | Z) == 0)
printf_unfiltered ("u> ");
if ((C | Z) == 1)
printf_unfiltered ("u<= ");
if ((C == 0))
printf_unfiltered ("u>= ");
if (C == 1)
printf_unfiltered ("u< ");
if (Z == 0)
printf_unfiltered ("!= ");
if (Z == 1)
printf_unfiltered ("== ");
if ((N ^ V) == 0)
printf_unfiltered (">= ");
if ((N ^ V) == 1)
printf_unfiltered ("< ");
if ((Z | (N ^ V)) == 0)
printf_unfiltered ("> ");
if ((Z | (N ^ V)) == 1)
printf_unfiltered ("<= ");
}
}
int
h8500_register_size (regno)
int regno;
{
if (regno <= PC_REGNUM)
return 2;
else
return 1;
}
struct type *
h8500_register_virtual_type (regno)
int regno;
{
switch (regno)
{
case SEG_C_REGNUM:
case SEG_E_REGNUM:
case SEG_D_REGNUM:
case SEG_T_REGNUM:
return builtin_type_unsigned_char;
case R0_REGNUM:
case R1_REGNUM:
case R2_REGNUM:
case R3_REGNUM:
case R4_REGNUM:
case R5_REGNUM:
case R6_REGNUM:
case R7_REGNUM:
case PC_REGNUM:
case CCR_REGNUM:
return builtin_type_unsigned_short;
default:
abort ();
}
}
/* Put here the code to store, into a struct frame_saved_regs,
the addresses of the saved registers of frame described by FRAME_INFO.
This includes special registers such as pc and fp saved in special
ways in the stack frame. sp is even more special:
the address we return for it IS the sp for the next frame. */
void
frame_find_saved_regs (frame_info, frame_saved_regs)
struct frame_info *frame_info;
struct frame_saved_regs *frame_saved_regs;
{
register int regnum;
register int regmask;
register CORE_ADDR next_addr;
register CORE_ADDR pc;
unsigned char thebyte;
memset (frame_saved_regs, '\0', sizeof *frame_saved_regs);
if ((frame_info)->pc >= (frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM * 4 - 4
&& (frame_info)->pc <= (frame_info)->frame)
{
next_addr = (frame_info)->frame;
pc = (frame_info)->frame - CALL_DUMMY_LENGTH - FP_REGNUM * 4 - 4;
}
else
{
pc = get_pc_function_start ((frame_info)->pc);
/* Verify we have a link a6 instruction next;
if not we lose. If we win, find the address above the saved
regs using the amount of storage from the link instruction.
*/
thebyte = read_memory_integer (pc, 1);
if (0x1f == thebyte)
next_addr = (frame_info)->frame + read_memory_integer (pc += 1, 2), pc += 2;
else if (0x17 == thebyte)
next_addr = (frame_info)->frame + read_memory_integer (pc += 1, 1), pc += 1;
else
goto lose;
#if 0
/* FIXME steve */
/* If have an add:g.waddal #-n, sp next, adjust next_addr. */
if ((0x0c0177777 & read_memory_integer (pc, 2)) == 0157774)
next_addr += read_memory_integer (pc += 2, 4), pc += 4;
#endif
}
thebyte = read_memory_integer (pc, 1);
if (thebyte == 0x12)
{
/* Got stm */
pc++;
regmask = read_memory_integer (pc, 1);
pc++;
for (regnum = 0; regnum < 8; regnum++, regmask >>= 1)
{
if (regmask & 1)
{
(frame_saved_regs)->regs[regnum] = (next_addr += 2) - 2;
}
}
thebyte = read_memory_integer (pc, 1);
}
/* Maybe got a load of pushes */
while (thebyte == 0xbf)
{
pc++;
regnum = read_memory_integer (pc, 1) & 0x7;
pc++;
(frame_saved_regs)->regs[regnum] = (next_addr += 2) - 2;
thebyte = read_memory_integer (pc, 1);
}
lose:;
/* Remember the address of the frame pointer */
(frame_saved_regs)->regs[FP_REGNUM] = (frame_info)->frame;
/* This is where the old sp is hidden */
(frame_saved_regs)->regs[SP_REGNUM] = (frame_info)->frame;
/* And the PC - remember the pushed FP is always two bytes long */
(frame_saved_regs)->regs[PC_REGNUM] = (frame_info)->frame + 2;
}
saved_pc_after_call (frame)
{
int x;
int a = read_register (SP_REGNUM);
x = read_memory_integer (a, PTR_SIZE);
return x;
}
/* Nonzero if instruction at PC is a return instruction. */
about_to_return (pc)
{
int b1 = read_memory_integer (pc, 1);
switch (b1)
{
case 0x14: /* rtd #8 */
case 0x1c: /* rtd #16 */
case 0x19: /* rts */
case 0x1a: /* rte */
return 1;
case 0x11:
{
int b2 = read_memory_integer (pc + 1, 1);
switch (b2)
{
case 0x18: /* prts */
case 0x14: /* prtd #8 */
case 0x16: /* prtd #16 */
return 1;
}
}
}
return 0;
}
void
h8500_set_pointer_size (newsize)
int newsize;
{
static int oldsize = 0;
if (oldsize != newsize)
{
printf_unfiltered ("pointer size set to %d bits\n", newsize);
oldsize = newsize;
if (newsize == 32)
{
minimum_mode = 0;
}
else
{
minimum_mode = 1;
}
_initialize_gdbtypes ();
}
}
struct cmd_list_element *setmemorylist;
static void
segmented_command (args, from_tty)
char *args;
int from_tty;
{
h8500_set_pointer_size (32);
}
static void
unsegmented_command (args, from_tty)
char *args;
int from_tty;
{
h8500_set_pointer_size (16);
}
static void
set_memory (args, from_tty)
char *args;
int from_tty;
{
printf_unfiltered ("\"set memory\" must be followed by the name of a memory subcommand.\n");
help_list (setmemorylist, "set memory ", -1, gdb_stdout);
}
/* See if variable name is ppc or pr[0-7] */
int
h8500_is_trapped_internalvar (name)
char *name;
{
if (name[0] != 'p')
return 0;
if (strcmp (name + 1, "pc") == 0)
return 1;
if (name[1] == 'r'
&& name[2] >= '0'
&& name[2] <= '7'
&& name[3] == '\000')
return 1;
else
return 0;
}
value
h8500_value_of_trapped_internalvar (var)
struct internalvar *var;
{
LONGEST regval;
unsigned char regbuf[4];
int page_regnum, regnum;
regnum = var->name[2] == 'c' ? PC_REGNUM : var->name[2] - '0';
switch (var->name[2])
{
case 'c':
page_regnum = SEG_C_REGNUM;
break;
case '0':
case '1':
case '2':
case '3':
page_regnum = SEG_D_REGNUM;
break;
case '4':
case '5':
page_regnum = SEG_E_REGNUM;
break;
case '6':
case '7':
page_regnum = SEG_T_REGNUM;
break;
}
get_saved_register (regbuf, NULL, NULL, selected_frame, page_regnum, NULL);
regval = regbuf[0] << 16;
get_saved_register (regbuf, NULL, NULL, selected_frame, regnum, NULL);
regval |= regbuf[0] << 8 | regbuf[1]; /* XXX host/target byte order */
free (var->value); /* Free up old value */
var->value = value_from_longest (builtin_type_unsigned_long, regval);
release_value (var->value); /* Unchain new value */
VALUE_LVAL (var->value) = lval_internalvar;
VALUE_INTERNALVAR (var->value) = var;
return var->value;
}
void
h8500_set_trapped_internalvar (var, newval, bitpos, bitsize, offset)
struct internalvar *var;
int offset, bitpos, bitsize;
value newval;
{
char *page_regnum, *regnum;
char expression[100];
unsigned new_regval;
struct type *type;
enum type_code newval_type_code;
type = VALUE_TYPE (newval);
newval_type_code = TYPE_CODE (type);
if ((newval_type_code != TYPE_CODE_INT
&& newval_type_code != TYPE_CODE_PTR)
|| TYPE_LENGTH (type) != sizeof (new_regval))
error ("Illegal type (%s) for assignment to $%s\n",
TYPE_NAME (type), var->name);
new_regval = *(long *) VALUE_CONTENTS_RAW (newval);
regnum = var->name + 1;
switch (var->name[2])
{
case 'c':
page_regnum = "cp";
break;
case '0':
case '1':
case '2':
case '3':
page_regnum = "dp";
break;
case '4':
case '5':
page_regnum = "ep";
break;
case '6':
case '7':
page_regnum = "tp";
break;
}
sprintf (expression, "$%s=%d", page_regnum, new_regval >> 16);
parse_and_eval (expression);
sprintf (expression, "$%s=%d", regnum, new_regval & 0xffff);
parse_and_eval (expression);
}
void
_initialize_h8500_tdep ()
{
add_prefix_cmd ("memory", no_class, set_memory,
"set the memory model", &setmemorylist, "set memory ", 0,
&setlist);
add_cmd ("segmented", class_support, segmented_command,
"Set segmented memory model.", &setmemorylist);
add_cmd ("unsegmented", class_support, unsegmented_command,
"Set unsegmented memory model.", &setmemorylist);
}
CORE_ADDR
target_read_sp ()
{
return (read_register (SEG_T_REGNUM) << 16) | (read_register (SP_REGNUM));
}
void
target_write_sp (v)
CORE_ADDR v;
{
write_register (SEG_T_REGNUM, v >> 16);
write_register (SP_REGNUM, v & 0xffff);
}
CORE_ADDR
target_read_pc ()
{
return (read_register (SEG_C_REGNUM) << 16) | (read_register (PC_REGNUM));
}
void
target_write_pc (v)
CORE_ADDR v;
{
write_register (SEG_C_REGNUM, v >> 16);
write_register (PC_REGNUM, v & 0xffff);
}
CORE_ADDR
target_read_fp ()
{
return (read_register (SEG_T_REGNUM) << 16) | (read_register (FP_REGNUM));
}
void
target_write_fp (v)
CORE_ADDR v;
{
write_register (SEG_T_REGNUM, v >> 16);
write_register (FP_REGNUM, v & 0xffff);
}
|