summaryrefslogtreecommitdiff
path: root/gdb/h8300-tdep.c
blob: 5e8ba94b72f8a489a25187415081ef2ed7321f18 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
/* Target-machine dependent code for Renesas H8/300, for GDB.

   Copyright (C) 1988-2020 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

/*
   Contributed by Steve Chamberlain
   sac@cygnus.com
 */

#include "defs.h"
#include "value.h"
#include "arch-utils.h"
#include "regcache.h"
#include "gdbcore.h"
#include "objfiles.h"
#include "dis-asm.h"
#include "dwarf2-frame.h"
#include "frame-base.h"
#include "frame-unwind.h"

enum gdb_regnum
{
  E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
  E_RET0_REGNUM = E_R0_REGNUM,
  E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM,
  E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
  E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
  E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
  E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
  E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
  E_SP_REGNUM,
  E_CCR_REGNUM,
  E_PC_REGNUM,
  E_CYCLES_REGNUM,
  E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
  E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
  E_INSTS_REGNUM,
  E_MACH_REGNUM,
  E_MACL_REGNUM,
  E_SBR_REGNUM,
  E_VBR_REGNUM
};

#define H8300_MAX_NUM_REGS 18

#define E_PSEUDO_CCR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch))
#define E_PSEUDO_EXR_REGNUM(gdbarch) (gdbarch_num_regs (gdbarch)+1)

struct h8300_frame_cache
{
  /* Base address.  */
  CORE_ADDR base;
  CORE_ADDR sp_offset;
  CORE_ADDR pc;

  /* Flag showing that a frame has been created in the prologue code.  */
  int uses_fp;

  /* Saved registers.  */
  CORE_ADDR saved_regs[H8300_MAX_NUM_REGS];
  CORE_ADDR saved_sp;
};

enum
{
  h8300_reg_size = 2,
  h8300h_reg_size = 4,
  h8300_max_reg_size = 4,
};

static int is_h8300hmode (struct gdbarch *gdbarch);
static int is_h8300smode (struct gdbarch *gdbarch);
static int is_h8300sxmode (struct gdbarch *gdbarch);
static int is_h8300_normal_mode (struct gdbarch *gdbarch);

#define BINWORD(gdbarch) ((is_h8300hmode (gdbarch) \
		  && !is_h8300_normal_mode (gdbarch)) \
		 ? h8300h_reg_size : h8300_reg_size)

/* Normal frames.  */

/* Allocate and initialize a frame cache.  */

static void
h8300_init_frame_cache (struct gdbarch *gdbarch,
			struct h8300_frame_cache *cache)
{
  int i;

  /* Base address.  */
  cache->base = 0;
  cache->sp_offset = 0;
  cache->pc = 0;

  /* Frameless until proven otherwise.  */
  cache->uses_fp = 0;

  /* Saved registers.  We initialize these to -1 since zero is a valid
     offset (that's where %fp is supposed to be stored).  */
  for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
    cache->saved_regs[i] = -1;
}

#define IS_MOVB_RnRm(x)		(((x) & 0xff88) == 0x0c88)
#define IS_MOVW_RnRm(x)		(((x) & 0xff88) == 0x0d00)
#define IS_MOVL_RnRm(x)		(((x) & 0xff88) == 0x0f80)
#define IS_MOVB_Rn16_SP(x)	(((x) & 0xfff0) == 0x6ee0)
#define IS_MOVB_EXT(x)		((x) == 0x7860)
#define IS_MOVB_Rn24_SP(x)	(((x) & 0xfff0) == 0x6aa0)
#define IS_MOVW_Rn16_SP(x)	(((x) & 0xfff0) == 0x6fe0)
#define IS_MOVW_EXT(x)		((x) == 0x78e0)
#define IS_MOVW_Rn24_SP(x)	(((x) & 0xfff0) == 0x6ba0)
/* Same instructions as mov.w, just prefixed with 0x0100.  */
#define IS_MOVL_PRE(x)		((x) == 0x0100)
#define IS_MOVL_Rn16_SP(x)	(((x) & 0xfff0) == 0x6fe0)
#define IS_MOVL_EXT(x)		((x) == 0x78e0)
#define IS_MOVL_Rn24_SP(x)	(((x) & 0xfff0) == 0x6ba0)

#define IS_PUSHFP_MOVESPFP(x)	((x) == 0x6df60d76)
#define IS_PUSH_FP(x)		((x) == 0x01006df6)
#define IS_MOV_SP_FP(x)		((x) == 0x0ff6)
#define IS_SUB2_SP(x)		((x) == 0x1b87)
#define IS_SUB4_SP(x)		((x) == 0x1b97)
#define IS_ADD_IMM_SP(x)	((x) == 0x7a1f)
#define IS_SUB_IMM_SP(x)	((x) == 0x7a3f)
#define IS_SUBL4_SP(x)		((x) == 0x1acf)
#define IS_MOV_IMM_Rn(x)	(((x) & 0xfff0) == 0x7905)
#define IS_SUB_RnSP(x)		(((x) & 0xff0f) == 0x1907)
#define IS_ADD_RnSP(x)		(((x) & 0xff0f) == 0x0907)
#define IS_PUSH(x)		(((x) & 0xfff0) == 0x6df0)

/* If the instruction at PC is an argument register spill, return its
   length.  Otherwise, return zero.

   An argument register spill is an instruction that moves an argument
   from the register in which it was passed to the stack slot in which
   it really lives.  It is a byte, word, or longword move from an
   argument register to a negative offset from the frame pointer.
   
   CV, 2003-06-16: Or, in optimized code or when the `register' qualifier
   is used, it could be a byte, word or long move to registers r3-r5.  */

static int
h8300_is_argument_spill (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int w = read_memory_unsigned_integer (pc, 2, byte_order);

  if ((IS_MOVB_RnRm (w) || IS_MOVW_RnRm (w) || IS_MOVL_RnRm (w))
      && (w & 0x70) <= 0x20	/* Rs is R0, R1 or R2 */
      && (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5)	/* Rd is R3, R4 or R5 */
    return 2;

  if (IS_MOVB_Rn16_SP (w)
      && 8 <= (w & 0xf) && (w & 0xf) <= 10)	/* Rs is R0L, R1L, or R2L  */
    {
      /* ... and d:16 is negative.  */
      if (read_memory_integer (pc + 2, 2, byte_order) < 0)
	return 4;
    }
  else if (IS_MOVB_EXT (w))
    {
      if (IS_MOVB_Rn24_SP (read_memory_unsigned_integer (pc + 2,
							 2, byte_order)))
	{
	  LONGEST disp = read_memory_integer (pc + 4, 4, byte_order);

	  /* ... and d:24 is negative.  */
	  if (disp < 0 && disp > 0xffffff)
	    return 8;
	}
    }
  else if (IS_MOVW_Rn16_SP (w)
	   && (w & 0xf) <= 2)	/* Rs is R0, R1, or R2 */
    {
      /* ... and d:16 is negative.  */
      if (read_memory_integer (pc + 2, 2, byte_order) < 0)
	return 4;
    }
  else if (IS_MOVW_EXT (w))
    {
      if (IS_MOVW_Rn24_SP (read_memory_unsigned_integer (pc + 2,
							 2, byte_order)))
	{
	  LONGEST disp = read_memory_integer (pc + 4, 4, byte_order);

	  /* ... and d:24 is negative.  */
	  if (disp < 0 && disp > 0xffffff)
	    return 8;
	}
    }
  else if (IS_MOVL_PRE (w))
    {
      int w2 = read_memory_integer (pc + 2, 2, byte_order);

      if (IS_MOVL_Rn16_SP (w2)
	  && (w2 & 0xf) <= 2)	/* Rs is ER0, ER1, or ER2 */
	{
	  /* ... and d:16 is negative.  */
	  if (read_memory_integer (pc + 4, 2, byte_order) < 0)
	    return 6;
	}
      else if (IS_MOVL_EXT (w2))
	{
	  if (IS_MOVL_Rn24_SP (read_memory_integer (pc + 4, 2, byte_order)))
	    {
	      LONGEST disp = read_memory_integer (pc + 6, 4, byte_order);

	      /* ... and d:24 is negative.  */
	      if (disp < 0 && disp > 0xffffff)
		return 10;
	    }
	}
    }

  return 0;
}

/* Do a full analysis of the prologue at PC and update CACHE
   accordingly.  Bail out early if CURRENT_PC is reached.  Return the
   address where the analysis stopped.

   We handle all cases that can be generated by gcc.

   For allocating a stack frame:

   mov.w r6,@-sp
   mov.w sp,r6
   mov.w #-n,rN
   add.w rN,sp

   mov.w r6,@-sp
   mov.w sp,r6
   subs  #2,sp
   (repeat)

   mov.l er6,@-sp
   mov.l sp,er6
   add.l #-n,sp

   mov.w r6,@-sp
   mov.w sp,r6
   subs  #4,sp
   (repeat)

   For saving registers:

   mov.w rN,@-sp
   mov.l erN,@-sp
   stm.l reglist,@-sp

   */

static CORE_ADDR
h8300_analyze_prologue (struct gdbarch *gdbarch,
			CORE_ADDR pc, CORE_ADDR current_pc,
			struct h8300_frame_cache *cache)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  unsigned int op;
  int regno, i, spill_size;

  cache->sp_offset = 0;

  if (pc >= current_pc)
    return current_pc;

  op = read_memory_unsigned_integer (pc, 4, byte_order);

  if (IS_PUSHFP_MOVESPFP (op))
    {
      cache->saved_regs[E_FP_REGNUM] = 0;
      cache->uses_fp = 1;
      pc += 4;
    }
  else if (IS_PUSH_FP (op))
    {
      cache->saved_regs[E_FP_REGNUM] = 0;
      pc += 4;
      if (pc >= current_pc)
        return current_pc;
      op = read_memory_unsigned_integer (pc, 2, byte_order);
      if (IS_MOV_SP_FP (op))
	{
	  cache->uses_fp = 1;
	  pc += 2;
	}
    }

  while (pc < current_pc)
    {
      op = read_memory_unsigned_integer (pc, 2, byte_order);
      if (IS_SUB2_SP (op))
	{
	  cache->sp_offset += 2;
	  pc += 2;
	}
      else if (IS_SUB4_SP (op))
	{
	  cache->sp_offset += 4;
	  pc += 2;
	}
      else if (IS_ADD_IMM_SP (op))
	{
	  cache->sp_offset += -read_memory_integer (pc + 2, 2, byte_order);
	  pc += 4;
	}
      else if (IS_SUB_IMM_SP (op))
	{
	  cache->sp_offset += read_memory_integer (pc + 2, 2, byte_order);
	  pc += 4;
	}
      else if (IS_SUBL4_SP (op))
	{
	  cache->sp_offset += 4;
	  pc += 2;
	}
      else if (IS_MOV_IMM_Rn (op))
        {
	  int offset = read_memory_integer (pc + 2, 2, byte_order);
	  regno = op & 0x000f;
	  op = read_memory_unsigned_integer (pc + 4, 2, byte_order);
	  if (IS_ADD_RnSP (op) && (op & 0x00f0) == regno)
	    {
	      cache->sp_offset -= offset;
	      pc += 6;
	    }
	  else if (IS_SUB_RnSP (op) && (op & 0x00f0) == regno)
	    {
	      cache->sp_offset += offset;
	      pc += 6;
	    }
	  else
	    break;
	}
      else if (IS_PUSH (op))
	{
	  regno = op & 0x000f;
	  cache->sp_offset += 2;
	  cache->saved_regs[regno] = cache->sp_offset;
	  pc += 2;
	}
      else if (op == 0x0100)
	{
	  op = read_memory_unsigned_integer (pc + 2, 2, byte_order);
	  if (IS_PUSH (op))
	    {
	      regno = op & 0x000f;
	      cache->sp_offset += 4;
	      cache->saved_regs[regno] = cache->sp_offset;
	      pc += 4;
	    }
	  else
	    break;
	}
      else if ((op & 0xffcf) == 0x0100)
	{
	  int op1;
	  op1 = read_memory_unsigned_integer (pc + 2, 2, byte_order);
	  if (IS_PUSH (op1))
	    {
	      /* Since the prefix is 0x01x0, this is not a simple pushm but a
	         stm.l reglist,@-sp */
	      i = ((op & 0x0030) >> 4) + 1;
	      regno = op1 & 0x000f;
	      for (; i > 0; regno++, --i)
		{
		  cache->sp_offset += 4;
		  cache->saved_regs[regno] = cache->sp_offset;
		}
	      pc += 4;
	    }
	  else
	    break;
	}
      else
	break;
    }

  /* Check for spilling an argument register to the stack frame.
     This could also be an initializing store from non-prologue code,
     but I don't think there's any harm in skipping that.  */
  while ((spill_size = h8300_is_argument_spill (gdbarch, pc)) > 0
         && pc + spill_size <= current_pc)
    pc += spill_size;

  return pc;
}

static struct h8300_frame_cache *
h8300_frame_cache (struct frame_info *this_frame, void **this_cache)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct h8300_frame_cache *cache;
  int i;
  CORE_ADDR current_pc;

  if (*this_cache)
    return (struct h8300_frame_cache *) *this_cache;

  cache = FRAME_OBSTACK_ZALLOC (struct h8300_frame_cache);
  h8300_init_frame_cache (gdbarch, cache);
  *this_cache = cache;

  /* In principle, for normal frames, %fp holds the frame pointer,
     which holds the base address for the current stack frame.
     However, for functions that don't need it, the frame pointer is
     optional.  For these "frameless" functions the frame pointer is
     actually the frame pointer of the calling frame.  */

  cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
  if (cache->base == 0)
    return cache;

  cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);

  cache->pc = get_frame_func (this_frame);
  current_pc = get_frame_pc (this_frame);
  if (cache->pc != 0)
    h8300_analyze_prologue (gdbarch, cache->pc, current_pc, cache);

  if (!cache->uses_fp)
    {
      /* We didn't find a valid frame, which means that CACHE->base
         currently holds the frame pointer for our calling frame.  If
         we're at the start of a function, or somewhere half-way its
         prologue, the function's frame probably hasn't been fully
         setup yet.  Try to reconstruct the base address for the stack
         frame by looking at the stack pointer.  For truly "frameless"
         functions this might work too.  */

      cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM)
		    + cache->sp_offset;
      cache->saved_sp = cache->base + BINWORD (gdbarch);
      cache->saved_regs[E_PC_REGNUM] = 0;
    }
  else
    {
      cache->saved_sp = cache->base + 2 * BINWORD (gdbarch);
      cache->saved_regs[E_PC_REGNUM] = -BINWORD (gdbarch);
    }

  /* Adjust all the saved registers such that they contain addresses
     instead of offsets.  */
  for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
    if (cache->saved_regs[i] != -1)
      cache->saved_regs[i] = cache->base - cache->saved_regs[i];

  return cache;
}

static void
h8300_frame_this_id (struct frame_info *this_frame, void **this_cache,
		     struct frame_id *this_id)
{
  struct h8300_frame_cache *cache =
    h8300_frame_cache (this_frame, this_cache);

  /* This marks the outermost frame.  */
  if (cache->base == 0)
    return;

  *this_id = frame_id_build (cache->saved_sp, cache->pc);
}

static struct value *
h8300_frame_prev_register (struct frame_info *this_frame, void **this_cache,
			   int regnum)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct h8300_frame_cache *cache =
    h8300_frame_cache (this_frame, this_cache);

  gdb_assert (regnum >= 0);

  if (regnum == E_SP_REGNUM && cache->saved_sp)
    return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);

  if (regnum < gdbarch_num_regs (gdbarch)
      && cache->saved_regs[regnum] != -1)
    return frame_unwind_got_memory (this_frame, regnum,
                                    cache->saved_regs[regnum]);

  return frame_unwind_got_register (this_frame, regnum, regnum);
}

static const struct frame_unwind h8300_frame_unwind = {
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  h8300_frame_this_id,
  h8300_frame_prev_register,
  NULL,
  default_frame_sniffer
};

static CORE_ADDR
h8300_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
  struct h8300_frame_cache *cache = h8300_frame_cache (this_frame, this_cache);
  return cache->base;
}

static const struct frame_base h8300_frame_base = {
  &h8300_frame_unwind,
  h8300_frame_base_address,
  h8300_frame_base_address,
  h8300_frame_base_address
};

static CORE_ADDR
h8300_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  CORE_ADDR func_addr = 0 , func_end = 0;

  if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
    {
      struct symtab_and_line sal;
      struct h8300_frame_cache cache;

      /* Found a function.  */
      sal = find_pc_line (func_addr, 0);
      if (sal.end && sal.end < func_end)
        /* Found a line number, use it as end of prologue.  */
        return sal.end;

      /* No useable line symbol.  Use prologue parsing method.  */
      h8300_init_frame_cache (gdbarch, &cache);
      return h8300_analyze_prologue (gdbarch, func_addr, func_end, &cache);
    }

  /* No function symbol -- just return the PC.  */
  return (CORE_ADDR) pc;
}

/* Function: push_dummy_call
   Setup the function arguments for calling a function in the inferior.
   In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
   on the H8/300H.

   There are actually two ABI's here: -mquickcall (the default) and
   -mno-quickcall.  With -mno-quickcall, all arguments are passed on
   the stack after the return address, word-aligned.  With
   -mquickcall, GCC tries to use r0 -- r2 to pass registers.  Since
   GCC doesn't indicate in the object file which ABI was used to
   compile it, GDB only supports the default --- -mquickcall.

   Here are the rules for -mquickcall, in detail:

   Each argument, whether scalar or aggregate, is padded to occupy a
   whole number of words.  Arguments smaller than a word are padded at
   the most significant end; those larger than a word are padded at
   the least significant end.

   The initial arguments are passed in r0 -- r2.  Earlier arguments go in
   lower-numbered registers.  Multi-word arguments are passed in
   consecutive registers, with the most significant end in the
   lower-numbered register.

   If an argument doesn't fit entirely in the remaining registers, it
   is passed entirely on the stack.  Stack arguments begin just after
   the return address.  Once an argument has overflowed onto the stack
   this way, all subsequent arguments are passed on the stack.

   The above rule has odd consequences.  For example, on the h8/300s,
   if a function takes two longs and an int as arguments:
   - the first long will be passed in r0/r1,
   - the second long will be passed entirely on the stack, since it
     doesn't fit in r2,
   - and the int will be passed on the stack, even though it could fit
     in r2.

   A weird exception: if an argument is larger than a word, but not a
   whole number of words in length (before padding), it is passed on
   the stack following the rules for stack arguments above, even if
   there are sufficient registers available to hold it.  Stranger
   still, the argument registers are still `used up' --- even though
   there's nothing in them.

   So, for example, on the h8/300s, if a function expects a three-byte
   structure and an int, the structure will go on the stack, and the
   int will go in r2, not r0.
  
   If the function returns an aggregate type (struct, union, or class)
   by value, the caller must allocate space to hold the return value,
   and pass the callee a pointer to this space as an invisible first
   argument, in R0.

   For varargs functions, the last fixed argument and all the variable
   arguments are always passed on the stack.  This means that calls to
   varargs functions don't work properly unless there is a prototype
   in scope.

   Basically, this ABI is not good, for the following reasons:
   - You can't call vararg functions properly unless a prototype is in scope.
   - Structure passing is inconsistent, to no purpose I can see.
   - It often wastes argument registers, of which there are only three
     to begin with.  */

static CORE_ADDR
h8300_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
		       struct regcache *regcache, CORE_ADDR bp_addr,
		       int nargs, struct value **args, CORE_ADDR sp,
		       function_call_return_method return_method,
		       CORE_ADDR struct_addr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int stack_alloc = 0, stack_offset = 0;
  int wordsize = BINWORD (gdbarch);
  int reg = E_ARG0_REGNUM;
  int argument;

  /* First, make sure the stack is properly aligned.  */
  sp = align_down (sp, wordsize);

  /* Now make sure there's space on the stack for the arguments.  We
     may over-allocate a little here, but that won't hurt anything.  */
  for (argument = 0; argument < nargs; argument++)
    stack_alloc += align_up (TYPE_LENGTH (value_type (args[argument])),
			     wordsize);
  sp -= stack_alloc;

  /* Now load as many arguments as possible into registers, and push
     the rest onto the stack.
     If we're returning a structure by value, then we must pass a
     pointer to the buffer for the return value as an invisible first
     argument.  */
  if (return_method == return_method_struct)
    regcache_cooked_write_unsigned (regcache, reg++, struct_addr);

  for (argument = 0; argument < nargs; argument++)
    {
      struct type *type = value_type (args[argument]);
      int len = TYPE_LENGTH (type);
      char *contents = (char *) value_contents (args[argument]);

      /* Pad the argument appropriately.  */
      int padded_len = align_up (len, wordsize);
      /* Use std::vector here to get zero initialization.  */
      std::vector<gdb_byte> padded (padded_len);

      memcpy ((len < wordsize ? padded.data () + padded_len - len
	       : padded.data ()),
	      contents, len);

      /* Could the argument fit in the remaining registers?  */
      if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
	{
	  /* Are we going to pass it on the stack anyway, for no good
	     reason?  */
	  if (len > wordsize && len % wordsize)
	    {
	      /* I feel so unclean.  */
	      write_memory (sp + stack_offset, padded.data (), padded_len);
	      stack_offset += padded_len;

	      /* That's right --- even though we passed the argument
	         on the stack, we consume the registers anyway!  Love
	         me, love my dog.  */
	      reg += padded_len / wordsize;
	    }
	  else
	    {
	      /* Heavens to Betsy --- it's really going in registers!
	         Note that on the h8/300s, there are gaps between the
	         registers in the register file.  */
	      int offset;

	      for (offset = 0; offset < padded_len; offset += wordsize)
		{
		  ULONGEST word
		    = extract_unsigned_integer (&padded[offset],
						wordsize, byte_order);
		  regcache_cooked_write_unsigned (regcache, reg++, word);
		}
	    }
	}
      else
	{
	  /* It doesn't fit in registers!  Onto the stack it goes.  */
	  write_memory (sp + stack_offset, padded.data (), padded_len);
	  stack_offset += padded_len;

	  /* Once one argument has spilled onto the stack, all
	     subsequent arguments go on the stack.  */
	  reg = E_ARGLAST_REGNUM + 1;
	}
    }

  /* Store return address.  */
  sp -= wordsize;
  write_memory_unsigned_integer (sp, wordsize, byte_order, bp_addr);

  /* Update stack pointer.  */
  regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);

  /* Return the new stack pointer minus the return address slot since
     that's what DWARF2/GCC uses as the frame's CFA.  */
  return sp + wordsize;
}

/* Function: extract_return_value
   Figure out where in REGBUF the called function has left its return value.
   Copy that into VALBUF.  Be sure to account for CPU type.   */

static void
h8300_extract_return_value (struct type *type, struct regcache *regcache,
			    gdb_byte *valbuf)
{
  struct gdbarch *gdbarch = regcache->arch ();
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int len = TYPE_LENGTH (type);
  ULONGEST c, addr;

  switch (len)
    {
    case 1:
    case 2:
      regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
      store_unsigned_integer (valbuf, len, byte_order, c);
      break;
    case 4:			/* Needs two registers on plain H8/300 */
      regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
      store_unsigned_integer (valbuf, 2, byte_order, c);
      regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
      store_unsigned_integer (valbuf + 2, 2, byte_order, c);
      break;
    case 8:			/* long long is now 8 bytes.  */
      if (TYPE_CODE (type) == TYPE_CODE_INT)
	{
	  regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
	  c = read_memory_unsigned_integer ((CORE_ADDR) addr, len, byte_order);
	  store_unsigned_integer (valbuf, len, byte_order, c);
	}
      else
	{
	  error (_("I don't know how this 8 byte value is returned."));
	}
      break;
    }
}

static void
h8300h_extract_return_value (struct type *type, struct regcache *regcache,
			     gdb_byte *valbuf)
{
  struct gdbarch *gdbarch = regcache->arch ();
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  ULONGEST c;

  switch (TYPE_LENGTH (type))
    {
    case 1:
    case 2:
    case 4:
      regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
      store_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order, c);
      break;
    case 8:			/* long long is now 8 bytes.  */
      if (TYPE_CODE (type) == TYPE_CODE_INT)
	{
	  regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
	  store_unsigned_integer (valbuf, 4, byte_order, c);
	  regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
	  store_unsigned_integer (valbuf + 4, 4, byte_order, c);
	}
      else
	{
	  error (_("I don't know how this 8 byte value is returned."));
	}
      break;
    }
}

static int
h8300_use_struct_convention (struct type *value_type)
{
  /* Types of 1, 2 or 4 bytes are returned in R0/R1, everything else on the
     stack.  */

  if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
      || TYPE_CODE (value_type) == TYPE_CODE_UNION)
    return 1;
  return !(TYPE_LENGTH (value_type) == 1
	   || TYPE_LENGTH (value_type) == 2
	   || TYPE_LENGTH (value_type) == 4);
}

static int
h8300h_use_struct_convention (struct type *value_type)
{
  /* Types of 1, 2 or 4 bytes are returned in R0, INT types of 8 bytes are
     returned in R0/R1, everything else on the stack.  */
  if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
      || TYPE_CODE (value_type) == TYPE_CODE_UNION)
    return 1;
  return !(TYPE_LENGTH (value_type) == 1
	   || TYPE_LENGTH (value_type) == 2
	   || TYPE_LENGTH (value_type) == 4
	   || (TYPE_LENGTH (value_type) == 8
	       && TYPE_CODE (value_type) == TYPE_CODE_INT));
}

/* Function: store_return_value
   Place the appropriate value in the appropriate registers.
   Primarily used by the RETURN command.  */

static void
h8300_store_return_value (struct type *type, struct regcache *regcache,
			  const gdb_byte *valbuf)
{
  struct gdbarch *gdbarch = regcache->arch ();
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  ULONGEST val;

  switch (TYPE_LENGTH (type))
    {
    case 1:
    case 2:			/* short...  */
      val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
      regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
      break;
    case 4:			/* long, float */
      val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
      regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
				      (val >> 16) & 0xffff);
      regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff);
      break;
    case 8:			/* long long, double and long double
				   are all defined as 4 byte types so
				   far so this shouldn't happen.  */
      error (_("I don't know how to return an 8 byte value."));
      break;
    }
}

static void
h8300h_store_return_value (struct type *type, struct regcache *regcache,
			   const gdb_byte *valbuf)
{
  struct gdbarch *gdbarch = regcache->arch ();
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  ULONGEST val;

  switch (TYPE_LENGTH (type))
    {
    case 1:
    case 2:
    case 4:			/* long, float */
      val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
      regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
      break;
    case 8:
      val = extract_unsigned_integer (valbuf, TYPE_LENGTH (type), byte_order);
      regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
				      (val >> 32) & 0xffffffff);
      regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM,
				      val & 0xffffffff);
      break;
    }
}

static enum return_value_convention
h8300_return_value (struct gdbarch *gdbarch, struct value *function,
		    struct type *type, struct regcache *regcache,
		    gdb_byte *readbuf, const gdb_byte *writebuf)
{
  if (h8300_use_struct_convention (type))
    return RETURN_VALUE_STRUCT_CONVENTION;
  if (writebuf)
    h8300_store_return_value (type, regcache, writebuf);
  else if (readbuf)
    h8300_extract_return_value (type, regcache, readbuf);
  return RETURN_VALUE_REGISTER_CONVENTION;
}

static enum return_value_convention
h8300h_return_value (struct gdbarch *gdbarch, struct value *function,
		     struct type *type, struct regcache *regcache,
		     gdb_byte *readbuf, const gdb_byte *writebuf)
{
  if (h8300h_use_struct_convention (type))
    {
      if (readbuf)
	{
	  ULONGEST addr;

	  regcache_raw_read_unsigned (regcache, E_R0_REGNUM, &addr);
	  read_memory (addr, readbuf, TYPE_LENGTH (type));
	}

      return RETURN_VALUE_ABI_RETURNS_ADDRESS;
    }
  if (writebuf)
    h8300h_store_return_value (type, regcache, writebuf);
  else if (readbuf)
    h8300h_extract_return_value (type, regcache, readbuf);
  return RETURN_VALUE_REGISTER_CONVENTION;
}

/* Implementation of 'register_sim_regno' gdbarch method.  */

static int
h8300_register_sim_regno (struct gdbarch *gdbarch, int regnum)
{
  /* Only makes sense to supply raw registers.  */
  gdb_assert (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch));

  /* We hide the raw ccr from the user by making it nameless.  Because
     the default register_sim_regno hook returns
     LEGACY_SIM_REGNO_IGNORE for unnamed registers, we need to
     override it.  The sim register numbering is compatible with
     gdb's.  */
  return regnum;
}

static const char *
h8300_register_name_common (const char *regnames[], int numregs,
			    struct gdbarch *gdbarch, int regno)
{
  if (regno < 0
      || regno >= numregs)
    internal_error (__FILE__, __LINE__,
		    _("h8300_register_name_common: illegal register number %d"),
		    regno);
  else
    return regnames[regno];
}

static const char *
h8300_register_name (struct gdbarch *gdbarch, int regno)
{
  /* The register names change depending on which h8300 processor
     type is selected.  */
  static const char *register_names[] = {
    "r0", "r1", "r2", "r3", "r4", "r5", "r6",
    "sp", "", "pc", "cycles", "tick", "inst",
    "ccr",			/* pseudo register */
  };
  return h8300_register_name_common(register_names, ARRAY_SIZE(register_names),
				    gdbarch, regno);
}

static const char *
h8300h_register_name (struct gdbarch *gdbarch, int regno)
{
  static const char *register_names[] = {
    "er0", "er1", "er2", "er3", "er4", "er5", "er6",
    "sp", "", "pc", "cycles", "tick", "inst",
    "ccr",			/* pseudo register */
  };
  return h8300_register_name_common(register_names, ARRAY_SIZE(register_names),
				    gdbarch, regno);
}

static const char *
h8300s_register_name (struct gdbarch *gdbarch, int regno)
{
  static const char *register_names[] = {
    "er0", "er1", "er2", "er3", "er4", "er5", "er6",
    "sp", "", "pc", "cycles", "", "tick", "inst",
    "mach", "macl",
    "ccr", "exr"		/* pseudo registers */
  };
  return h8300_register_name_common(register_names, ARRAY_SIZE(register_names),
				    gdbarch, regno);
}

static const char *
h8300sx_register_name (struct gdbarch *gdbarch, int regno)
{
  static const char *register_names[] = {
    "er0", "er1", "er2", "er3", "er4", "er5", "er6",
    "sp", "", "pc", "cycles", "", "tick", "inst",
    "mach", "macl", "sbr", "vbr",
    "ccr", "exr"		/* pseudo registers */
  };
  return h8300_register_name_common(register_names, ARRAY_SIZE(register_names),
				    gdbarch, regno);
}

static void
h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
		      struct frame_info *frame, int regno)
{
  LONGEST rval;
  const char *name = gdbarch_register_name (gdbarch, regno);

  if (!name || !*name)
    return;

  rval = get_frame_register_signed (frame, regno);

  fprintf_filtered (file, "%-14s ", name);
  if ((regno == E_PSEUDO_CCR_REGNUM (gdbarch)) || \
      (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch)))
    {
      fprintf_filtered (file, "0x%02x        ", (unsigned char) rval);
      print_longest (file, 'u', 1, rval);
    }
  else
    {
      fprintf_filtered (file, "0x%s  ", phex ((ULONGEST) rval,
			BINWORD (gdbarch)));
      print_longest (file, 'd', 1, rval);
    }
  if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
    {
      /* CCR register */
      int C, Z, N, V;
      unsigned char l = rval & 0xff;
      fprintf_filtered (file, "\t");
      fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
      fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
      fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
      fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
      N = (l & 0x8) != 0;
      Z = (l & 0x4) != 0;
      V = (l & 0x2) != 0;
      C = (l & 0x1) != 0;
      fprintf_filtered (file, "N-%d ", N);
      fprintf_filtered (file, "Z-%d ", Z);
      fprintf_filtered (file, "V-%d ", V);
      fprintf_filtered (file, "C-%d ", C);
      if ((C | Z) == 0)
	fprintf_filtered (file, "u> ");
      if ((C | Z) == 1)
	fprintf_filtered (file, "u<= ");
      if (C == 0)
	fprintf_filtered (file, "u>= ");
      if (C == 1)
	fprintf_filtered (file, "u< ");
      if (Z == 0)
	fprintf_filtered (file, "!= ");
      if (Z == 1)
	fprintf_filtered (file, "== ");
      if ((N ^ V) == 0)
	fprintf_filtered (file, ">= ");
      if ((N ^ V) == 1)
	fprintf_filtered (file, "< ");
      if ((Z | (N ^ V)) == 0)
	fprintf_filtered (file, "> ");
      if ((Z | (N ^ V)) == 1)
	fprintf_filtered (file, "<= ");
    }
  else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch) && is_h8300smode (gdbarch))
    {
      /* EXR register */
      unsigned char l = rval & 0xff;
      fprintf_filtered (file, "\t");
      fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
      fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
      fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
      fprintf_filtered (file, "I0-%d", (l & 1) != 0);
    }
  fprintf_filtered (file, "\n");
}

static void
h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
			    struct frame_info *frame, int regno, int cpregs)
{
  if (regno < 0)
    {
      for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno)
	h8300_print_register (gdbarch, file, frame, regno);
      h8300_print_register (gdbarch, file, frame,
			    E_PSEUDO_CCR_REGNUM (gdbarch));
      h8300_print_register (gdbarch, file, frame, E_PC_REGNUM);
      if (is_h8300smode (gdbarch))
	{
	  h8300_print_register (gdbarch, file, frame,
				E_PSEUDO_EXR_REGNUM (gdbarch));
	  if (is_h8300sxmode (gdbarch))
	    {
	      h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM);
	      h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM);
	    }
	  h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM);
	  h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM);
	  h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
	  h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM);
	  h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM);
	}
      else
	{
	  h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
	  h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM);
	  h8300_print_register (gdbarch, file, frame, E_INST_REGNUM);
	}
    }
  else
    {
      if (regno == E_CCR_REGNUM)
	h8300_print_register (gdbarch, file, frame,
			      E_PSEUDO_CCR_REGNUM (gdbarch));
      else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch)
	       && is_h8300smode (gdbarch))
	h8300_print_register (gdbarch, file, frame,
			      E_PSEUDO_EXR_REGNUM (gdbarch));
      else
	h8300_print_register (gdbarch, file, frame, regno);
    }
}

static struct type *
h8300_register_type (struct gdbarch *gdbarch, int regno)
{
  if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
    internal_error (__FILE__, __LINE__,
		    _("h8300_register_type: illegal register number %d"),
		    regno);
  else
    {
      switch (regno)
	{
	case E_PC_REGNUM:
	  return builtin_type (gdbarch)->builtin_func_ptr;
	case E_SP_REGNUM:
	case E_FP_REGNUM:
	  return builtin_type (gdbarch)->builtin_data_ptr;
	default:
	  if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
	    return builtin_type (gdbarch)->builtin_uint8;
	  else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
	    return builtin_type (gdbarch)->builtin_uint8;
	  else if (is_h8300hmode (gdbarch))
	    return builtin_type (gdbarch)->builtin_int32;
	  else
	    return builtin_type (gdbarch)->builtin_int16;
	}
    }
}

/* Helpers for h8300_pseudo_register_read.  We expose ccr/exr as
   pseudo-registers to users with smaller sizes than the corresponding
   raw registers.  These helpers extend/narrow the values.  */

static enum register_status
pseudo_from_raw_register (struct gdbarch *gdbarch, readable_regcache *regcache,
			  gdb_byte *buf, int pseudo_regno, int raw_regno)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  enum register_status status;
  ULONGEST val;

  status = regcache->raw_read (raw_regno, &val);
  if (status == REG_VALID)
    store_unsigned_integer (buf,
			    register_size (gdbarch, pseudo_regno),
			    byte_order, val);
  return status;
}

/* See pseudo_from_raw_register.  */

static void
raw_from_pseudo_register (struct gdbarch *gdbarch, struct regcache *regcache,
			  const gdb_byte *buf, int raw_regno, int pseudo_regno)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  ULONGEST val;

  val = extract_unsigned_integer (buf, register_size (gdbarch, pseudo_regno),
				  byte_order);
  regcache_raw_write_unsigned (regcache, raw_regno, val);
}

static enum register_status
h8300_pseudo_register_read (struct gdbarch *gdbarch,
			    readable_regcache *regcache, int regno,
			    gdb_byte *buf)
{
  if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
    {
      return pseudo_from_raw_register (gdbarch, regcache, buf,
				       regno, E_CCR_REGNUM);
    }
  else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
    {
      return pseudo_from_raw_register (gdbarch, regcache, buf,
				       regno, E_EXR_REGNUM);
    }
  else
    return regcache->raw_read (regno, buf);
}

static void
h8300_pseudo_register_write (struct gdbarch *gdbarch,
			     struct regcache *regcache, int regno,
			     const gdb_byte *buf)
{
  if (regno == E_PSEUDO_CCR_REGNUM (gdbarch))
    raw_from_pseudo_register (gdbarch, regcache, buf, E_CCR_REGNUM, regno);
  else if (regno == E_PSEUDO_EXR_REGNUM (gdbarch))
    raw_from_pseudo_register (gdbarch, regcache, buf, E_EXR_REGNUM, regno);
  else
    regcache->raw_write (regno, buf);
}

static int
h8300_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
{
  if (regno == E_CCR_REGNUM)
    return E_PSEUDO_CCR_REGNUM (gdbarch);
  return regno;
}

static int
h8300s_dbg_reg_to_regnum (struct gdbarch *gdbarch, int regno)
{
  if (regno == E_CCR_REGNUM)
    return E_PSEUDO_CCR_REGNUM (gdbarch);
  if (regno == E_EXR_REGNUM)
    return E_PSEUDO_EXR_REGNUM (gdbarch);
  return regno;
}

/*static unsigned char breakpoint[] = { 0x7A, 0xFF }; *//* ??? */
constexpr gdb_byte h8300_break_insn[] = { 0x01, 0x80 };	/* Sleep */

typedef BP_MANIPULATION (h8300_break_insn) h8300_breakpoint;

static struct gdbarch *
h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch *gdbarch;

  arches = gdbarch_list_lookup_by_info (arches, &info);
  if (arches != NULL)
    return arches->gdbarch;

  if (info.bfd_arch_info->arch != bfd_arch_h8300)
    return NULL;

  gdbarch = gdbarch_alloc (&info, 0);

  set_gdbarch_register_sim_regno (gdbarch, h8300_register_sim_regno);

  switch (info.bfd_arch_info->mach)
    {
    case bfd_mach_h8300:
      set_gdbarch_num_regs (gdbarch, 13);
      set_gdbarch_num_pseudo_regs (gdbarch, 1);
      set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
      set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
      set_gdbarch_register_name (gdbarch, h8300_register_name);
      set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
      set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
      set_gdbarch_return_value (gdbarch, h8300_return_value);
      break;
    case bfd_mach_h8300h:
    case bfd_mach_h8300hn:
      set_gdbarch_num_regs (gdbarch, 13);
      set_gdbarch_num_pseudo_regs (gdbarch, 1);
      set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
      set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
      set_gdbarch_register_name (gdbarch, h8300h_register_name);
      if (info.bfd_arch_info->mach != bfd_mach_h8300hn)
	{
	  set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
	  set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
	}
      else
	{
	  set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
	  set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
	}
      set_gdbarch_return_value (gdbarch, h8300h_return_value);
      break;
    case bfd_mach_h8300s:
    case bfd_mach_h8300sn:
      set_gdbarch_num_regs (gdbarch, 16);
      set_gdbarch_num_pseudo_regs (gdbarch, 2);
      set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
      set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
      set_gdbarch_register_name (gdbarch, h8300s_register_name);
      if (info.bfd_arch_info->mach != bfd_mach_h8300sn)
	{
	  set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
	  set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
	}
      else
	{
	  set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
	  set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
	}
      set_gdbarch_return_value (gdbarch, h8300h_return_value);
      break;
    case bfd_mach_h8300sx:
    case bfd_mach_h8300sxn:
      set_gdbarch_num_regs (gdbarch, 18);
      set_gdbarch_num_pseudo_regs (gdbarch, 2);
      set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
      set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
      set_gdbarch_register_name (gdbarch, h8300sx_register_name);
      if (info.bfd_arch_info->mach != bfd_mach_h8300sxn)
	{
	  set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
	  set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
	}
      else
	{
	  set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
	  set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
	}
      set_gdbarch_return_value (gdbarch, h8300h_return_value);
      break;
    }

  set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read);
  set_gdbarch_pseudo_register_write (gdbarch, h8300_pseudo_register_write);

  /*
   * Basic register fields and methods.
   */

  set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
  set_gdbarch_register_type (gdbarch, h8300_register_type);
  set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);

  /*
   * Frame Info
   */
  set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);

  /* Frame unwinder.  */
  frame_base_set_default (gdbarch, &h8300_frame_base);

  /* 
   * Miscellany
   */
  /* Stack grows up.  */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);

  set_gdbarch_breakpoint_kind_from_pc (gdbarch,
				       h8300_breakpoint::kind_from_pc);
  set_gdbarch_sw_breakpoint_from_kind (gdbarch,
				       h8300_breakpoint::bp_from_kind);
  set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call);

  set_gdbarch_char_signed (gdbarch, 0);
  set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
  set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);

  set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
  set_gdbarch_wchar_signed (gdbarch, 0);

  set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
  set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
  set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single);

  set_gdbarch_believe_pcc_promotion (gdbarch, 1);

  /* Hook in the DWARF CFI frame unwinder.  */
  dwarf2_append_unwinders (gdbarch);
  frame_unwind_append_unwinder (gdbarch, &h8300_frame_unwind);

  return gdbarch;

}

void _initialize_h8300_tdep ();
void
_initialize_h8300_tdep ()
{
  register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
}

static int
is_h8300hmode (struct gdbarch *gdbarch)
{
  return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300h
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
}

static int
is_h8300smode (struct gdbarch *gdbarch)
{
  return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300s
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn;
}

static int
is_h8300sxmode (struct gdbarch *gdbarch)
{
  return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sx
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn;
}

static int
is_h8300_normal_mode (struct gdbarch *gdbarch)
{
  return gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sxn
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300sn
    || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_h8300hn;
}