summaryrefslogtreecommitdiff
path: root/gdb/block.c
blob: 5c6faa850457efecf76c13a3ed2bb8f2f8edc5d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
/* Block-related functions for the GNU debugger, GDB.

   Copyright (C) 2003-2019 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "defs.h"
#include "block.h"
#include "symtab.h"
#include "symfile.h"
#include "gdb_obstack.h"
#include "cp-support.h"
#include "addrmap.h"
#include "gdbtypes.h"
#include "objfiles.h"

/* This is used by struct block to store namespace-related info for
   C++ files, namely using declarations and the current namespace in
   scope.  */

struct block_namespace_info : public allocate_on_obstack
{
  const char *scope = nullptr;
  struct using_direct *using_decl = nullptr;
};

static void block_initialize_namespace (struct block *block,
					struct obstack *obstack);

/* See block.h.  */

struct objfile *
block_objfile (const struct block *block)
{
  const struct global_block *global_block;

  if (BLOCK_FUNCTION (block) != NULL)
    return symbol_objfile (BLOCK_FUNCTION (block));

  global_block = (struct global_block *) block_global_block (block);
  return COMPUNIT_OBJFILE (global_block->compunit_symtab);
}

/* See block.  */

struct gdbarch *
block_gdbarch (const struct block *block)
{
  if (BLOCK_FUNCTION (block) != NULL)
    return symbol_arch (BLOCK_FUNCTION (block));

  return get_objfile_arch (block_objfile (block));
}

/* Return Nonzero if block a is lexically nested within block b,
   or if a and b have the same pc range.
   Return zero otherwise.  */

int
contained_in (const struct block *a, const struct block *b)
{
  if (!a || !b)
    return 0;

  do
    {
      if (a == b)
	return 1;
      a = BLOCK_SUPERBLOCK (a);
    }
  while (a != NULL);

  return 0;
}


/* Return the symbol for the function which contains a specified
   lexical block, described by a struct block BL.  The return value
   will not be an inlined function; the containing function will be
   returned instead.  */

struct symbol *
block_linkage_function (const struct block *bl)
{
  while ((BLOCK_FUNCTION (bl) == NULL || block_inlined_p (bl))
	 && BLOCK_SUPERBLOCK (bl) != NULL)
    bl = BLOCK_SUPERBLOCK (bl);

  return BLOCK_FUNCTION (bl);
}

/* Return the symbol for the function which contains a specified
   block, described by a struct block BL.  The return value will be
   the closest enclosing function, which might be an inline
   function.  */

struct symbol *
block_containing_function (const struct block *bl)
{
  while (BLOCK_FUNCTION (bl) == NULL && BLOCK_SUPERBLOCK (bl) != NULL)
    bl = BLOCK_SUPERBLOCK (bl);

  return BLOCK_FUNCTION (bl);
}

/* Return one if BL represents an inlined function.  */

int
block_inlined_p (const struct block *bl)
{
  return BLOCK_FUNCTION (bl) != NULL && SYMBOL_INLINED (BLOCK_FUNCTION (bl));
}

/* A helper function that checks whether PC is in the blockvector BL.
   It returns the containing block if there is one, or else NULL.  */

static const struct block *
find_block_in_blockvector (const struct blockvector *bl, CORE_ADDR pc)
{
  const struct block *b;
  int bot, top, half;

  /* If we have an addrmap mapping code addresses to blocks, then use
     that.  */
  if (BLOCKVECTOR_MAP (bl))
    return (const struct block *) addrmap_find (BLOCKVECTOR_MAP (bl), pc);

  /* Otherwise, use binary search to find the last block that starts
     before PC.
     Note: GLOBAL_BLOCK is block 0, STATIC_BLOCK is block 1.
     They both have the same START,END values.
     Historically this code would choose STATIC_BLOCK over GLOBAL_BLOCK but the
     fact that this choice was made was subtle, now we make it explicit.  */
  gdb_assert (BLOCKVECTOR_NBLOCKS (bl) >= 2);
  bot = STATIC_BLOCK;
  top = BLOCKVECTOR_NBLOCKS (bl);

  while (top - bot > 1)
    {
      half = (top - bot + 1) >> 1;
      b = BLOCKVECTOR_BLOCK (bl, bot + half);
      if (BLOCK_START (b) <= pc)
	bot += half;
      else
	top = bot + half;
    }

  /* Now search backward for a block that ends after PC.  */

  while (bot >= STATIC_BLOCK)
    {
      b = BLOCKVECTOR_BLOCK (bl, bot);
      if (BLOCK_END (b) > pc)
	return b;
      bot--;
    }

  return NULL;
}

/* Return the blockvector immediately containing the innermost lexical
   block containing the specified pc value and section, or 0 if there
   is none.  PBLOCK is a pointer to the block.  If PBLOCK is NULL, we
   don't pass this information back to the caller.  */

const struct blockvector *
blockvector_for_pc_sect (CORE_ADDR pc, struct obj_section *section,
			 const struct block **pblock,
			 struct compunit_symtab *cust)
{
  const struct blockvector *bl;
  const struct block *b;

  if (cust == NULL)
    {
      /* First search all symtabs for one whose file contains our pc */
      cust = find_pc_sect_compunit_symtab (pc, section);
      if (cust == NULL)
	return 0;
    }

  bl = COMPUNIT_BLOCKVECTOR (cust);

  /* Then search that symtab for the smallest block that wins.  */
  b = find_block_in_blockvector (bl, pc);
  if (b == NULL)
    return NULL;

  if (pblock)
    *pblock = b;
  return bl;
}

/* Return true if the blockvector BV contains PC, false otherwise.  */

int
blockvector_contains_pc (const struct blockvector *bv, CORE_ADDR pc)
{
  return find_block_in_blockvector (bv, pc) != NULL;
}

/* Return call_site for specified PC in GDBARCH.  PC must match exactly, it
   must be the next instruction after call (or after tail call jump).  Throw
   NO_ENTRY_VALUE_ERROR otherwise.  This function never returns NULL.  */

struct call_site *
call_site_for_pc (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  struct compunit_symtab *cust;
  void **slot = NULL;

  /* -1 as tail call PC can be already after the compilation unit range.  */
  cust = find_pc_compunit_symtab (pc - 1);

  if (cust != NULL && COMPUNIT_CALL_SITE_HTAB (cust) != NULL)
    slot = htab_find_slot (COMPUNIT_CALL_SITE_HTAB (cust), &pc, NO_INSERT);

  if (slot == NULL)
    {
      struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (pc);

      /* DW_TAG_gnu_call_site will be missing just if GCC could not determine
	 the call target.  */
      throw_error (NO_ENTRY_VALUE_ERROR,
		   _("DW_OP_entry_value resolving cannot find "
		     "DW_TAG_call_site %s in %s"),
		   paddress (gdbarch, pc),
		   (msym.minsym == NULL ? "???"
		    : MSYMBOL_PRINT_NAME (msym.minsym)));
    }

  return (struct call_site *) *slot;
}

/* Return the blockvector immediately containing the innermost lexical block
   containing the specified pc value, or 0 if there is none.
   Backward compatibility, no section.  */

const struct blockvector *
blockvector_for_pc (CORE_ADDR pc, const struct block **pblock)
{
  return blockvector_for_pc_sect (pc, find_pc_mapped_section (pc),
				  pblock, NULL);
}

/* Return the innermost lexical block containing the specified pc value
   in the specified section, or 0 if there is none.  */

const struct block *
block_for_pc_sect (CORE_ADDR pc, struct obj_section *section)
{
  const struct blockvector *bl;
  const struct block *b;

  bl = blockvector_for_pc_sect (pc, section, &b, NULL);
  if (bl)
    return b;
  return 0;
}

/* Return the innermost lexical block containing the specified pc value,
   or 0 if there is none.  Backward compatibility, no section.  */

const struct block *
block_for_pc (CORE_ADDR pc)
{
  return block_for_pc_sect (pc, find_pc_mapped_section (pc));
}

/* Now come some functions designed to deal with C++ namespace issues.
   The accessors are safe to use even in the non-C++ case.  */

/* This returns the namespace that BLOCK is enclosed in, or "" if it
   isn't enclosed in a namespace at all.  This travels the chain of
   superblocks looking for a scope, if necessary.  */

const char *
block_scope (const struct block *block)
{
  for (; block != NULL; block = BLOCK_SUPERBLOCK (block))
    {
      if (BLOCK_NAMESPACE (block) != NULL
	  && BLOCK_NAMESPACE (block)->scope != NULL)
	return BLOCK_NAMESPACE (block)->scope;
    }

  return "";
}

/* Set BLOCK's scope member to SCOPE; if needed, allocate memory via
   OBSTACK.  (It won't make a copy of SCOPE, however, so that already
   has to be allocated correctly.)  */

void
block_set_scope (struct block *block, const char *scope,
		 struct obstack *obstack)
{
  block_initialize_namespace (block, obstack);

  BLOCK_NAMESPACE (block)->scope = scope;
}

/* This returns the using directives list associated with BLOCK, if
   any.  */

struct using_direct *
block_using (const struct block *block)
{
  if (block == NULL || BLOCK_NAMESPACE (block) == NULL)
    return NULL;
  else
    return BLOCK_NAMESPACE (block)->using_decl;
}

/* Set BLOCK's using member to USING; if needed, allocate memory via
   OBSTACK.  (It won't make a copy of USING, however, so that already
   has to be allocated correctly.)  */

void
block_set_using (struct block *block,
		 struct using_direct *using_decl,
		 struct obstack *obstack)
{
  block_initialize_namespace (block, obstack);

  BLOCK_NAMESPACE (block)->using_decl = using_decl;
}

/* If BLOCK_NAMESPACE (block) is NULL, allocate it via OBSTACK and
   ititialize its members to zero.  */

static void
block_initialize_namespace (struct block *block, struct obstack *obstack)
{
  if (BLOCK_NAMESPACE (block) == NULL)
    BLOCK_NAMESPACE (block) = new (obstack) struct block_namespace_info ();
}

/* Return the static block associated to BLOCK.  Return NULL if block
   is NULL or if block is a global block.  */

const struct block *
block_static_block (const struct block *block)
{
  if (block == NULL || BLOCK_SUPERBLOCK (block) == NULL)
    return NULL;

  while (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) != NULL)
    block = BLOCK_SUPERBLOCK (block);

  return block;
}

/* Return the static block associated to BLOCK.  Return NULL if block
   is NULL.  */

const struct block *
block_global_block (const struct block *block)
{
  if (block == NULL)
    return NULL;

  while (BLOCK_SUPERBLOCK (block) != NULL)
    block = BLOCK_SUPERBLOCK (block);

  return block;
}

/* Allocate a block on OBSTACK, and initialize its elements to
   zero/NULL.  This is useful for creating "dummy" blocks that don't
   correspond to actual source files.

   Warning: it sets the block's BLOCK_MULTIDICT to NULL, which isn't a
   valid value.  If you really don't want the block to have a
   dictionary, then you should subsequently set its BLOCK_MULTIDICT to
   dict_create_linear (obstack, NULL).  */

struct block *
allocate_block (struct obstack *obstack)
{
  struct block *bl = OBSTACK_ZALLOC (obstack, struct block);

  return bl;
}

/* Allocate a global block.  */

struct block *
allocate_global_block (struct obstack *obstack)
{
  struct global_block *bl = OBSTACK_ZALLOC (obstack, struct global_block);

  return &bl->block;
}

/* Set the compunit of the global block.  */

void
set_block_compunit_symtab (struct block *block, struct compunit_symtab *cu)
{
  struct global_block *gb;

  gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
  gb = (struct global_block *) block;
  gdb_assert (gb->compunit_symtab == NULL);
  gb->compunit_symtab = cu;
}

/* See block.h.  */

struct dynamic_prop *
block_static_link (const struct block *block)
{
  struct objfile *objfile = block_objfile (block);

  /* Only objfile-owned blocks that materialize top function scopes can have
     static links.  */
  if (objfile == NULL || BLOCK_FUNCTION (block) == NULL)
    return NULL;

  return (struct dynamic_prop *) objfile_lookup_static_link (objfile, block);
}

/* Return the compunit of the global block.  */

static struct compunit_symtab *
get_block_compunit_symtab (const struct block *block)
{
  struct global_block *gb;

  gdb_assert (BLOCK_SUPERBLOCK (block) == NULL);
  gb = (struct global_block *) block;
  gdb_assert (gb->compunit_symtab != NULL);
  return gb->compunit_symtab;
}



/* Initialize a block iterator, either to iterate over a single block,
   or, for static and global blocks, all the included symtabs as
   well.  */

static void
initialize_block_iterator (const struct block *block,
			   struct block_iterator *iter)
{
  enum block_enum which;
  struct compunit_symtab *cu;

  iter->idx = -1;

  if (BLOCK_SUPERBLOCK (block) == NULL)
    {
      which = GLOBAL_BLOCK;
      cu = get_block_compunit_symtab (block);
    }
  else if (BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL)
    {
      which = STATIC_BLOCK;
      cu = get_block_compunit_symtab (BLOCK_SUPERBLOCK (block));
    }
  else
    {
      iter->d.block = block;
      /* A signal value meaning that we're iterating over a single
	 block.  */
      iter->which = FIRST_LOCAL_BLOCK;
      return;
    }

  /* If this is an included symtab, find the canonical includer and
     use it instead.  */
  while (cu->user != NULL)
    cu = cu->user;

  /* Putting this check here simplifies the logic of the iterator
     functions.  If there are no included symtabs, we only need to
     search a single block, so we might as well just do that
     directly.  */
  if (cu->includes == NULL)
    {
      iter->d.block = block;
      /* A signal value meaning that we're iterating over a single
	 block.  */
      iter->which = FIRST_LOCAL_BLOCK;
    }
  else
    {
      iter->d.compunit_symtab = cu;
      iter->which = which;
    }
}

/* A helper function that finds the current compunit over whose static
   or global block we should iterate.  */

static struct compunit_symtab *
find_iterator_compunit_symtab (struct block_iterator *iterator)
{
  if (iterator->idx == -1)
    return iterator->d.compunit_symtab;
  return iterator->d.compunit_symtab->includes[iterator->idx];
}

/* Perform a single step for a plain block iterator, iterating across
   symbol tables as needed.  Returns the next symbol, or NULL when
   iteration is complete.  */

static struct symbol *
block_iterator_step (struct block_iterator *iterator, int first)
{
  struct symbol *sym;

  gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);

  while (1)
    {
      if (first)
	{
	  struct compunit_symtab *cust
	    = find_iterator_compunit_symtab (iterator);
	  const struct block *block;

	  /* Iteration is complete.  */
	  if (cust == NULL)
	    return  NULL;

	  block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
				     iterator->which);
	  sym = mdict_iterator_first (BLOCK_MULTIDICT (block),
				      &iterator->mdict_iter);
	}
      else
	sym = mdict_iterator_next (&iterator->mdict_iter);

      if (sym != NULL)
	return sym;

      /* We have finished iterating the appropriate block of one
	 symtab.  Now advance to the next symtab and begin iteration
	 there.  */
      ++iterator->idx;
      first = 1;
    }
}

/* See block.h.  */

struct symbol *
block_iterator_first (const struct block *block,
		      struct block_iterator *iterator)
{
  initialize_block_iterator (block, iterator);

  if (iterator->which == FIRST_LOCAL_BLOCK)
    return mdict_iterator_first (block->multidict, &iterator->mdict_iter);

  return block_iterator_step (iterator, 1);
}

/* See block.h.  */

struct symbol *
block_iterator_next (struct block_iterator *iterator)
{
  if (iterator->which == FIRST_LOCAL_BLOCK)
    return mdict_iterator_next (&iterator->mdict_iter);

  return block_iterator_step (iterator, 0);
}

/* Perform a single step for a "match" block iterator, iterating
   across symbol tables as needed.  Returns the next symbol, or NULL
   when iteration is complete.  */

static struct symbol *
block_iter_match_step (struct block_iterator *iterator,
		       const lookup_name_info &name,
		       int first)
{
  struct symbol *sym;

  gdb_assert (iterator->which != FIRST_LOCAL_BLOCK);

  while (1)
    {
      if (first)
	{
	  struct compunit_symtab *cust
	    = find_iterator_compunit_symtab (iterator);
	  const struct block *block;

	  /* Iteration is complete.  */
	  if (cust == NULL)
	    return  NULL;

	  block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
				     iterator->which);
	  sym = mdict_iter_match_first (BLOCK_MULTIDICT (block), name,
					&iterator->mdict_iter);
	}
      else
	sym = mdict_iter_match_next (name, &iterator->mdict_iter);

      if (sym != NULL)
	return sym;

      /* We have finished iterating the appropriate block of one
	 symtab.  Now advance to the next symtab and begin iteration
	 there.  */
      ++iterator->idx;
      first = 1;
    }
}

/* See block.h.  */

struct symbol *
block_iter_match_first (const struct block *block,
			const lookup_name_info &name,
			struct block_iterator *iterator)
{
  initialize_block_iterator (block, iterator);

  if (iterator->which == FIRST_LOCAL_BLOCK)
    return mdict_iter_match_first (block->multidict, name,
				   &iterator->mdict_iter);

  return block_iter_match_step (iterator, name, 1);
}

/* See block.h.  */

struct symbol *
block_iter_match_next (const lookup_name_info &name,
		       struct block_iterator *iterator)
{
  if (iterator->which == FIRST_LOCAL_BLOCK)
    return mdict_iter_match_next (name, &iterator->mdict_iter);

  return block_iter_match_step (iterator, name, 0);
}

/* See block.h.

   Note that if NAME is the demangled form of a C++ symbol, we will fail
   to find a match during the binary search of the non-encoded names, but
   for now we don't worry about the slight inefficiency of looking for
   a match we'll never find, since it will go pretty quick.  Once the
   binary search terminates, we drop through and do a straight linear
   search on the symbols.  Each symbol which is marked as being a ObjC/C++
   symbol (language_cplus or language_objc set) has both the encoded and
   non-encoded names tested for a match.  */

struct symbol *
block_lookup_symbol (const struct block *block, const char *name,
		     symbol_name_match_type match_type,
		     const domain_enum domain)
{
  struct block_iterator iter;
  struct symbol *sym;

  lookup_name_info lookup_name (name, match_type);

  if (!BLOCK_FUNCTION (block))
    {
      struct symbol *other = NULL;

      ALL_BLOCK_SYMBOLS_WITH_NAME (block, lookup_name, iter, sym)
	{
	  if (SYMBOL_DOMAIN (sym) == domain)
	    return sym;
	  /* This is a bit of a hack, but symbol_matches_domain might ignore
	     STRUCT vs VAR domain symbols.  So if a matching symbol is found,
	     make sure there is no "better" matching symbol, i.e., one with
	     exactly the same domain.  PR 16253.  */
	  if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
				     SYMBOL_DOMAIN (sym), domain))
	    other = sym;
	}
      return other;
    }
  else
    {
      /* Note that parameter symbols do not always show up last in the
	 list; this loop makes sure to take anything else other than
	 parameter symbols first; it only uses parameter symbols as a
	 last resort.  Note that this only takes up extra computation
	 time on a match.
	 It's hard to define types in the parameter list (at least in
	 C/C++) so we don't do the same PR 16253 hack here that is done
	 for the !BLOCK_FUNCTION case.  */

      struct symbol *sym_found = NULL;

      ALL_BLOCK_SYMBOLS_WITH_NAME (block, lookup_name, iter, sym)
	{
	  if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
				     SYMBOL_DOMAIN (sym), domain))
	    {
	      sym_found = sym;
	      if (!SYMBOL_IS_ARGUMENT (sym))
		{
		  break;
		}
	    }
	}
      return (sym_found);	/* Will be NULL if not found.  */
    }
}

/* See block.h.  */

struct symbol *
block_lookup_symbol_primary (const struct block *block, const char *name,
			     const domain_enum domain)
{
  struct symbol *sym, *other;
  struct mdict_iterator mdict_iter;

  lookup_name_info lookup_name (name, symbol_name_match_type::FULL);

  /* Verify BLOCK is STATIC_BLOCK or GLOBAL_BLOCK.  */
  gdb_assert (BLOCK_SUPERBLOCK (block) == NULL
	      || BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL);

  other = NULL;
  for (sym
	 = mdict_iter_match_first (block->multidict, lookup_name, &mdict_iter);
       sym != NULL;
       sym = mdict_iter_match_next (lookup_name, &mdict_iter))
    {
      if (SYMBOL_DOMAIN (sym) == domain)
	return sym;

      /* This is a bit of a hack, but symbol_matches_domain might ignore
	 STRUCT vs VAR domain symbols.  So if a matching symbol is found,
	 make sure there is no "better" matching symbol, i.e., one with
	 exactly the same domain.  PR 16253.  */
      if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
				 SYMBOL_DOMAIN (sym), domain))
	other = sym;
    }

  return other;
}

/* See block.h.  */

struct symbol *
block_find_symbol (const struct block *block, const char *name,
		   const domain_enum domain,
		   block_symbol_matcher_ftype *matcher, void *data)
{
  struct block_iterator iter;
  struct symbol *sym;

  lookup_name_info lookup_name (name, symbol_name_match_type::FULL);

  /* Verify BLOCK is STATIC_BLOCK or GLOBAL_BLOCK.  */
  gdb_assert (BLOCK_SUPERBLOCK (block) == NULL
	      || BLOCK_SUPERBLOCK (BLOCK_SUPERBLOCK (block)) == NULL);

  ALL_BLOCK_SYMBOLS_WITH_NAME (block, lookup_name, iter, sym)
    {
      /* MATCHER is deliberately called second here so that it never sees
	 a non-domain-matching symbol.  */
      if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
				 SYMBOL_DOMAIN (sym), domain)
	  && matcher (sym, data))
	return sym;
    }
  return NULL;
}

/* See block.h.  */

int
block_find_non_opaque_type (struct symbol *sym, void *data)
{
  return !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym));
}

/* See block.h.  */

int
block_find_non_opaque_type_preferred (struct symbol *sym, void *data)
{
  struct symbol **best = (struct symbol **) data;

  if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
    return 1;
  *best = sym;
  return 0;
}

/* See block.h.  */

struct blockranges *
make_blockranges (struct objfile *objfile,
                  const std::vector<blockrange> &rangevec)
{
  struct blockranges *blr;
  size_t n = rangevec.size();

  blr = (struct blockranges *)
    obstack_alloc (&objfile->objfile_obstack,
                   sizeof (struct blockranges)
		   + (n - 1) * sizeof (struct blockrange));

  blr->nranges = n;
  for (int i = 0; i < n; i++)
    blr->range[i] = rangevec[i];
  return blr;
}