summaryrefslogtreecommitdiff
path: root/gdb/arm-tdep.c
blob: 3543cc1f0cc4fd43c3f4c74e2bff618088f0adc2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
/* Common target dependent code for GDB on ARM systems.
   Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
   2001, 2002 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 2 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 59 Temple Place - Suite 330,
   Boston, MA 02111-1307, USA.  */

#include <ctype.h>		/* XXX for isupper () */

#include "defs.h"
#include "frame.h"
#include "inferior.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "symfile.h"
#include "gdb_string.h"
#include "dis-asm.h"		/* For register flavors. */
#include "regcache.h"
#include "doublest.h"
#include "value.h"
#include "arch-utils.h"
#include "solib-svr4.h"

#include "arm-tdep.h"
#include "gdb/sim-arm.h"

#include "elf-bfd.h"
#include "coff/internal.h"
#include "elf/arm.h"

#include "gdb_assert.h"

static int arm_debug;

/* Each OS has a different mechanism for accessing the various
   registers stored in the sigcontext structure.

   SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
   function pointer) which may be used to determine the addresses
   of the various saved registers in the sigcontext structure.

   For the ARM target, there are three parameters to this function. 
   The first is the pc value of the frame under consideration, the
   second the stack pointer of this frame, and the last is the
   register number to fetch.  

   If the tm.h file does not define this macro, then it's assumed that
   no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
   be 0. 
   
   When it comes time to multi-arching this code, see the identically
   named machinery in ia64-tdep.c for an example of how it could be
   done.  It should not be necessary to modify the code below where
   this macro is used.  */

#ifdef SIGCONTEXT_REGISTER_ADDRESS
#ifndef SIGCONTEXT_REGISTER_ADDRESS_P
#define SIGCONTEXT_REGISTER_ADDRESS_P() 1
#endif
#else
#define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
#define SIGCONTEXT_REGISTER_ADDRESS_P() 0
#endif

/* Macros for setting and testing a bit in a minimal symbol that marks
   it as Thumb function.  The MSB of the minimal symbol's "info" field
   is used for this purpose. This field is already being used to store
   the symbol size, so the assumption is that the symbol size cannot
   exceed 2^31.

   MSYMBOL_SET_SPECIAL	Actually sets the "special" bit.
   MSYMBOL_IS_SPECIAL   Tests the "special" bit in a minimal symbol.
   MSYMBOL_SIZE         Returns the size of the minimal symbol,
   			i.e. the "info" field with the "special" bit
   			masked out.  */

#define MSYMBOL_SET_SPECIAL(msym)					\
	MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym))	\
					| 0x80000000)

#define MSYMBOL_IS_SPECIAL(msym)				\
	(((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)

#define MSYMBOL_SIZE(msym)				\
	((long) MSYMBOL_INFO (msym) & 0x7fffffff)

/* Number of different reg name sets (options).  */
static int num_flavor_options;

/* We have more registers than the disassembler as gdb can print the value
   of special registers as well.
   The general register names are overwritten by whatever is being used by
   the disassembler at the moment. We also adjust the case of cpsr and fps.  */

/* Initial value: Register names used in ARM's ISA documentation.  */
static char * arm_register_name_strings[] =
{"r0",  "r1",  "r2",  "r3",	/*  0  1  2  3 */
 "r4",  "r5",  "r6",  "r7",	/*  4  5  6  7 */
 "r8",  "r9",  "r10", "r11",	/*  8  9 10 11 */
 "r12", "sp",  "lr",  "pc",	/* 12 13 14 15 */
 "f0",  "f1",  "f2",  "f3",	/* 16 17 18 19 */
 "f4",  "f5",  "f6",  "f7",	/* 20 21 22 23 */
 "fps", "cpsr" };		/* 24 25       */
static char **arm_register_names = arm_register_name_strings;

/* Valid register name flavors.  */
static const char **valid_flavors;

/* Disassembly flavor to use. Default to "std" register names.  */
static const char *disassembly_flavor;
/* Index to that option in the opcodes table.  */
static int current_option;

/* This is used to keep the bfd arch_info in sync with the disassembly
   flavor.  */
static void set_disassembly_flavor_sfunc(char *, int,
					 struct cmd_list_element *);
static void set_disassembly_flavor (void);

static void convert_from_extended (const struct floatformat *, const void *,
				   void *);
static void convert_to_extended (const struct floatformat *, void *,
				 const void *);

/* Define other aspects of the stack frame.  We keep the offsets of
   all saved registers, 'cause we need 'em a lot!  We also keep the
   current size of the stack frame, and the offset of the frame
   pointer from the stack pointer (for frameless functions, and when
   we're still in the prologue of a function with a frame).  */

struct frame_extra_info
{
  int framesize;
  int frameoffset;
  int framereg;
};

/* Addresses for calling Thumb functions have the bit 0 set.
   Here are some macros to test, set, or clear bit 0 of addresses.  */
#define IS_THUMB_ADDR(addr)	((addr) & 1)
#define MAKE_THUMB_ADDR(addr)	((addr) | 1)
#define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)

static int
arm_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
{
  return (chain != 0 && (FRAME_SAVED_PC (thisframe) >= LOWEST_PC));
}

/* Set to true if the 32-bit mode is in use.  */

int arm_apcs_32 = 1;

/* Flag set by arm_fix_call_dummy that tells whether the target
   function is a Thumb function.  This flag is checked by
   arm_push_arguments.  FIXME: Change the PUSH_ARGUMENTS macro (and
   its use in valops.c) to pass the function address as an additional
   parameter.  */

static int target_is_thumb;

/* Flag set by arm_fix_call_dummy that tells whether the calling
   function is a Thumb function.  This flag is checked by
   arm_pc_is_thumb and arm_call_dummy_breakpoint_offset.  */

static int caller_is_thumb;

/* Determine if the program counter specified in MEMADDR is in a Thumb
   function.  */

int
arm_pc_is_thumb (CORE_ADDR memaddr)
{
  struct minimal_symbol *sym;

  /* If bit 0 of the address is set, assume this is a Thumb address.  */
  if (IS_THUMB_ADDR (memaddr))
    return 1;

  /* Thumb functions have a "special" bit set in minimal symbols.  */
  sym = lookup_minimal_symbol_by_pc (memaddr);
  if (sym)
    {
      return (MSYMBOL_IS_SPECIAL (sym));
    }
  else
    {
      return 0;
    }
}

/* Determine if the program counter specified in MEMADDR is in a call
   dummy being called from a Thumb function.  */

int
arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
{
  CORE_ADDR sp = read_sp ();

  /* FIXME: Until we switch for the new call dummy macros, this heuristic
     is the best we can do.  We are trying to determine if the pc is on
     the stack, which (hopefully) will only happen in a call dummy.
     We hope the current stack pointer is not so far alway from the dummy
     frame location (true if we have not pushed large data structures or
     gone too many levels deep) and that our 1024 is not enough to consider
     code regions as part of the stack (true for most practical purposes).  */
  if (DEPRECATED_PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024))
    return caller_is_thumb;
  else
    return 0;
}

/* Remove useless bits from addresses in a running program.  */
static CORE_ADDR
arm_addr_bits_remove (CORE_ADDR val)
{
  if (arm_apcs_32)
    return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
  else
    return (val & 0x03fffffc);
}

/* When reading symbols, we need to zap the low bit of the address,
   which may be set to 1 for Thumb functions.  */
static CORE_ADDR
arm_smash_text_address (CORE_ADDR val)
{
  return val & ~1;
}

/* Immediately after a function call, return the saved pc.  Can't
   always go through the frames for this because on some machines the
   new frame is not set up until the new function executes some
   instructions.  */

static CORE_ADDR
arm_saved_pc_after_call (struct frame_info *frame)
{
  return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
}

/* Determine whether the function invocation represented by FI has a
   frame on the stack associated with it.  If it does return zero,
   otherwise return 1.  */

static int
arm_frameless_function_invocation (struct frame_info *fi)
{
  CORE_ADDR func_start, after_prologue;
  int frameless;

  /* Sometimes we have functions that do a little setup (like saving the
     vN registers with the stmdb instruction, but DO NOT set up a frame.
     The symbol table will report this as a prologue.  However, it is
     important not to try to parse these partial frames as frames, or we
     will get really confused.

     So I will demand 3 instructions between the start & end of the
     prologue before I call it a real prologue, i.e. at least
	mov ip, sp,
	stmdb sp!, {}
	sub sp, ip, #4.  */

  func_start = (get_pc_function_start ((fi)->pc) + FUNCTION_START_OFFSET);
  after_prologue = SKIP_PROLOGUE (func_start);

  /* There are some frameless functions whose first two instructions
     follow the standard APCS form, in which case after_prologue will
     be func_start + 8.  */

  frameless = (after_prologue < func_start + 12);
  return frameless;
}

/* The address of the arguments in the frame.  */
static CORE_ADDR
arm_frame_args_address (struct frame_info *fi)
{
  return fi->frame;
}

/* The address of the local variables in the frame.  */
static CORE_ADDR
arm_frame_locals_address (struct frame_info *fi)
{
  return fi->frame;
}

/* The number of arguments being passed in the frame.  */
static int
arm_frame_num_args (struct frame_info *fi)
{
  /* We have no way of knowing.  */
  return -1;
}

/* A typical Thumb prologue looks like this:
   push    {r7, lr}
   add     sp, sp, #-28
   add     r7, sp, #12
   Sometimes the latter instruction may be replaced by:
   mov     r7, sp
   
   or like this:
   push    {r7, lr}
   mov     r7, sp
   sub	   sp, #12
   
   or, on tpcs, like this:
   sub     sp,#16
   push    {r7, lr}
   (many instructions)
   mov     r7, sp
   sub	   sp, #12

   There is always one instruction of three classes:
   1 - push
   2 - setting of r7
   3 - adjusting of sp
   
   When we have found at least one of each class we are done with the prolog.
   Note that the "sub sp, #NN" before the push does not count.
   */

static CORE_ADDR
thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
{
  CORE_ADDR current_pc;
  /* findmask:
     bit 0 - push { rlist }
     bit 1 - mov r7, sp  OR  add r7, sp, #imm  (setting of r7)
     bit 2 - sub sp, #simm  OR  add sp, #simm  (adjusting of sp)
  */
  int findmask = 0;

  for (current_pc = pc;
       current_pc + 2 < func_end && current_pc < pc + 40;
       current_pc += 2)
    {
      unsigned short insn = read_memory_unsigned_integer (current_pc, 2);

      if ((insn & 0xfe00) == 0xb400)		/* push { rlist } */
	{
	  findmask |= 1;			/* push found */
	}
      else if ((insn & 0xff00) == 0xb000)	/* add sp, #simm  OR  
						   sub sp, #simm */
	{
	  if ((findmask & 1) == 0)		/* before push ? */
	    continue;
	  else
	    findmask |= 4;			/* add/sub sp found */
	}
      else if ((insn & 0xff00) == 0xaf00)	/* add r7, sp, #imm */
	{
	  findmask |= 2;			/* setting of r7 found */
	}
      else if (insn == 0x466f)			/* mov r7, sp */
	{
	  findmask |= 2;			/* setting of r7 found */
	}
      else if (findmask == (4+2+1))
	{
	  /* We have found one of each type of prologue instruction */
	  break;
	}
      else
	/* Something in the prolog that we don't care about or some
	   instruction from outside the prolog scheduled here for
	   optimization.  */
	continue;
    }

  return current_pc;
}

/* Advance the PC across any function entry prologue instructions to
   reach some "real" code.

   The APCS (ARM Procedure Call Standard) defines the following
   prologue:

   mov          ip, sp
   [stmfd       sp!, {a1,a2,a3,a4}]
   stmfd        sp!, {...,fp,ip,lr,pc}
   [stfe        f7, [sp, #-12]!]
   [stfe        f6, [sp, #-12]!]
   [stfe        f5, [sp, #-12]!]
   [stfe        f4, [sp, #-12]!]
   sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */

static CORE_ADDR
arm_skip_prologue (CORE_ADDR pc)
{
  unsigned long inst;
  CORE_ADDR skip_pc;
  CORE_ADDR func_addr, func_end = 0;
  char *func_name;
  struct symtab_and_line sal;

  /* If we're in a dummy frame, don't even try to skip the prologue.  */
  if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
    return pc;

  /* See what the symbol table says.  */

  if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
    {
      struct symbol *sym;

      /* Found a function.  */
      sym = lookup_symbol (func_name, NULL, VAR_NAMESPACE, NULL, NULL);
      if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
        {
	  /* Don't use this trick for assembly source files.  */
	  sal = find_pc_line (func_addr, 0);
	  if ((sal.line != 0) && (sal.end < func_end))
	    return sal.end;
        }
    }

  /* Check if this is Thumb code.  */
  if (arm_pc_is_thumb (pc))
    return thumb_skip_prologue (pc, func_end);

  /* Can't find the prologue end in the symbol table, try it the hard way
     by disassembling the instructions.  */

  /* Like arm_scan_prologue, stop no later than pc + 64. */
  if (func_end == 0 || func_end > pc + 64)
    func_end = pc + 64;

  for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
    {
      inst = read_memory_integer (skip_pc, 4);

      /* "mov ip, sp" is no longer a required part of the prologue.  */
      if (inst == 0xe1a0c00d)			/* mov ip, sp */
	continue;

      /* Some prologues begin with "str lr, [sp, #-4]!".  */
      if (inst == 0xe52de004)			/* str lr, [sp, #-4]! */
	continue;

      if ((inst & 0xfffffff0) == 0xe92d0000)	/* stmfd sp!,{a1,a2,a3,a4} */
	continue;

      if ((inst & 0xfffff800) == 0xe92dd800)	/* stmfd sp!,{fp,ip,lr,pc} */
	continue;

      /* Any insns after this point may float into the code, if it makes
	 for better instruction scheduling, so we skip them only if we
	 find them, but still consider the function to be frame-ful.  */

      /* We may have either one sfmfd instruction here, or several stfe
	 insns, depending on the version of floating point code we
	 support.  */
      if ((inst & 0xffbf0fff) == 0xec2d0200)	/* sfmfd fn, <cnt>, [sp]! */
	continue;

      if ((inst & 0xffff8fff) == 0xed6d0103)	/* stfe fn, [sp, #-12]! */
	continue;

      if ((inst & 0xfffff000) == 0xe24cb000)	/* sub fp, ip, #nn */
	continue;

      if ((inst & 0xfffff000) == 0xe24dd000)	/* sub sp, sp, #nn */
	continue;

      if ((inst & 0xffffc000) == 0xe54b0000 ||	/* strb r(0123),[r11,#-nn] */
	  (inst & 0xffffc0f0) == 0xe14b00b0 ||	/* strh r(0123),[r11,#-nn] */
	  (inst & 0xffffc000) == 0xe50b0000)	/* str  r(0123),[r11,#-nn] */
	continue;

      if ((inst & 0xffffc000) == 0xe5cd0000 ||	/* strb r(0123),[sp,#nn] */
	  (inst & 0xffffc0f0) == 0xe1cd00b0 ||	/* strh r(0123),[sp,#nn] */
	  (inst & 0xffffc000) == 0xe58d0000)	/* str  r(0123),[sp,#nn] */
	continue;

      /* Un-recognized instruction; stop scanning.  */
      break;
    }

  return skip_pc;		/* End of prologue */
}

/* *INDENT-OFF* */
/* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
   This function decodes a Thumb function prologue to determine:
     1) the size of the stack frame
     2) which registers are saved on it
     3) the offsets of saved regs
     4) the offset from the stack pointer to the frame pointer
   This information is stored in the "extra" fields of the frame_info.

   A typical Thumb function prologue would create this stack frame
   (offsets relative to FP)
     old SP ->	24  stack parameters
		20  LR
		16  R7
     R7 ->       0  local variables (16 bytes)
     SP ->     -12  additional stack space (12 bytes)
   The frame size would thus be 36 bytes, and the frame offset would be
   12 bytes.  The frame register is R7. 
   
   The comments for thumb_skip_prolog() describe the algorithm we use
   to detect the end of the prolog.  */
/* *INDENT-ON* */

static void
thumb_scan_prologue (struct frame_info *fi)
{
  CORE_ADDR prologue_start;
  CORE_ADDR prologue_end;
  CORE_ADDR current_pc;
  /* Which register has been copied to register n?  */
  int saved_reg[16];
  /* findmask:
     bit 0 - push { rlist }
     bit 1 - mov r7, sp  OR  add r7, sp, #imm  (setting of r7)
     bit 2 - sub sp, #simm  OR  add sp, #simm  (adjusting of sp)
  */
  int findmask = 0;
  int i;

  /* Don't try to scan dummy frames.  */
  if (fi != NULL
      && DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, 0, 0))
    return;

  if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
    {
      struct symtab_and_line sal = find_pc_line (prologue_start, 0);

      if (sal.line == 0)		/* no line info, use current PC  */
	prologue_end = fi->pc;
      else if (sal.end < prologue_end)	/* next line begins after fn end */
	prologue_end = sal.end;		/* (probably means no prologue)  */
    }
  else
    /* We're in the boondocks: allow for 
       16 pushes, an add, and "mv fp,sp".  */
    prologue_end = prologue_start + 40;

  prologue_end = min (prologue_end, fi->pc);

  /* Initialize the saved register map.  When register H is copied to
     register L, we will put H in saved_reg[L].  */
  for (i = 0; i < 16; i++)
    saved_reg[i] = i;

  /* Search the prologue looking for instructions that set up the
     frame pointer, adjust the stack pointer, and save registers.
     Do this until all basic prolog instructions are found.  */

  fi->extra_info->framesize = 0;
  for (current_pc = prologue_start;
       (current_pc < prologue_end) && ((findmask & 7) != 7);
       current_pc += 2)
    {
      unsigned short insn;
      int regno;
      int offset;

      insn = read_memory_unsigned_integer (current_pc, 2);

      if ((insn & 0xfe00) == 0xb400)	/* push { rlist } */
	{
	  int mask;
	  findmask |= 1;		/* push found */
	  /* Bits 0-7 contain a mask for registers R0-R7.  Bit 8 says
	     whether to save LR (R14).  */
	  mask = (insn & 0xff) | ((insn & 0x100) << 6);

	  /* Calculate offsets of saved R0-R7 and LR.  */
	  for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
	    if (mask & (1 << regno))
	      {
		fi->extra_info->framesize += 4;
		fi->saved_regs[saved_reg[regno]] =
		  -(fi->extra_info->framesize);
		/* Reset saved register map.  */
		saved_reg[regno] = regno;
	      }
	}
      else if ((insn & 0xff00) == 0xb000)	/* add sp, #simm  OR  
						   sub sp, #simm */
	{
	  if ((findmask & 1) == 0)		/* before push?  */
	    continue;
	  else
	    findmask |= 4;			/* add/sub sp found */
	  
	  offset = (insn & 0x7f) << 2;		/* get scaled offset */
	  if (insn & 0x80)		/* is it signed? (==subtracting) */
	    {
	      fi->extra_info->frameoffset += offset;
	      offset = -offset;
	    }
	  fi->extra_info->framesize -= offset;
	}
      else if ((insn & 0xff00) == 0xaf00)	/* add r7, sp, #imm */
	{
	  findmask |= 2;			/* setting of r7 found */
	  fi->extra_info->framereg = THUMB_FP_REGNUM;
	  /* get scaled offset */
	  fi->extra_info->frameoffset = (insn & 0xff) << 2;
	}
      else if (insn == 0x466f)			/* mov r7, sp */
	{
	  findmask |= 2;			/* setting of r7 found */
	  fi->extra_info->framereg = THUMB_FP_REGNUM;
	  fi->extra_info->frameoffset = 0;
	  saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
	}
      else if ((insn & 0xffc0) == 0x4640)	/* mov r0-r7, r8-r15 */
	{
	  int lo_reg = insn & 7;		/* dest.  register (r0-r7) */
	  int hi_reg = ((insn >> 3) & 7) + 8;	/* source register (r8-15) */
	  saved_reg[lo_reg] = hi_reg;		/* remember hi reg was saved */
	}
      else
	/* Something in the prolog that we don't care about or some
	   instruction from outside the prolog scheduled here for
	   optimization.  */ 
	continue;
    }
}

/* Check if prologue for this frame's PC has already been scanned.  If
   it has, copy the relevant information about that prologue and
   return non-zero.  Otherwise do not copy anything and return zero.

   The information saved in the cache includes:
   * the frame register number;
   * the size of the stack frame;
   * the offsets of saved regs (relative to the old SP); and
   * the offset from the stack pointer to the frame pointer

   The cache contains only one entry, since this is adequate for the
   typical sequence of prologue scan requests we get.  When performing
   a backtrace, GDB will usually ask to scan the same function twice
   in a row (once to get the frame chain, and once to fill in the
   extra frame information).  */

static struct frame_info prologue_cache;

static int
check_prologue_cache (struct frame_info *fi)
{
  int i;

  if (fi->pc == prologue_cache.pc)
    {
      fi->extra_info->framereg = prologue_cache.extra_info->framereg;
      fi->extra_info->framesize = prologue_cache.extra_info->framesize;
      fi->extra_info->frameoffset = prologue_cache.extra_info->frameoffset;
      for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
	fi->saved_regs[i] = prologue_cache.saved_regs[i];
      return 1;
    }
  else
    return 0;
}


/* Copy the prologue information from fi to the prologue cache.  */

static void
save_prologue_cache (struct frame_info *fi)
{
  int i;

  prologue_cache.pc = fi->pc;
  prologue_cache.extra_info->framereg = fi->extra_info->framereg;
  prologue_cache.extra_info->framesize = fi->extra_info->framesize;
  prologue_cache.extra_info->frameoffset = fi->extra_info->frameoffset;

  for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
    prologue_cache.saved_regs[i] = fi->saved_regs[i];
}


/* This function decodes an ARM function prologue to determine:
   1) the size of the stack frame
   2) which registers are saved on it
   3) the offsets of saved regs
   4) the offset from the stack pointer to the frame pointer
   This information is stored in the "extra" fields of the frame_info.

   There are two basic forms for the ARM prologue.  The fixed argument
   function call will look like:

   mov    ip, sp
   stmfd  sp!, {fp, ip, lr, pc}
   sub    fp, ip, #4
   [sub sp, sp, #4]

   Which would create this stack frame (offsets relative to FP):
   IP ->   4    (caller's stack)
   FP ->   0    PC (points to address of stmfd instruction + 8 in callee)
   -4   LR (return address in caller)
   -8   IP (copy of caller's SP)
   -12  FP (caller's FP)
   SP -> -28    Local variables

   The frame size would thus be 32 bytes, and the frame offset would be
   28 bytes.  The stmfd call can also save any of the vN registers it
   plans to use, which increases the frame size accordingly.

   Note: The stored PC is 8 off of the STMFD instruction that stored it
   because the ARM Store instructions always store PC + 8 when you read
   the PC register.

   A variable argument function call will look like:

   mov    ip, sp
   stmfd  sp!, {a1, a2, a3, a4}
   stmfd  sp!, {fp, ip, lr, pc}
   sub    fp, ip, #20

   Which would create this stack frame (offsets relative to FP):
   IP ->  20    (caller's stack)
   16  A4
   12  A3
   8  A2
   4  A1
   FP ->   0    PC (points to address of stmfd instruction + 8 in callee)
   -4   LR (return address in caller)
   -8   IP (copy of caller's SP)
   -12  FP (caller's FP)
   SP -> -28    Local variables

   The frame size would thus be 48 bytes, and the frame offset would be
   28 bytes.

   There is another potential complication, which is that the optimizer
   will try to separate the store of fp in the "stmfd" instruction from
   the "sub fp, ip, #NN" instruction.  Almost anything can be there, so
   we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...

   Also, note, the original version of the ARM toolchain claimed that there
   should be an

   instruction at the end of the prologue.  I have never seen GCC produce
   this, and the ARM docs don't mention it.  We still test for it below in
   case it happens...

 */

static void
arm_scan_prologue (struct frame_info *fi)
{
  int regno, sp_offset, fp_offset;
  LONGEST return_value;
  CORE_ADDR prologue_start, prologue_end, current_pc;

  /* Check if this function is already in the cache of frame information.  */
  if (check_prologue_cache (fi))
    return;

  /* Assume there is no frame until proven otherwise.  */
  fi->extra_info->framereg = ARM_SP_REGNUM;
  fi->extra_info->framesize = 0;
  fi->extra_info->frameoffset = 0;

  /* Check for Thumb prologue.  */
  if (arm_pc_is_thumb (fi->pc))
    {
      thumb_scan_prologue (fi);
      save_prologue_cache (fi);
      return;
    }

  /* Find the function prologue.  If we can't find the function in
     the symbol table, peek in the stack frame to find the PC.  */
  if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
    {
      /* One way to find the end of the prologue (which works well
         for unoptimized code) is to do the following:

	    struct symtab_and_line sal = find_pc_line (prologue_start, 0);

	    if (sal.line == 0)
	      prologue_end = fi->pc;
	    else if (sal.end < prologue_end)
	      prologue_end = sal.end;

	 This mechanism is very accurate so long as the optimizer
	 doesn't move any instructions from the function body into the
	 prologue.  If this happens, sal.end will be the last
	 instruction in the first hunk of prologue code just before
	 the first instruction that the scheduler has moved from
	 the body to the prologue.

	 In order to make sure that we scan all of the prologue
	 instructions, we use a slightly less accurate mechanism which
	 may scan more than necessary.  To help compensate for this
	 lack of accuracy, the prologue scanning loop below contains
	 several clauses which'll cause the loop to terminate early if
	 an implausible prologue instruction is encountered.  
	 
	 The expression
	 
	      prologue_start + 64
	    
	 is a suitable endpoint since it accounts for the largest
	 possible prologue plus up to five instructions inserted by
	 the scheduler.  */
         
      if (prologue_end > prologue_start + 64)
	{
	  prologue_end = prologue_start + 64;	/* See above.  */
	}
    }
  else
    {
      /* Get address of the stmfd in the prologue of the callee; 
         the saved PC is the address of the stmfd + 8.  */
      if (!safe_read_memory_integer (fi->frame, 4,  &return_value))
        return;
      else
        {
          prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
          prologue_end = prologue_start + 64;	/* See above.  */
        }
    }

  /* Now search the prologue looking for instructions that set up the
     frame pointer, adjust the stack pointer, and save registers.

     Be careful, however, and if it doesn't look like a prologue,
     don't try to scan it.  If, for instance, a frameless function
     begins with stmfd sp!, then we will tell ourselves there is
     a frame, which will confuse stack traceback, as well as "finish" 
     and other operations that rely on a knowledge of the stack
     traceback.

     In the APCS, the prologue should start with  "mov ip, sp" so
     if we don't see this as the first insn, we will stop.  

     [Note: This doesn't seem to be true any longer, so it's now an
     optional part of the prologue.  - Kevin Buettner, 2001-11-20]

     [Note further: The "mov ip,sp" only seems to be missing in
     frameless functions at optimization level "-O2" or above,
     in which case it is often (but not always) replaced by
     "str lr, [sp, #-4]!".  - Michael Snyder, 2002-04-23]  */

  sp_offset = fp_offset = 0;

  for (current_pc = prologue_start;
       current_pc < prologue_end;
       current_pc += 4)
    {
      unsigned int insn = read_memory_unsigned_integer (current_pc, 4);

      if (insn == 0xe1a0c00d)		/* mov ip, sp */
	{
	  continue;
	}
      else if (insn == 0xe52de004)	/* str lr, [sp, #-4]! */
	{
	  /* Function is frameless: extra_info defaults OK?  */
	  continue;
	}
      else if ((insn & 0xffff0000) == 0xe92d0000)
	/* stmfd sp!, {..., fp, ip, lr, pc}
	   or
	   stmfd sp!, {a1, a2, a3, a4}  */
	{
	  int mask = insn & 0xffff;

	  /* Calculate offsets of saved registers.  */
	  for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
	    if (mask & (1 << regno))
	      {
		sp_offset -= 4;
		fi->saved_regs[regno] = sp_offset;
	      }
	}
      else if ((insn & 0xffffc000) == 0xe54b0000 ||	/* strb rx,[r11,#-n] */
	       (insn & 0xffffc0f0) == 0xe14b00b0 ||	/* strh rx,[r11,#-n] */
	       (insn & 0xffffc000) == 0xe50b0000)	/* str  rx,[r11,#-n] */
	{
	  /* No need to add this to saved_regs -- it's just an arg reg.  */
	  continue;
	}
      else if ((insn & 0xffffc000) == 0xe5cd0000 ||	/* strb rx,[sp,#n] */
	       (insn & 0xffffc0f0) == 0xe1cd00b0 ||	/* strh rx,[sp,#n] */
	       (insn & 0xffffc000) == 0xe58d0000)	/* str  rx,[sp,#n] */
	{
	  /* No need to add this to saved_regs -- it's just an arg reg.  */
	  continue;
	}
      else if ((insn & 0xfffff000) == 0xe24cb000)	/* sub fp, ip #n */
	{
	  unsigned imm = insn & 0xff;			/* immediate value */
	  unsigned rot = (insn & 0xf00) >> 7;		/* rotate amount */
	  imm = (imm >> rot) | (imm << (32 - rot));
	  fp_offset = -imm;
	  fi->extra_info->framereg = ARM_FP_REGNUM;
	}
      else if ((insn & 0xfffff000) == 0xe24dd000)	/* sub sp, sp #n */
	{
	  unsigned imm = insn & 0xff;			/* immediate value */
	  unsigned rot = (insn & 0xf00) >> 7;		/* rotate amount */
	  imm = (imm >> rot) | (imm << (32 - rot));
	  sp_offset -= imm;
	}
      else if ((insn & 0xffff7fff) == 0xed6d0103)	/* stfe f?, [sp, -#c]! */
	{
	  sp_offset -= 12;
	  regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
	  fi->saved_regs[regno] = sp_offset;
	}
      else if ((insn & 0xffbf0fff) == 0xec2d0200)	/* sfmfd f0, 4, [sp!] */
	{
	  int n_saved_fp_regs;
	  unsigned int fp_start_reg, fp_bound_reg;

	  if ((insn & 0x800) == 0x800)		/* N0 is set */
	    {
	      if ((insn & 0x40000) == 0x40000)	/* N1 is set */
		n_saved_fp_regs = 3;
	      else
		n_saved_fp_regs = 1;
	    }
	  else
	    {
	      if ((insn & 0x40000) == 0x40000)	/* N1 is set */
		n_saved_fp_regs = 2;
	      else
		n_saved_fp_regs = 4;
	    }

	  fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
	  fp_bound_reg = fp_start_reg + n_saved_fp_regs;
	  for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
	    {
	      sp_offset -= 12;
	      fi->saved_regs[fp_start_reg++] = sp_offset;
	    }
	}
      else if ((insn & 0xf0000000) != 0xe0000000)
	break;			/* Condition not true, exit early */
      else if ((insn & 0xfe200000) == 0xe8200000)	/* ldm? */
	break;			/* Don't scan past a block load */
      else
	/* The optimizer might shove anything into the prologue,
	   so we just skip what we don't recognize.  */
	continue;
    }

  /* The frame size is just the negative of the offset (from the
     original SP) of the last thing thing we pushed on the stack. 
     The frame offset is [new FP] - [new SP].  */
  fi->extra_info->framesize = -sp_offset;
  if (fi->extra_info->framereg == ARM_FP_REGNUM)
    fi->extra_info->frameoffset = fp_offset - sp_offset;
  else
    fi->extra_info->frameoffset = 0;

  save_prologue_cache (fi);
}

/* Find REGNUM on the stack.  Otherwise, it's in an active register.
   One thing we might want to do here is to check REGNUM against the
   clobber mask, and somehow flag it as invalid if it isn't saved on
   the stack somewhere.  This would provide a graceful failure mode
   when trying to get the value of caller-saves registers for an inner
   frame.  */

static CORE_ADDR
arm_find_callers_reg (struct frame_info *fi, int regnum)
{
  /* NOTE: cagney/2002-05-03: This function really shouldn't be
     needed.  Instead the (still being written) register unwind
     function could be called directly.  */
  for (; fi; fi = fi->next)
    {
      if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, 0, 0))
	{
	  return deprecated_read_register_dummy (fi->pc, fi->frame, regnum);
	}
      else if (fi->saved_regs[regnum] != 0)
	{
	  /* NOTE: cagney/2002-05-03: This would normally need to
             handle ARM_SP_REGNUM as a special case as, according to
             the frame.h comments, saved_regs[SP_REGNUM] contains the
             SP value not its address.  It appears that the ARM isn't
             doing this though.  */
	  return read_memory_integer (fi->saved_regs[regnum],
				      REGISTER_RAW_SIZE (regnum));
	}
    }
  return read_register (regnum);
}
/* Function: frame_chain Given a GDB frame, determine the address of
   the calling function's frame.  This will be used to create a new
   GDB frame struct, and then INIT_EXTRA_FRAME_INFO and
   DEPRECATED_INIT_FRAME_PC will be called for the new frame.  For
   ARM, we save the frame size when we initialize the frame_info.  */

static CORE_ADDR
arm_frame_chain (struct frame_info *fi)
{
  CORE_ADDR caller_pc;
  int framereg = fi->extra_info->framereg;

  if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, 0, 0))
    /* A generic call dummy's frame is the same as caller's.  */
    return fi->frame;

  if (fi->pc < LOWEST_PC)
    return 0;

  /* If the caller is the startup code, we're at the end of the chain.  */
  caller_pc = FRAME_SAVED_PC (fi);

  /* If the caller is Thumb and the caller is ARM, or vice versa,
     the frame register of the caller is different from ours.
     So we must scan the prologue of the caller to determine its
     frame register number.  */
  /* XXX Fixme, we should try to do this without creating a temporary
     caller_fi.  */
  if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (fi->pc))
    {
      struct frame_info caller_fi;
      struct cleanup *old_chain;

      /* Create a temporary frame suitable for scanning the caller's
	 prologue.  (Ugh.)  */
      memset (&caller_fi, 0, sizeof (caller_fi));
      caller_fi.extra_info = (struct frame_extra_info *)
	xcalloc (1, sizeof (struct frame_extra_info));
      old_chain = make_cleanup (xfree, caller_fi.extra_info);
      caller_fi.saved_regs = (CORE_ADDR *)
	xcalloc (1, SIZEOF_FRAME_SAVED_REGS);
      make_cleanup (xfree, caller_fi.saved_regs);

      /* Now, scan the prologue and obtain the frame register.  */
      caller_fi.pc = caller_pc;
      arm_scan_prologue (&caller_fi);
      framereg = caller_fi.extra_info->framereg;

      /* Deallocate the storage associated with the temporary frame
	 created above.  */
      do_cleanups (old_chain);
    }

  /* If the caller used a frame register, return its value.
     Otherwise, return the caller's stack pointer.  */
  if (framereg == ARM_FP_REGNUM || framereg == THUMB_FP_REGNUM)
    return arm_find_callers_reg (fi, framereg);
  else
    return fi->frame + fi->extra_info->framesize;
}

/* This function actually figures out the frame address for a given pc
   and sp.  This is tricky because we sometimes don't use an explicit
   frame pointer, and the previous stack pointer isn't necessarily
   recorded on the stack.  The only reliable way to get this info is
   to examine the prologue.  FROMLEAF is a little confusing, it means
   this is the next frame up the chain AFTER a frameless function.  If
   this is true, then the frame value for this frame is still in the
   fp register.  */

static void
arm_init_extra_frame_info (int fromleaf, struct frame_info *fi)
{
  int reg;
  CORE_ADDR sp;

  if (fi->saved_regs == NULL)
    frame_saved_regs_zalloc (fi);

  fi->extra_info = (struct frame_extra_info *)
    frame_obstack_alloc (sizeof (struct frame_extra_info));

  fi->extra_info->framesize = 0;
  fi->extra_info->frameoffset = 0;
  fi->extra_info->framereg = 0;

  if (fi->next)
    fi->pc = FRAME_SAVED_PC (fi->next);

  memset (fi->saved_regs, '\000', sizeof fi->saved_regs);

  /* Compute stack pointer for this frame.  We use this value for both
     the sigtramp and call dummy cases.  */
  if (!fi->next)
    sp = read_sp();
  else if (DEPRECATED_PC_IN_CALL_DUMMY (fi->next->pc, 0, 0))
    /* For generic dummy frames, pull the value direct from the frame.
       Having an unwind function to do this would be nice.  */
    sp = deprecated_read_register_dummy (fi->next->pc, fi->next->frame,
					 ARM_SP_REGNUM);
  else
    sp = (fi->next->frame - fi->next->extra_info->frameoffset
	  + fi->next->extra_info->framesize);

  /* Determine whether or not we're in a sigtramp frame.
     Unfortunately, it isn't sufficient to test (get_frame_type (fi)
     == SIGTRAMP_FRAME) because this value is sometimes set after
     invoking INIT_EXTRA_FRAME_INFO.  So we test *both*
     (get_frame_type (fi) == SIGTRAMP_FRAME) and PC_IN_SIGTRAMP to
     determine if we need to use the sigcontext addresses for the
     saved registers.

     Note: If an ARM PC_IN_SIGTRAMP method ever needs to compare
     against the name of the function, the code below will have to be
     changed to first fetch the name of the function and then pass
     this name to PC_IN_SIGTRAMP.  */

  /* FIXME: cagney/2002-11-18: This problem will go away once
     frame.c:get_prev_frame() is modified to set the frame's type
     before calling functions like this.  */

  if (SIGCONTEXT_REGISTER_ADDRESS_P () 
      && ((get_frame_type (fi) == SIGTRAMP_FRAME) || PC_IN_SIGTRAMP (fi->pc, (char *)0)))
    {
      for (reg = 0; reg < NUM_REGS; reg++)
	fi->saved_regs[reg] = SIGCONTEXT_REGISTER_ADDRESS (sp, fi->pc, reg);

      /* FIXME: What about thumb mode?  */
      fi->extra_info->framereg = ARM_SP_REGNUM;
      fi->frame =
	read_memory_integer (fi->saved_regs[fi->extra_info->framereg],
			     REGISTER_RAW_SIZE (fi->extra_info->framereg));
      fi->extra_info->framesize = 0;
      fi->extra_info->frameoffset = 0;

    }
  else
    {
      arm_scan_prologue (fi);

      if (!fi->next)
	/* This is the innermost frame?  */
	fi->frame = read_register (fi->extra_info->framereg);
      else if (DEPRECATED_PC_IN_CALL_DUMMY (fi->next->pc, 0, 0))
	/* Next inner most frame is a dummy, just grab its frame.
           Dummy frames always have the same FP as their caller.  */
	fi->frame = fi->next->frame;
      else if (fi->extra_info->framereg == ARM_FP_REGNUM
	       || fi->extra_info->framereg == THUMB_FP_REGNUM)
	{
	  /* not the innermost frame */
	  /* If we have an FP, the callee saved it.  */
	  if (fi->next->saved_regs[fi->extra_info->framereg] != 0)
	    fi->frame =
	      read_memory_integer (fi->next
				   ->saved_regs[fi->extra_info->framereg], 4);
	  else if (fromleaf)
	    /* If we were called by a frameless fn.  then our frame is
	       still in the frame pointer register on the board...  */
	    fi->frame = read_fp ();
	}

      /* Calculate actual addresses of saved registers using offsets
         determined by arm_scan_prologue.  */
      for (reg = 0; reg < NUM_REGS; reg++)
	if (fi->saved_regs[reg] != 0)
	  fi->saved_regs[reg] += (fi->frame + fi->extra_info->framesize
				  - fi->extra_info->frameoffset);
    }
}


/* Find the caller of this frame.  We do this by seeing if ARM_LR_REGNUM
   is saved in the stack anywhere, otherwise we get it from the
   registers.

   The old definition of this function was a macro:
   #define FRAME_SAVED_PC(FRAME) \
   ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) */

static CORE_ADDR
arm_frame_saved_pc (struct frame_info *fi)
{
  /* If a dummy frame, pull the PC out of the frame's register buffer.  */
  if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, 0, 0))
    return deprecated_read_register_dummy (fi->pc, fi->frame, ARM_PC_REGNUM);

  if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame - fi->extra_info->frameoffset,
			fi->frame))
    {
      return read_memory_integer (fi->saved_regs[ARM_PC_REGNUM],
				  REGISTER_RAW_SIZE (ARM_PC_REGNUM));
    }
  else
    {
      CORE_ADDR pc = arm_find_callers_reg (fi, ARM_LR_REGNUM);
      return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
    }
}

/* Return the frame address.  On ARM, it is R11; on Thumb it is R7.
   Examine the Program Status Register to decide which state we're in.  */

static CORE_ADDR
arm_read_fp (void)
{
  if (read_register (ARM_PS_REGNUM) & 0x20)	/* Bit 5 is Thumb state bit */
    return read_register (THUMB_FP_REGNUM);	/* R7 if Thumb */
  else
    return read_register (ARM_FP_REGNUM);	/* R11 if ARM */
}

/* Store into a struct frame_saved_regs the addresses of the saved
   registers of frame described by FRAME_INFO.  This includes special
   registers such as PC and FP saved in special ways in the stack
   frame.  SP is even more special: the address we return for it IS
   the sp for the next frame.  */

static void
arm_frame_init_saved_regs (struct frame_info *fip)
{

  if (fip->saved_regs)
    return;

  arm_init_extra_frame_info (0, fip);
}

/* Set the return address for a generic dummy frame.  ARM uses the
   entry point.  */

static CORE_ADDR
arm_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
{
  write_register (ARM_LR_REGNUM, CALL_DUMMY_ADDRESS ());
  return sp;
}

/* Push an empty stack frame, to record the current PC, etc.  */

static void
arm_push_dummy_frame (void)
{
  CORE_ADDR old_sp = read_register (ARM_SP_REGNUM);
  CORE_ADDR sp = old_sp;
  CORE_ADDR fp, prologue_start;
  int regnum;

  /* Push the two dummy prologue instructions in reverse order,
     so that they'll be in the correct low-to-high order in memory.  */
  /* sub     fp, ip, #4 */
  sp = push_word (sp, 0xe24cb004);
  /*  stmdb   sp!, {r0-r10, fp, ip, lr, pc} */
  prologue_start = sp = push_word (sp, 0xe92ddfff);

  /* Push a pointer to the dummy prologue + 12, because when stm
     instruction stores the PC, it stores the address of the stm
     instruction itself plus 12.  */
  fp = sp = push_word (sp, prologue_start + 12);

  /* Push the processor status.  */
  sp = push_word (sp, read_register (ARM_PS_REGNUM));

  /* Push all 16 registers starting with r15.  */
  for (regnum = ARM_PC_REGNUM; regnum >= 0; regnum--)
    sp = push_word (sp, read_register (regnum));

  /* Update fp (for both Thumb and ARM) and sp.  */
  write_register (ARM_FP_REGNUM, fp);
  write_register (THUMB_FP_REGNUM, fp);
  write_register (ARM_SP_REGNUM, sp);
}

/* CALL_DUMMY_WORDS:
   This sequence of words is the instructions

   mov  lr,pc
   mov  pc,r4
   illegal

   Note this is 12 bytes.  */

static LONGEST arm_call_dummy_words[] =
{
  0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe
};

/* Adjust the call_dummy_breakpoint_offset for the bp_call_dummy
   breakpoint to the proper address in the call dummy, so that
   `finish' after a stop in a call dummy works.

   FIXME rearnsha 2002-02018: Tweeking current_gdbarch is not an
   optimal solution, but the call to arm_fix_call_dummy is immediately
   followed by a call to run_stack_dummy, which is the only function
   where call_dummy_breakpoint_offset is actually used.  */


static void
arm_set_call_dummy_breakpoint_offset (void)
{
  if (caller_is_thumb)
    set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 4);
  else
    set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 8);
}

/* Fix up the call dummy, based on whether the processor is currently
   in Thumb or ARM mode, and whether the target function is Thumb or
   ARM.  There are three different situations requiring three
   different dummies:

   * ARM calling ARM: uses the call dummy in tm-arm.h, which has already
   been copied into the dummy parameter to this function.
   * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the
   "mov pc,r4" instruction patched to be a "bx r4" instead.
   * Thumb calling anything: uses the Thumb dummy defined below, which
   works for calling both ARM and Thumb functions.

   All three call dummies expect to receive the target function
   address in R4, with the low bit set if it's a Thumb function.  */

static void
arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
		    struct value **args, struct type *type, int gcc_p)
{
  static short thumb_dummy[4] =
  {
    0xf000, 0xf801,		/*        bl      label */
    0xdf18,			/*        swi     24 */
    0x4720,			/* label: bx      r4 */
  };
  static unsigned long arm_bx_r4 = 0xe12fff14;	/* bx r4 instruction */

  /* Set flag indicating whether the current PC is in a Thumb function.  */
  caller_is_thumb = arm_pc_is_thumb (read_pc ());
  arm_set_call_dummy_breakpoint_offset ();

  /* If the target function is Thumb, set the low bit of the function
     address.  And if the CPU is currently in ARM mode, patch the
     second instruction of call dummy to use a BX instruction to
     switch to Thumb mode.  */
  target_is_thumb = arm_pc_is_thumb (fun);
  if (target_is_thumb)
    {
      fun |= 1;
      if (!caller_is_thumb)
	store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4);
    }

  /* If the CPU is currently in Thumb mode, use the Thumb call dummy
     instead of the ARM one that's already been copied.  This will
     work for both Thumb and ARM target functions.  */
  if (caller_is_thumb)
    {
      int i;
      char *p = dummy;
      int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]);

      for (i = 0; i < len; i++)
	{
	  store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]);
	  p += sizeof (thumb_dummy[0]);
	}
    }

  /* Put the target address in r4; the call dummy will copy this to
     the PC.  */
  write_register (4, fun);
}

/* Note: ScottB

   This function does not support passing parameters using the FPA
   variant of the APCS.  It passes any floating point arguments in the
   general registers and/or on the stack.  */

static CORE_ADDR
arm_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
		    int struct_return, CORE_ADDR struct_addr)
{
  CORE_ADDR fp;
  int argnum;
  int argreg;
  int nstack;
  int simd_argreg;
  int second_pass;
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);

  /* Walk through the list of args and determine how large a temporary
     stack is required.  Need to take care here as structs may be
     passed on the stack, and we have to to push them.  On the second
     pass, do the store.  */
  nstack = 0;
  fp = sp;
  for (second_pass = 0; second_pass < 2; second_pass++)
    {
      /* Compute the FP using the information computed during the
         first pass.  */
      if (second_pass)
	fp = sp - nstack;

      simd_argreg = 0;
      argreg = ARM_A1_REGNUM;
      nstack = 0;

      /* The struct_return pointer occupies the first parameter
	 passing register.  */
      if (struct_return)
	{
	  if (second_pass)
	    {
	      if (arm_debug)
		fprintf_unfiltered (gdb_stdlog,
				    "struct return in %s = 0x%s\n",
				    REGISTER_NAME (argreg),
				    paddr (struct_addr));
	      write_register (argreg, struct_addr);
	    }
	  argreg++;
	}

      for (argnum = 0; argnum < nargs; argnum++)
	{
	  int len;
	  struct type *arg_type;
	  struct type *target_type;
	  enum type_code typecode;
	  char *val;
	  
	  arg_type = check_typedef (VALUE_TYPE (args[argnum]));
	  len = TYPE_LENGTH (arg_type);
	  target_type = TYPE_TARGET_TYPE (arg_type);
	  typecode = TYPE_CODE (arg_type);
	  val = VALUE_CONTENTS (args[argnum]);
	  
	  /* If the argument is a pointer to a function, and it is a
	     Thumb function, create a LOCAL copy of the value and set
	     the THUMB bit in it.  */
	  if (second_pass
	      && TYPE_CODE_PTR == typecode
	      && target_type != NULL
	      && TYPE_CODE_FUNC == TYPE_CODE (target_type))
	    {
	      CORE_ADDR regval = extract_address (val, len);
	      if (arm_pc_is_thumb (regval))
		{
		  val = alloca (len);
		  store_address (val, len, MAKE_THUMB_ADDR (regval));
		}
	    }

	  /* Copy the argument to general registers or the stack in
	     register-sized pieces.  Large arguments are split between
	     registers and stack.  */
	  while (len > 0)
	    {
	      int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
	      
	      if (argreg <= ARM_LAST_ARG_REGNUM)
		{
		  /* The argument is being passed in a general purpose
		     register.  */
		  if (second_pass)
		    {
		      CORE_ADDR regval = extract_address (val,
							  partial_len);
		      if (arm_debug)
			fprintf_unfiltered (gdb_stdlog,
					    "arg %d in %s = 0x%s\n",
					    argnum,
					    REGISTER_NAME (argreg),
					    phex (regval, REGISTER_SIZE));
		      write_register (argreg, regval);
		    }
		  argreg++;
		}
	      else
		{
		  if (second_pass)
		    {
		      /* Push the arguments onto the stack.  */
		      if (arm_debug)
			fprintf_unfiltered (gdb_stdlog,
					    "arg %d @ 0x%s + %d\n",
					    argnum, paddr (fp), nstack);
		      write_memory (fp + nstack, val, REGISTER_SIZE);
		    }
		  nstack += REGISTER_SIZE;
		}
	      
	      len -= partial_len;
	      val += partial_len;
	    }

	}
    }

  /* Return the botom of the argument list (pointed to by fp).  */
  return fp;
}

/* Pop the current frame.  So long as the frame info has been
   initialized properly (see arm_init_extra_frame_info), this code
   works for dummy frames as well as regular frames.  I.e, there's no
   need to have a special case for dummy frames.  */
static void
arm_pop_frame (void)
{
  int regnum;
  struct frame_info *frame = get_current_frame ();
  CORE_ADDR old_SP = (frame->frame - frame->extra_info->frameoffset
		      + frame->extra_info->framesize);

  if (DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
    {
      generic_pop_dummy_frame ();
      flush_cached_frames ();
      return;
    }

  for (regnum = 0; regnum < NUM_REGS; regnum++)
    if (frame->saved_regs[regnum] != 0)
      write_register (regnum,
		  read_memory_integer (frame->saved_regs[regnum],
				       REGISTER_RAW_SIZE (regnum)));

  write_register (ARM_PC_REGNUM, FRAME_SAVED_PC (frame));
  write_register (ARM_SP_REGNUM, old_SP);

  flush_cached_frames ();
}

static void
print_fpu_flags (int flags)
{
  if (flags & (1 << 0))
    fputs ("IVO ", stdout);
  if (flags & (1 << 1))
    fputs ("DVZ ", stdout);
  if (flags & (1 << 2))
    fputs ("OFL ", stdout);
  if (flags & (1 << 3))
    fputs ("UFL ", stdout);
  if (flags & (1 << 4))
    fputs ("INX ", stdout);
  putchar ('\n');
}

/* Print interesting information about the floating point processor
   (if present) or emulator.  */
static void
arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
		      struct frame_info *frame, const char *args)
{
  register unsigned long status = read_register (ARM_FPS_REGNUM);
  int type;

  type = (status >> 24) & 127;
  printf ("%s FPU type %d\n",
	  (status & (1 << 31)) ? "Hardware" : "Software",
	  type);
  fputs ("mask: ", stdout);
  print_fpu_flags (status >> 16);
  fputs ("flags: ", stdout);
  print_fpu_flags (status);
}

/* Return the GDB type object for the "standard" data type of data in
   register N.  */

static struct type *
arm_register_type (int regnum)
{
  if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
    {
      if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
	return builtin_type_arm_ext_big;
      else
	return builtin_type_arm_ext_littlebyte_bigword;
    }
  else
    return builtin_type_int32;
}

/* Index within `registers' of the first byte of the space for
   register N.  */

static int
arm_register_byte (int regnum)
{
  if (regnum < ARM_F0_REGNUM)
    return regnum * INT_REGISTER_RAW_SIZE;
  else if (regnum < ARM_PS_REGNUM)
    return (NUM_GREGS * INT_REGISTER_RAW_SIZE
	    + (regnum - ARM_F0_REGNUM) * FP_REGISTER_RAW_SIZE);
  else
    return (NUM_GREGS * INT_REGISTER_RAW_SIZE
	    + NUM_FREGS * FP_REGISTER_RAW_SIZE
	    + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
}

/* Number of bytes of storage in the actual machine representation for
   register N.  All registers are 4 bytes, except fp0 - fp7, which are
   12 bytes in length.  */

static int
arm_register_raw_size (int regnum)
{
  if (regnum < ARM_F0_REGNUM)
    return INT_REGISTER_RAW_SIZE;
  else if (regnum < ARM_FPS_REGNUM)
    return FP_REGISTER_RAW_SIZE;
  else
    return STATUS_REGISTER_SIZE;
}

/* Number of bytes of storage in a program's representation
   for register N.  */
static int
arm_register_virtual_size (int regnum)
{
  if (regnum < ARM_F0_REGNUM)
    return INT_REGISTER_VIRTUAL_SIZE;
  else if (regnum < ARM_FPS_REGNUM)
    return FP_REGISTER_VIRTUAL_SIZE;
  else
    return STATUS_REGISTER_SIZE;
}

/* Map GDB internal REGNUM onto the Arm simulator register numbers.  */
static int
arm_register_sim_regno (int regnum)
{
  int reg = regnum;
  gdb_assert (reg >= 0 && reg < NUM_REGS);

  if (reg < NUM_GREGS)
    return SIM_ARM_R0_REGNUM + reg;
  reg -= NUM_GREGS;

  if (reg < NUM_FREGS)
    return SIM_ARM_FP0_REGNUM + reg;
  reg -= NUM_FREGS;

  if (reg < NUM_SREGS)
    return SIM_ARM_FPS_REGNUM + reg;
  reg -= NUM_SREGS;

  internal_error (__FILE__, __LINE__, "Bad REGNUM %d", regnum);
}

/* NOTE: cagney/2001-08-20: Both convert_from_extended() and
   convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
   It is thought that this is is the floating-point register format on
   little-endian systems.  */

static void
convert_from_extended (const struct floatformat *fmt, const void *ptr,
		       void *dbl)
{
  DOUBLEST d;
  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
    floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
  else
    floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
			     ptr, &d);
  floatformat_from_doublest (fmt, &d, dbl);
}

static void
convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr)
{
  DOUBLEST d;
  floatformat_to_doublest (fmt, ptr, &d);
  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
    floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
  else
    floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
			       &d, dbl);
}

static int
condition_true (unsigned long cond, unsigned long status_reg)
{
  if (cond == INST_AL || cond == INST_NV)
    return 1;

  switch (cond)
    {
    case INST_EQ:
      return ((status_reg & FLAG_Z) != 0);
    case INST_NE:
      return ((status_reg & FLAG_Z) == 0);
    case INST_CS:
      return ((status_reg & FLAG_C) != 0);
    case INST_CC:
      return ((status_reg & FLAG_C) == 0);
    case INST_MI:
      return ((status_reg & FLAG_N) != 0);
    case INST_PL:
      return ((status_reg & FLAG_N) == 0);
    case INST_VS:
      return ((status_reg & FLAG_V) != 0);
    case INST_VC:
      return ((status_reg & FLAG_V) == 0);
    case INST_HI:
      return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
    case INST_LS:
      return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
    case INST_GE:
      return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
    case INST_LT:
      return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
    case INST_GT:
      return (((status_reg & FLAG_Z) == 0) &&
	      (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
    case INST_LE:
      return (((status_reg & FLAG_Z) != 0) ||
	      (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
    }
  return 1;
}

/* Support routines for single stepping.  Calculate the next PC value.  */
#define submask(x) ((1L << ((x) + 1)) - 1)
#define bit(obj,st) (((obj) >> (st)) & 1)
#define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
#define sbits(obj,st,fn) \
  ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
#define BranchDest(addr,instr) \
  ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
#define ARM_PC_32 1

static unsigned long
shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
		 unsigned long status_reg)
{
  unsigned long res, shift;
  int rm = bits (inst, 0, 3);
  unsigned long shifttype = bits (inst, 5, 6);

  if (bit (inst, 4))
    {
      int rs = bits (inst, 8, 11);
      shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
    }
  else
    shift = bits (inst, 7, 11);

  res = (rm == 15
	 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
	    + (bit (inst, 4) ? 12 : 8))
	 : read_register (rm));

  switch (shifttype)
    {
    case 0:			/* LSL */
      res = shift >= 32 ? 0 : res << shift;
      break;

    case 1:			/* LSR */
      res = shift >= 32 ? 0 : res >> shift;
      break;

    case 2:			/* ASR */
      if (shift >= 32)
	shift = 31;
      res = ((res & 0x80000000L)
	     ? ~((~res) >> shift) : res >> shift);
      break;

    case 3:			/* ROR/RRX */
      shift &= 31;
      if (shift == 0)
	res = (res >> 1) | (carry ? 0x80000000L : 0);
      else
	res = (res >> shift) | (res << (32 - shift));
      break;
    }

  return res & 0xffffffff;
}

/* Return number of 1-bits in VAL.  */

static int
bitcount (unsigned long val)
{
  int nbits;
  for (nbits = 0; val != 0; nbits++)
    val &= val - 1;		/* delete rightmost 1-bit in val */
  return nbits;
}

CORE_ADDR
thumb_get_next_pc (CORE_ADDR pc)
{
  unsigned long pc_val = ((unsigned long) pc) + 4;	/* PC after prefetch */
  unsigned short inst1 = read_memory_integer (pc, 2);
  CORE_ADDR nextpc = pc + 2;		/* default is next instruction */
  unsigned long offset;

  if ((inst1 & 0xff00) == 0xbd00)	/* pop {rlist, pc} */
    {
      CORE_ADDR sp;

      /* Fetch the saved PC from the stack.  It's stored above
         all of the other registers.  */
      offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE;
      sp = read_register (ARM_SP_REGNUM);
      nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
      nextpc = ADDR_BITS_REMOVE (nextpc);
      if (nextpc == pc)
	error ("Infinite loop detected");
    }
  else if ((inst1 & 0xf000) == 0xd000)	/* conditional branch */
    {
      unsigned long status = read_register (ARM_PS_REGNUM);
      unsigned long cond = bits (inst1, 8, 11);
      if (cond != 0x0f && condition_true (cond, status))    /* 0x0f = SWI */
	nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
    }
  else if ((inst1 & 0xf800) == 0xe000)	/* unconditional branch */
    {
      nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
    }
  else if ((inst1 & 0xf800) == 0xf000)	/* long branch with link */
    {
      unsigned short inst2 = read_memory_integer (pc + 2, 2);
      offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
      nextpc = pc_val + offset;
    }

  return nextpc;
}

CORE_ADDR
arm_get_next_pc (CORE_ADDR pc)
{
  unsigned long pc_val;
  unsigned long this_instr;
  unsigned long status;
  CORE_ADDR nextpc;

  if (arm_pc_is_thumb (pc))
    return thumb_get_next_pc (pc);

  pc_val = (unsigned long) pc;
  this_instr = read_memory_integer (pc, 4);
  status = read_register (ARM_PS_REGNUM);
  nextpc = (CORE_ADDR) (pc_val + 4);	/* Default case */

  if (condition_true (bits (this_instr, 28, 31), status))
    {
      switch (bits (this_instr, 24, 27))
	{
	case 0x0:
	case 0x1:			/* data processing */
	case 0x2:
	case 0x3:
	  {
	    unsigned long operand1, operand2, result = 0;
	    unsigned long rn;
	    int c;

	    if (bits (this_instr, 12, 15) != 15)
	      break;

	    if (bits (this_instr, 22, 25) == 0
		&& bits (this_instr, 4, 7) == 9)	/* multiply */
	      error ("Illegal update to pc in instruction");

	    /* Multiply into PC */
	    c = (status & FLAG_C) ? 1 : 0;
	    rn = bits (this_instr, 16, 19);
	    operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);

	    if (bit (this_instr, 25))
	      {
		unsigned long immval = bits (this_instr, 0, 7);
		unsigned long rotate = 2 * bits (this_instr, 8, 11);
		operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
		  & 0xffffffff;
	      }
	    else		/* operand 2 is a shifted register */
	      operand2 = shifted_reg_val (this_instr, c, pc_val, status);

	    switch (bits (this_instr, 21, 24))
	      {
	      case 0x0:	/*and */
		result = operand1 & operand2;
		break;

	      case 0x1:	/*eor */
		result = operand1 ^ operand2;
		break;

	      case 0x2:	/*sub */
		result = operand1 - operand2;
		break;

	      case 0x3:	/*rsb */
		result = operand2 - operand1;
		break;

	      case 0x4:	/*add */
		result = operand1 + operand2;
		break;

	      case 0x5:	/*adc */
		result = operand1 + operand2 + c;
		break;

	      case 0x6:	/*sbc */
		result = operand1 - operand2 + c;
		break;

	      case 0x7:	/*rsc */
		result = operand2 - operand1 + c;
		break;

	      case 0x8:
	      case 0x9:
	      case 0xa:
	      case 0xb:	/* tst, teq, cmp, cmn */
		result = (unsigned long) nextpc;
		break;

	      case 0xc:	/*orr */
		result = operand1 | operand2;
		break;

	      case 0xd:	/*mov */
		/* Always step into a function.  */
		result = operand2;
		break;

	      case 0xe:	/*bic */
		result = operand1 & ~operand2;
		break;

	      case 0xf:	/*mvn */
		result = ~operand2;
		break;
	      }
	    nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);

	    if (nextpc == pc)
	      error ("Infinite loop detected");
	    break;
	  }

	case 0x4:
	case 0x5:		/* data transfer */
	case 0x6:
	case 0x7:
	  if (bit (this_instr, 20))
	    {
	      /* load */
	      if (bits (this_instr, 12, 15) == 15)
		{
		  /* rd == pc */
		  unsigned long rn;
		  unsigned long base;

		  if (bit (this_instr, 22))
		    error ("Illegal update to pc in instruction");

		  /* byte write to PC */
		  rn = bits (this_instr, 16, 19);
		  base = (rn == 15) ? pc_val + 8 : read_register (rn);
		  if (bit (this_instr, 24))
		    {
		      /* pre-indexed */
		      int c = (status & FLAG_C) ? 1 : 0;
		      unsigned long offset =
		      (bit (this_instr, 25)
		       ? shifted_reg_val (this_instr, c, pc_val, status)
		       : bits (this_instr, 0, 11));

		      if (bit (this_instr, 23))
			base += offset;
		      else
			base -= offset;
		    }
		  nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
							    4);

		  nextpc = ADDR_BITS_REMOVE (nextpc);

		  if (nextpc == pc)
		    error ("Infinite loop detected");
		}
	    }
	  break;

	case 0x8:
	case 0x9:		/* block transfer */
	  if (bit (this_instr, 20))
	    {
	      /* LDM */
	      if (bit (this_instr, 15))
		{
		  /* loading pc */
		  int offset = 0;

		  if (bit (this_instr, 23))
		    {
		      /* up */
		      unsigned long reglist = bits (this_instr, 0, 14);
		      offset = bitcount (reglist) * 4;
		      if (bit (this_instr, 24))		/* pre */
			offset += 4;
		    }
		  else if (bit (this_instr, 24))
		    offset = -4;

		  {
		    unsigned long rn_val =
		    read_register (bits (this_instr, 16, 19));
		    nextpc =
		      (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
								  + offset),
						       4);
		  }
		  nextpc = ADDR_BITS_REMOVE (nextpc);
		  if (nextpc == pc)
		    error ("Infinite loop detected");
		}
	    }
	  break;

	case 0xb:		/* branch & link */
	case 0xa:		/* branch */
	  {
	    nextpc = BranchDest (pc, this_instr);

	    nextpc = ADDR_BITS_REMOVE (nextpc);
	    if (nextpc == pc)
	      error ("Infinite loop detected");
	    break;
	  }

	case 0xc:
	case 0xd:
	case 0xe:		/* coproc ops */
	case 0xf:		/* SWI */
	  break;

	default:
	  fprintf_filtered (gdb_stderr, "Bad bit-field extraction\n");
	  return (pc);
	}
    }

  return nextpc;
}

/* single_step() is called just before we want to resume the inferior,
   if we want to single-step it but there is no hardware or kernel
   single-step support.  We find the target of the coming instruction
   and breakpoint it.

   single_step() is also called just after the inferior stops.  If we
   had set up a simulated single-step, we undo our damage.  */

static void
arm_software_single_step (enum target_signal sig, int insert_bpt)
{
  static int next_pc;		 /* State between setting and unsetting.  */
  static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */

  if (insert_bpt)
    {
      next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
      target_insert_breakpoint (next_pc, break_mem);
    }
  else
    target_remove_breakpoint (next_pc, break_mem);
}

#include "bfd-in2.h"
#include "libcoff.h"

static int
gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
{
  if (arm_pc_is_thumb (memaddr))
    {
      static asymbol *asym;
      static combined_entry_type ce;
      static struct coff_symbol_struct csym;
      static struct _bfd fake_bfd;
      static bfd_target fake_target;

      if (csym.native == NULL)
	{
	  /* Create a fake symbol vector containing a Thumb symbol.
	     This is solely so that the code in print_insn_little_arm() 
	     and print_insn_big_arm() in opcodes/arm-dis.c will detect
	     the presence of a Thumb symbol and switch to decoding
	     Thumb instructions.  */

	  fake_target.flavour = bfd_target_coff_flavour;
	  fake_bfd.xvec = &fake_target;
	  ce.u.syment.n_sclass = C_THUMBEXTFUNC;
	  csym.native = &ce;
	  csym.symbol.the_bfd = &fake_bfd;
	  csym.symbol.name = "fake";
	  asym = (asymbol *) & csym;
	}

      memaddr = UNMAKE_THUMB_ADDR (memaddr);
      info->symbols = &asym;
    }
  else
    info->symbols = NULL;

  if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
    return print_insn_big_arm (memaddr, info);
  else
    return print_insn_little_arm (memaddr, info);
}

/* The following define instruction sequences that will cause ARM
   cpu's to take an undefined instruction trap.  These are used to
   signal a breakpoint to GDB.
   
   The newer ARMv4T cpu's are capable of operating in ARM or Thumb
   modes.  A different instruction is required for each mode.  The ARM
   cpu's can also be big or little endian.  Thus four different
   instructions are needed to support all cases.
   
   Note: ARMv4 defines several new instructions that will take the
   undefined instruction trap.  ARM7TDMI is nominally ARMv4T, but does
   not in fact add the new instructions.  The new undefined
   instructions in ARMv4 are all instructions that had no defined
   behaviour in earlier chips.  There is no guarantee that they will
   raise an exception, but may be treated as NOP's.  In practice, it
   may only safe to rely on instructions matching:
   
   3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 
   1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
   C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
   
   Even this may only true if the condition predicate is true. The
   following use a condition predicate of ALWAYS so it is always TRUE.
   
   There are other ways of forcing a breakpoint.  GNU/Linux, RISC iX,
   and NetBSD all use a software interrupt rather than an undefined
   instruction to force a trap.  This can be handled by by the
   abi-specific code during establishment of the gdbarch vector.  */


/* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
   override these definitions.  */
#ifndef ARM_LE_BREAKPOINT
#define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
#endif
#ifndef ARM_BE_BREAKPOINT
#define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
#endif
#ifndef THUMB_LE_BREAKPOINT
#define THUMB_LE_BREAKPOINT {0xfe,0xdf}
#endif
#ifndef THUMB_BE_BREAKPOINT
#define THUMB_BE_BREAKPOINT {0xdf,0xfe}
#endif

static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;

/* Determine the type and size of breakpoint to insert at PCPTR.  Uses
   the program counter value to determine whether a 16-bit or 32-bit
   breakpoint should be used.  It returns a pointer to a string of
   bytes that encode a breakpoint instruction, stores the length of
   the string to *lenptr, and adjusts the program counter (if
   necessary) to point to the actual memory location where the
   breakpoint should be inserted.  */

/* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
   breakpoints and storing their handles instread of what was in
   memory.  It is nice that this is the same size as a handle -
   otherwise remote-rdp will have to change.  */

static const unsigned char *
arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);

  if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
    {
      *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
      *lenptr = tdep->thumb_breakpoint_size;
      return tdep->thumb_breakpoint;
    }
  else
    {
      *lenptr = tdep->arm_breakpoint_size;
      return tdep->arm_breakpoint;
    }
}

/* Extract from an array REGBUF containing the (raw) register state a
   function return value of type TYPE, and copy that, in virtual
   format, into VALBUF.  */

static void
arm_extract_return_value (struct type *type,
			  struct regcache *regs,
			  void *dst)
{
  bfd_byte *valbuf = dst;

  if (TYPE_CODE_FLT == TYPE_CODE (type))
    {
      struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);

      switch (tdep->fp_model)
	{
	case ARM_FLOAT_FPA:
	  {
	    /* The value is in register F0 in internal format.  We need to
	       extract the raw value and then convert it to the desired
	       internal type.  */
	    bfd_byte tmpbuf[FP_REGISTER_RAW_SIZE];

	    regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
	    convert_from_extended (floatformat_from_type (type), tmpbuf,
				   valbuf);
	  }
	  break;

	case ARM_FLOAT_SOFT:
	case ARM_FLOAT_SOFT_VFP:
	  regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
	  if (TYPE_LENGTH (type) > 4)
	    regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
				  valbuf + INT_REGISTER_RAW_SIZE);
	  break;

	default:
	  internal_error
	    (__FILE__, __LINE__,
	     "arm_extract_return_value: Floating point model not supported");
	  break;
	}
    }
  else if (TYPE_CODE (type) == TYPE_CODE_INT
	   || TYPE_CODE (type) == TYPE_CODE_CHAR
	   || TYPE_CODE (type) == TYPE_CODE_BOOL
	   || TYPE_CODE (type) == TYPE_CODE_PTR
	   || TYPE_CODE (type) == TYPE_CODE_REF
	   || TYPE_CODE (type) == TYPE_CODE_ENUM)
    {
      /* If the the type is a plain integer, then the access is
	 straight-forward.  Otherwise we have to play around a bit more.  */
      int len = TYPE_LENGTH (type);
      int regno = ARM_A1_REGNUM;
      ULONGEST tmp;

      while (len > 0)
	{
	  /* By using store_unsigned_integer we avoid having to do
	     anything special for small big-endian values.  */
	  regcache_cooked_read_unsigned (regs, regno++, &tmp);
	  store_unsigned_integer (valbuf, 
				  (len > INT_REGISTER_RAW_SIZE
				   ? INT_REGISTER_RAW_SIZE : len),
				  tmp);
	  len -= INT_REGISTER_RAW_SIZE;
	  valbuf += INT_REGISTER_RAW_SIZE;
	}
    }
  else
    {
      /* For a structure or union the behaviour is as if the value had
         been stored to word-aligned memory and then loaded into 
         registers with 32-bit load instruction(s).  */
      int len = TYPE_LENGTH (type);
      int regno = ARM_A1_REGNUM;
      bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];

      while (len > 0)
	{
	  regcache_cooked_read (regs, regno++, tmpbuf);
	  memcpy (valbuf, tmpbuf,
		  len > INT_REGISTER_RAW_SIZE ? INT_REGISTER_RAW_SIZE : len);
	  len -= INT_REGISTER_RAW_SIZE;
	  valbuf += INT_REGISTER_RAW_SIZE;
	}
    }
}

/* Extract from an array REGBUF containing the (raw) register state
   the address in which a function should return its structure value.  */

static CORE_ADDR
arm_extract_struct_value_address (struct regcache *regcache)
{
  ULONGEST ret;

  regcache_cooked_read_unsigned (regcache, ARM_A1_REGNUM, &ret);
  return ret;
}

/* Will a function return an aggregate type in memory or in a
   register?  Return 0 if an aggregate type can be returned in a
   register, 1 if it must be returned in memory.  */

static int
arm_use_struct_convention (int gcc_p, struct type *type)
{
  int nRc;
  register enum type_code code;

  /* In the ARM ABI, "integer" like aggregate types are returned in
     registers.  For an aggregate type to be integer like, its size
     must be less than or equal to REGISTER_SIZE and the offset of
     each addressable subfield must be zero.  Note that bit fields are
     not addressable, and all addressable subfields of unions always
     start at offset zero.

     This function is based on the behaviour of GCC 2.95.1.
     See: gcc/arm.c: arm_return_in_memory() for details.

     Note: All versions of GCC before GCC 2.95.2 do not set up the
     parameters correctly for a function returning the following
     structure: struct { float f;}; This should be returned in memory,
     not a register.  Richard Earnshaw sent me a patch, but I do not
     know of any way to detect if a function like the above has been
     compiled with the correct calling convention.  */

  /* All aggregate types that won't fit in a register must be returned
     in memory.  */
  if (TYPE_LENGTH (type) > REGISTER_SIZE)
    {
      return 1;
    }

  /* The only aggregate types that can be returned in a register are
     structs and unions.  Arrays must be returned in memory.  */
  code = TYPE_CODE (type);
  if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
    {
      return 1;
    }

  /* Assume all other aggregate types can be returned in a register.
     Run a check for structures, unions and arrays.  */
  nRc = 0;

  if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
    {
      int i;
      /* Need to check if this struct/union is "integer" like.  For
         this to be true, its size must be less than or equal to
         REGISTER_SIZE and the offset of each addressable subfield
         must be zero.  Note that bit fields are not addressable, and
         unions always start at offset zero.  If any of the subfields
         is a floating point type, the struct/union cannot be an
         integer type.  */

      /* For each field in the object, check:
         1) Is it FP? --> yes, nRc = 1;
         2) Is it addressable (bitpos != 0) and
         not packed (bitsize == 0)?
         --> yes, nRc = 1  
       */

      for (i = 0; i < TYPE_NFIELDS (type); i++)
	{
	  enum type_code field_type_code;
	  field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i));

	  /* Is it a floating point type field?  */
	  if (field_type_code == TYPE_CODE_FLT)
	    {
	      nRc = 1;
	      break;
	    }

	  /* If bitpos != 0, then we have to care about it.  */
	  if (TYPE_FIELD_BITPOS (type, i) != 0)
	    {
	      /* Bitfields are not addressable.  If the field bitsize is 
	         zero, then the field is not packed.  Hence it cannot be
	         a bitfield or any other packed type.  */
	      if (TYPE_FIELD_BITSIZE (type, i) == 0)
		{
		  nRc = 1;
		  break;
		}
	    }
	}
    }

  return nRc;
}

/* Write into appropriate registers a function return value of type
   TYPE, given in virtual format.  */

static void
arm_store_return_value (struct type *type, struct regcache *regs,
			const void *src)
{
  const bfd_byte *valbuf = src;

  if (TYPE_CODE (type) == TYPE_CODE_FLT)
    {
      struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
      char buf[ARM_MAX_REGISTER_RAW_SIZE];

      switch (tdep->fp_model)
	{
	case ARM_FLOAT_FPA:

	  convert_to_extended (floatformat_from_type (type), buf, valbuf);
	  regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
	  break;

	case ARM_FLOAT_SOFT:
	case ARM_FLOAT_SOFT_VFP:
	  regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
	  if (TYPE_LENGTH (type) > 4)
	    regcache_cooked_write (regs, ARM_A1_REGNUM + 1, 
				   valbuf + INT_REGISTER_RAW_SIZE);
	  break;

	default:
	  internal_error
	    (__FILE__, __LINE__,
	     "arm_store_return_value: Floating point model not supported");
	  break;
	}
    }
  else if (TYPE_CODE (type) == TYPE_CODE_INT
	   || TYPE_CODE (type) == TYPE_CODE_CHAR
	   || TYPE_CODE (type) == TYPE_CODE_BOOL
	   || TYPE_CODE (type) == TYPE_CODE_PTR
	   || TYPE_CODE (type) == TYPE_CODE_REF
	   || TYPE_CODE (type) == TYPE_CODE_ENUM)
    {
      if (TYPE_LENGTH (type) <= 4)
	{
	  /* Values of one word or less are zero/sign-extended and
	     returned in r0.  */
	  bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];
	  LONGEST val = unpack_long (type, valbuf);

	  store_signed_integer (tmpbuf, INT_REGISTER_RAW_SIZE, val);
	  regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
	}
      else
	{
	  /* Integral values greater than one word are stored in consecutive
	     registers starting with r0.  This will always be a multiple of
	     the regiser size.  */
	  int len = TYPE_LENGTH (type);
	  int regno = ARM_A1_REGNUM;

	  while (len > 0)
	    {
	      regcache_cooked_write (regs, regno++, valbuf);
	      len -= INT_REGISTER_RAW_SIZE;
	      valbuf += INT_REGISTER_RAW_SIZE;
	    }
	}
    }
  else
    {
      /* For a structure or union the behaviour is as if the value had
         been stored to word-aligned memory and then loaded into 
         registers with 32-bit load instruction(s).  */
      int len = TYPE_LENGTH (type);
      int regno = ARM_A1_REGNUM;
      bfd_byte tmpbuf[INT_REGISTER_RAW_SIZE];

      while (len > 0)
	{
	  memcpy (tmpbuf, valbuf,
		  len > INT_REGISTER_RAW_SIZE ? INT_REGISTER_RAW_SIZE : len);
	  regcache_cooked_write (regs, regno++, tmpbuf);
	  len -= INT_REGISTER_RAW_SIZE;
	  valbuf += INT_REGISTER_RAW_SIZE;
	}
    }
}

/* Store the address of the place in which to copy the structure the
   subroutine will return.  This is called from call_function.  */

static void
arm_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
{
  write_register (ARM_A1_REGNUM, addr);
}

static int
arm_get_longjmp_target (CORE_ADDR *pc)
{
  CORE_ADDR jb_addr;
  char buf[INT_REGISTER_RAW_SIZE];
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
  
  jb_addr = read_register (ARM_A1_REGNUM);

  if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
			  INT_REGISTER_RAW_SIZE))
    return 0;

  *pc = extract_address (buf, INT_REGISTER_RAW_SIZE);
  return 1;
}

/* Return non-zero if the PC is inside a thumb call thunk.  */

int
arm_in_call_stub (CORE_ADDR pc, char *name)
{
  CORE_ADDR start_addr;

  /* Find the starting address of the function containing the PC.  If
     the caller didn't give us a name, look it up at the same time.  */
  if (0 == find_pc_partial_function (pc, name ? NULL : &name, 
				     &start_addr, NULL))
    return 0;

  return strncmp (name, "_call_via_r", 11) == 0;
}

/* If PC is in a Thumb call or return stub, return the address of the
   target PC, which is in a register.  The thunk functions are called
   _called_via_xx, where x is the register name.  The possible names
   are r0-r9, sl, fp, ip, sp, and lr.  */

CORE_ADDR
arm_skip_stub (CORE_ADDR pc)
{
  char *name;
  CORE_ADDR start_addr;

  /* Find the starting address and name of the function containing the PC.  */
  if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
    return 0;

  /* Call thunks always start with "_call_via_".  */
  if (strncmp (name, "_call_via_", 10) == 0)
    {
      /* Use the name suffix to determine which register contains the
         target PC.  */
      static char *table[15] =
      {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
       "r8", "r9", "sl", "fp", "ip", "sp", "lr"
      };
      int regno;

      for (regno = 0; regno <= 14; regno++)
	if (strcmp (&name[10], table[regno]) == 0)
	  return read_register (regno);
    }

  return 0;			/* not a stub */
}

/* If the user changes the register disassembly flavor used for info
   register and other commands, we have to also switch the flavor used
   in opcodes for disassembly output.  This function is run in the set
   disassembly_flavor command, and does that.  */

static void
set_disassembly_flavor_sfunc (char *args, int from_tty,
			      struct cmd_list_element *c)
{
  set_disassembly_flavor ();
}

/* Return the ARM register name corresponding to register I.  */
static const char *
arm_register_name (int i)
{
  return arm_register_names[i];
}

static void
set_disassembly_flavor (void)
{
  const char *setname, *setdesc, **regnames;
  int numregs, j;

  /* Find the flavor that the user wants in the opcodes table.  */
  int current = 0;
  numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
  while ((disassembly_flavor != setname)
	 && (current < num_flavor_options))
    get_arm_regnames (++current, &setname, &setdesc, &regnames);
  current_option = current;

  /* Fill our copy.  */
  for (j = 0; j < numregs; j++)
    arm_register_names[j] = (char *) regnames[j];

  /* Adjust case.  */
  if (isupper (*regnames[ARM_PC_REGNUM]))
    {
      arm_register_names[ARM_FPS_REGNUM] = "FPS";
      arm_register_names[ARM_PS_REGNUM] = "CPSR";
    }
  else
    {
      arm_register_names[ARM_FPS_REGNUM] = "fps";
      arm_register_names[ARM_PS_REGNUM] = "cpsr";
    }

  /* Synchronize the disassembler.  */
  set_arm_regname_option (current);
}

/* arm_othernames implements the "othernames" command.  This is kind
   of hacky, and I prefer the set-show disassembly-flavor which is
   also used for the x86 gdb.  I will keep this around, however, in
   case anyone is actually using it.  */

static void
arm_othernames (char *names, int n)
{
  /* Circle through the various flavors.  */
  current_option = (current_option + 1) % num_flavor_options;

  disassembly_flavor = valid_flavors[current_option];
  set_disassembly_flavor ();
}

/* Fetch, and possibly build, an appropriate link_map_offsets structure
   for ARM linux targets using the struct offsets defined in <link.h>.
   Note, however, that link.h is not actually referred to in this file.
   Instead, the relevant structs offsets were obtained from examining
   link.h.  (We can't refer to link.h from this file because the host
   system won't necessarily have it, or if it does, the structs which
   it defines will refer to the host system, not the target).  */

struct link_map_offsets *
arm_linux_svr4_fetch_link_map_offsets (void)
{
  static struct link_map_offsets lmo;
  static struct link_map_offsets *lmp = 0;

  if (lmp == 0)
    {
      lmp = &lmo;

      lmo.r_debug_size = 8;	/* Actual size is 20, but this is all we
                                   need.  */

      lmo.r_map_offset = 4;
      lmo.r_map_size   = 4;

      lmo.link_map_size = 20;	/* Actual size is 552, but this is all we
                                   need.  */

      lmo.l_addr_offset = 0;
      lmo.l_addr_size   = 4;

      lmo.l_name_offset = 4;
      lmo.l_name_size   = 4;

      lmo.l_next_offset = 12;
      lmo.l_next_size   = 4;

      lmo.l_prev_offset = 16;
      lmo.l_prev_size   = 4;
    }

    return lmp;
}

/* Test whether the coff symbol specific value corresponds to a Thumb
   function.  */

static int
coff_sym_is_thumb (int val)
{
  return (val == C_THUMBEXT ||
	  val == C_THUMBSTAT ||
	  val == C_THUMBEXTFUNC ||
	  val == C_THUMBSTATFUNC ||
	  val == C_THUMBLABEL);
}

/* arm_coff_make_msymbol_special()
   arm_elf_make_msymbol_special()
   
   These functions test whether the COFF or ELF symbol corresponds to
   an address in thumb code, and set a "special" bit in a minimal
   symbol to indicate that it does.  */
   
static void
arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
{
  /* Thumb symbols are of type STT_LOPROC, (synonymous with
     STT_ARM_TFUNC).  */
  if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
      == STT_LOPROC)
    MSYMBOL_SET_SPECIAL (msym);
}

static void
arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
{
  if (coff_sym_is_thumb (val))
    MSYMBOL_SET_SPECIAL (msym);
}


static enum gdb_osabi
arm_elf_osabi_sniffer (bfd *abfd)
{
  unsigned int elfosabi, eflags;
  enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;

  elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];

  switch (elfosabi)
    {
    case ELFOSABI_NONE:  
      /* When elfosabi is ELFOSABI_NONE (0), then the ELF structures in the
	 file are conforming to the base specification for that machine 
	 (there are no OS-specific extensions).  In order to determine the 
	 real OS in use we must look for OS notes that have been added.  */
      bfd_map_over_sections (abfd,
			     generic_elf_osabi_sniff_abi_tag_sections,  
			     &osabi);
      if (osabi == GDB_OSABI_UNKNOWN)
	{
	  /* Existing ARM tools don't set this field, so look at the EI_FLAGS
	     field for more information.  */
	  eflags = EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags);
	  switch (eflags)
	    {
	    case EF_ARM_EABI_VER1:
	      osabi = GDB_OSABI_ARM_EABI_V1;
	      break;

	    case EF_ARM_EABI_VER2:
	      osabi = GDB_OSABI_ARM_EABI_V2;
	      break;

	    case EF_ARM_EABI_UNKNOWN:
	      /* Assume GNU tools.  */
	      osabi = GDB_OSABI_ARM_APCS;
	      break;

	    default:
	      internal_error (__FILE__, __LINE__,
			      "arm_elf_osabi_sniffer: Unknown ARM EABI "
			      "version 0x%x", eflags);
	    }
	}
      break;

    case ELFOSABI_ARM:
      /* GNU tools use this value.  Check note sections in this case,
	 as well.  */
      bfd_map_over_sections (abfd,
			     generic_elf_osabi_sniff_abi_tag_sections, 
			     &osabi);
      if (osabi == GDB_OSABI_UNKNOWN)
	{
	  /* Assume APCS ABI.  */
	  osabi = GDB_OSABI_ARM_APCS;
	}
      break;

    case ELFOSABI_FREEBSD:
      osabi = GDB_OSABI_FREEBSD_ELF;
      break;

    case ELFOSABI_NETBSD:
      osabi = GDB_OSABI_NETBSD_ELF;
      break;

    case ELFOSABI_LINUX:
      osabi = GDB_OSABI_LINUX;
      break;
    }

  return osabi;
}


/* Initialize the current architecture based on INFO.  If possible,
   re-use an architecture from ARCHES, which is a list of
   architectures already created during this debugging session.

   Called e.g. at program startup, when reading a core file, and when
   reading a binary file.  */

static struct gdbarch *
arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  struct gdbarch_tdep *tdep;
  struct gdbarch *gdbarch;
  enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;

  /* Try to deterimine the ABI of the object we are loading.  */

  if (info.abfd != NULL)
    {
      osabi = gdbarch_lookup_osabi (info.abfd);
      if (osabi == GDB_OSABI_UNKNOWN)
	{
	  switch (bfd_get_flavour (info.abfd))
	    {
	    case bfd_target_aout_flavour:
	      /* Assume it's an old APCS-style ABI.  */
	      osabi = GDB_OSABI_ARM_APCS;
	      break;

	    case bfd_target_coff_flavour:
	      /* Assume it's an old APCS-style ABI.  */
	      /* XXX WinCE?  */
	      osabi = GDB_OSABI_ARM_APCS;
	      break;

	    default:
	      /* Leave it as "unknown".  */
	    }
	}
    }

  /* Find a candidate among extant architectures.  */
  for (arches = gdbarch_list_lookup_by_info (arches, &info);
       arches != NULL;
       arches = gdbarch_list_lookup_by_info (arches->next, &info))
    {
      /* Make sure the ABI selection matches.  */
      tdep = gdbarch_tdep (arches->gdbarch);
      if (tdep && tdep->osabi == osabi)
	return arches->gdbarch;
    }

  tdep = xmalloc (sizeof (struct gdbarch_tdep));
  gdbarch = gdbarch_alloc (&info, tdep);

  /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
     ready to unwind the PC first (see frame.c:get_prev_frame()).  */
  set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);

  tdep->osabi = osabi;

  /* This is the way it has always defaulted.  */
  tdep->fp_model = ARM_FLOAT_FPA;

  /* Breakpoints.  */
  switch (info.byte_order)
    {
    case BFD_ENDIAN_BIG:
      tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
      tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
      tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
      tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);

      break;

    case BFD_ENDIAN_LITTLE:
      tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
      tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
      tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
      tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);

      break;

    default:
      internal_error (__FILE__, __LINE__,
		      "arm_gdbarch_init: bad byte order for float format");
    }

  /* On ARM targets char defaults to unsigned.  */
  set_gdbarch_char_signed (gdbarch, 0);

  /* This should be low enough for everything.  */
  tdep->lowest_pc = 0x20;
  tdep->jb_pc = -1;	/* Longjump support not enabled by default.  */

  set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
  set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);

  set_gdbarch_call_dummy_p (gdbarch, 1);
  set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);

  set_gdbarch_call_dummy_words (gdbarch, arm_call_dummy_words);
  set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
  set_gdbarch_call_dummy_start_offset (gdbarch, 0);
  set_gdbarch_call_dummy_length (gdbarch, 0);

  set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);

  set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
  set_gdbarch_push_return_address (gdbarch, arm_push_return_address);

  set_gdbarch_push_arguments (gdbarch, arm_push_arguments);
  set_gdbarch_coerce_float_to_double (gdbarch,
				      standard_coerce_float_to_double);

  /* Frame handling.  */
  set_gdbarch_frame_chain_valid (gdbarch, arm_frame_chain_valid);
  set_gdbarch_init_extra_frame_info (gdbarch, arm_init_extra_frame_info);
  set_gdbarch_read_fp (gdbarch, arm_read_fp);
  set_gdbarch_frame_chain (gdbarch, arm_frame_chain);
  set_gdbarch_frameless_function_invocation
    (gdbarch, arm_frameless_function_invocation);
  set_gdbarch_frame_saved_pc (gdbarch, arm_frame_saved_pc);
  set_gdbarch_frame_args_address (gdbarch, arm_frame_args_address);
  set_gdbarch_frame_locals_address (gdbarch, arm_frame_locals_address);
  set_gdbarch_frame_num_args (gdbarch, arm_frame_num_args);
  set_gdbarch_frame_args_skip (gdbarch, 0);
  set_gdbarch_frame_init_saved_regs (gdbarch, arm_frame_init_saved_regs);
  set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
  set_gdbarch_pop_frame (gdbarch, arm_pop_frame);

  /* Address manipulation.  */
  set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
  set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);

  /* Offset from address of function to start of its code.  */
  set_gdbarch_function_start_offset (gdbarch, 0);

  /* Advance PC across function entry code.  */
  set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);

  /* Get the PC when a frame might not be available.  */
  set_gdbarch_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);

  /* The stack grows downward.  */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);

  /* Breakpoint manipulation.  */
  set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
  set_gdbarch_decr_pc_after_break (gdbarch, 0);

  /* Information about registers, etc.  */
  set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
  set_gdbarch_fp_regnum (gdbarch, ARM_FP_REGNUM);	/* ??? */
  set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
  set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
  set_gdbarch_register_byte (gdbarch, arm_register_byte);
  set_gdbarch_register_bytes (gdbarch,
			      (NUM_GREGS * INT_REGISTER_RAW_SIZE
			       + NUM_FREGS * FP_REGISTER_RAW_SIZE
			       + NUM_SREGS * STATUS_REGISTER_SIZE));
  set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
  set_gdbarch_register_raw_size (gdbarch, arm_register_raw_size);
  set_gdbarch_register_virtual_size (gdbarch, arm_register_virtual_size);
  set_gdbarch_max_register_raw_size (gdbarch, FP_REGISTER_RAW_SIZE);
  set_gdbarch_max_register_virtual_size (gdbarch, FP_REGISTER_VIRTUAL_SIZE);
  set_gdbarch_register_virtual_type (gdbarch, arm_register_type);

  /* Internal <-> external register number maps.  */
  set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);

  /* Integer registers are 4 bytes.  */
  set_gdbarch_register_size (gdbarch, 4);
  set_gdbarch_register_name (gdbarch, arm_register_name);

  /* Returning results.  */
  set_gdbarch_extract_return_value (gdbarch, arm_extract_return_value);
  set_gdbarch_store_return_value (gdbarch, arm_store_return_value);
  set_gdbarch_store_struct_return (gdbarch, arm_store_struct_return);
  set_gdbarch_use_struct_convention (gdbarch, arm_use_struct_convention);
  set_gdbarch_extract_struct_value_address (gdbarch,
					    arm_extract_struct_value_address);

  /* Single stepping.  */
  /* XXX For an RDI target we should ask the target if it can single-step.  */
  set_gdbarch_software_single_step (gdbarch, arm_software_single_step);

  /* Minsymbol frobbing.  */
  set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
  set_gdbarch_coff_make_msymbol_special (gdbarch,
					 arm_coff_make_msymbol_special);

  /* Hook in the ABI-specific overrides, if they have been registered.  */
  gdbarch_init_osabi (info, gdbarch, osabi);

  /* Now we have tuned the configuration, set a few final things,
     based on what the OS ABI has told us.  */

  if (tdep->jb_pc >= 0)
    set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);

  /* Floating point sizes and format.  */
  switch (info.byte_order)
    {
    case BFD_ENDIAN_BIG:
      set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
      set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
      set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
      
      break;

    case BFD_ENDIAN_LITTLE:
      set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
      if (tdep->fp_model == ARM_FLOAT_VFP
	  || tdep->fp_model == ARM_FLOAT_SOFT_VFP)
	{
	  set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
	  set_gdbarch_long_double_format (gdbarch,
					  &floatformat_ieee_double_little);
	}
      else
	{
	  set_gdbarch_double_format
	    (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
	  set_gdbarch_long_double_format
	    (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
	}
      break;

    default:
      internal_error (__FILE__, __LINE__,
		      "arm_gdbarch_init: bad byte order for float format");
    }

  /* We can't use SIZEOF_FRAME_SAVED_REGS here, since that still
     references the old architecture vector, not the one we are
     building here.  */
  if (prologue_cache.saved_regs != NULL)
    xfree (prologue_cache.saved_regs);

  /* We can't use NUM_REGS nor NUM_PSEUDO_REGS here, since that still
     references the old architecture vector, not the one we are
     building here.  */
  prologue_cache.saved_regs = (CORE_ADDR *)
    xcalloc (1, (sizeof (CORE_ADDR)
		 * (gdbarch_num_regs (gdbarch)
		    + gdbarch_num_pseudo_regs (gdbarch))));

  return gdbarch;
}

static void
arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
{
  struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);

  if (tdep == NULL)
    return;

  fprintf_unfiltered (file, "arm_dump_tdep: OS ABI = %s\n",
		      gdbarch_osabi_name (tdep->osabi));

  fprintf_unfiltered (file, "arm_dump_tdep: Lowest pc = 0x%lx",
		      (unsigned long) tdep->lowest_pc);
}

static void
arm_init_abi_eabi_v1 (struct gdbarch_info info,
		      struct gdbarch *gdbarch)
{
  /* Place-holder.  */
}

static void
arm_init_abi_eabi_v2 (struct gdbarch_info info,
		      struct gdbarch *gdbarch)
{
  /* Place-holder.  */
}

static void
arm_init_abi_apcs (struct gdbarch_info info,
		   struct gdbarch *gdbarch)
{
  /* Place-holder.  */
}

void
_initialize_arm_tdep (void)
{
  struct ui_file *stb;
  long length;
  struct cmd_list_element *new_cmd;
  const char *setname;
  const char *setdesc;
  const char **regnames;
  int numregs, i, j;
  static char *helptext;

  if (GDB_MULTI_ARCH)
    gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);

  /* Register an ELF OS ABI sniffer for ARM binaries.  */
  gdbarch_register_osabi_sniffer (bfd_arch_arm,
				  bfd_target_elf_flavour,
				  arm_elf_osabi_sniffer);

  /* Register some ABI variants for embedded systems.  */
  gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V1,
                          arm_init_abi_eabi_v1);
  gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_EABI_V2,
                          arm_init_abi_eabi_v2);
  gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_ARM_APCS,
                          arm_init_abi_apcs);

  tm_print_insn = gdb_print_insn_arm;

  /* Get the number of possible sets of register names defined in opcodes.  */
  num_flavor_options = get_arm_regname_num_options ();

  /* Sync the opcode insn printer with our register viewer.  */
  parse_arm_disassembler_option ("reg-names-std");

  /* Begin creating the help text.  */
  stb = mem_fileopen ();
  fprintf_unfiltered (stb, "Set the disassembly flavor.\n\
The valid values are:\n");

  /* Initialize the array that will be passed to add_set_enum_cmd().  */
  valid_flavors = xmalloc ((num_flavor_options + 1) * sizeof (char *));
  for (i = 0; i < num_flavor_options; i++)
    {
      numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
      valid_flavors[i] = setname;
      fprintf_unfiltered (stb, "%s - %s\n", setname,
			  setdesc);
      /* Copy the default names (if found) and synchronize disassembler.  */
      if (!strcmp (setname, "std"))
	{
          disassembly_flavor = setname;
          current_option = i;
	  for (j = 0; j < numregs; j++)
            arm_register_names[j] = (char *) regnames[j];
          set_arm_regname_option (i);
	}
    }
  /* Mark the end of valid options.  */
  valid_flavors[num_flavor_options] = NULL;

  /* Finish the creation of the help text.  */
  fprintf_unfiltered (stb, "The default is \"std\".");
  helptext = ui_file_xstrdup (stb, &length);
  ui_file_delete (stb);

  /* Add the disassembly-flavor command.  */
  new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
			      valid_flavors,
			      &disassembly_flavor,
			      helptext,
			      &setlist);
  set_cmd_sfunc (new_cmd, set_disassembly_flavor_sfunc);
  add_show_from_set (new_cmd, &showlist);

  /* ??? Maybe this should be a boolean.  */
  add_show_from_set (add_set_cmd ("apcs32", no_class,
				  var_zinteger, (char *) &arm_apcs_32,
				  "Set usage of ARM 32-bit mode.\n", &setlist),
		     &showlist);

  /* Add the deprecated "othernames" command.  */

  add_com ("othernames", class_obscure, arm_othernames,
	   "Switch to the next set of register names.");

  /* Fill in the prologue_cache fields.  */
  prologue_cache.saved_regs = NULL;
  prologue_cache.extra_info = (struct frame_extra_info *)
    xcalloc (1, sizeof (struct frame_extra_info));

  /* Debugging flag.  */
  add_show_from_set (add_set_cmd ("arm", class_maintenance, var_zinteger,
				  &arm_debug, "Set arm debugging.\n\
When non-zero, arm specific debugging is enabled.", &setdebuglist),
		     &showdebuglist);
}