summaryrefslogtreecommitdiff
path: root/gdb/arch/arm-get-next-pcs.c
blob: 4b5e030d966ef48fe22ef979d1d9bc42d4de4cbe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
/* Common code for ARM software single stepping support.

   Copyright (C) 1988-2019 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "common-defs.h"
#include "gdb_vecs.h"
#include "common-regcache.h"
#include "arm.h"
#include "arm-get-next-pcs.h"

/* See arm-get-next-pcs.h.  */

void
arm_get_next_pcs_ctor (struct arm_get_next_pcs *self,
		       struct arm_get_next_pcs_ops *ops,
		       int byte_order,
		       int byte_order_for_code,
		       int has_thumb2_breakpoint,
		       struct regcache *regcache)
{
  self->ops = ops;
  self->byte_order = byte_order;
  self->byte_order_for_code = byte_order_for_code;
  self->has_thumb2_breakpoint = has_thumb2_breakpoint;
  self->regcache = regcache;
}

/* Checks for an atomic sequence of instructions beginning with a LDREX{,B,H,D}
   instruction and ending with a STREX{,B,H,D} instruction.  If such a sequence
   is found, attempt to step through it.  The end of the sequence address is
   added to the next_pcs list.  */

static std::vector<CORE_ADDR>
thumb_deal_with_atomic_sequence_raw (struct arm_get_next_pcs *self)
{
  int byte_order_for_code = self->byte_order_for_code;
  CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
  CORE_ADDR pc = regcache_read_pc (self->regcache);
  CORE_ADDR loc = pc;
  unsigned short insn1, insn2;
  int insn_count;
  int index;
  int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed).  */
  const int atomic_sequence_length = 16; /* Instruction sequence length.  */
  ULONGEST status, itstate;

  /* We currently do not support atomic sequences within an IT block.  */
  status = regcache_raw_get_unsigned (self->regcache, ARM_PS_REGNUM);
  itstate = ((status >> 8) & 0xfc) | ((status >> 25) & 0x3);
  if (itstate & 0x0f)
    return {};

  /* Assume all atomic sequences start with a ldrex{,b,h,d} instruction.  */
  insn1 = self->ops->read_mem_uint (loc, 2, byte_order_for_code);

  loc += 2;
  if (thumb_insn_size (insn1) != 4)
    return {};

  insn2 = self->ops->read_mem_uint (loc, 2, byte_order_for_code);

  loc += 2;
  if (!((insn1 & 0xfff0) == 0xe850
        || ((insn1 & 0xfff0) == 0xe8d0 && (insn2 & 0x00c0) == 0x0040)))
    return {};

  /* Assume that no atomic sequence is longer than "atomic_sequence_length"
     instructions.  */
  for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
    {
      insn1 = self->ops->read_mem_uint (loc, 2,byte_order_for_code);
      loc += 2;

      if (thumb_insn_size (insn1) != 4)
	{
	  /* Assume that there is at most one conditional branch in the
	     atomic sequence.  If a conditional branch is found, put a
	     breakpoint in its destination address.  */
	  if ((insn1 & 0xf000) == 0xd000 && bits (insn1, 8, 11) != 0x0f)
	    {
	      if (last_breakpoint > 0)
		return {}; /* More than one conditional branch found,
			      fallback to the standard code.  */

	      breaks[1] = loc + 2 + (sbits (insn1, 0, 7) << 1);
	      last_breakpoint++;
	    }

	  /* We do not support atomic sequences that use any *other*
	     instructions but conditional branches to change the PC.
	     Fall back to standard code to avoid losing control of
	     execution.  */
	  else if (thumb_instruction_changes_pc (insn1))
	    return {};
	}
      else
	{
	  insn2 = self->ops->read_mem_uint (loc, 2, byte_order_for_code);

	  loc += 2;

	  /* Assume that there is at most one conditional branch in the
	     atomic sequence.  If a conditional branch is found, put a
	     breakpoint in its destination address.  */
	  if ((insn1 & 0xf800) == 0xf000
	      && (insn2 & 0xd000) == 0x8000
	      && (insn1 & 0x0380) != 0x0380)
	    {
	      int sign, j1, j2, imm1, imm2;
	      unsigned int offset;

	      sign = sbits (insn1, 10, 10);
	      imm1 = bits (insn1, 0, 5);
	      imm2 = bits (insn2, 0, 10);
	      j1 = bit (insn2, 13);
	      j2 = bit (insn2, 11);

	      offset = (sign << 20) + (j2 << 19) + (j1 << 18);
	      offset += (imm1 << 12) + (imm2 << 1);

	      if (last_breakpoint > 0)
		return {}; /* More than one conditional branch found,
			      fallback to the standard code.  */

	      breaks[1] = loc + offset;
	      last_breakpoint++;
	    }

	  /* We do not support atomic sequences that use any *other*
	     instructions but conditional branches to change the PC.
	     Fall back to standard code to avoid losing control of
	     execution.  */
	  else if (thumb2_instruction_changes_pc (insn1, insn2))
	    return {};

	  /* If we find a strex{,b,h,d}, we're done.  */
	  if ((insn1 & 0xfff0) == 0xe840
	      || ((insn1 & 0xfff0) == 0xe8c0 && (insn2 & 0x00c0) == 0x0040))
	    break;
	}
    }

  /* If we didn't find the strex{,b,h,d}, we cannot handle the sequence.  */
  if (insn_count == atomic_sequence_length)
    return {};

  /* Insert a breakpoint right after the end of the atomic sequence.  */
  breaks[0] = loc;

  /* Check for duplicated breakpoints.  Check also for a breakpoint
     placed (branch instruction's destination) anywhere in sequence.  */
  if (last_breakpoint
      && (breaks[1] == breaks[0]
	  || (breaks[1] >= pc && breaks[1] < loc)))
    last_breakpoint = 0;

  std::vector<CORE_ADDR> next_pcs;

  /* Adds the breakpoints to the list to be inserted.  */
  for (index = 0; index <= last_breakpoint; index++)
    next_pcs.push_back (MAKE_THUMB_ADDR (breaks[index]));

  return next_pcs;
}

/* Checks for an atomic sequence of instructions beginning with a LDREX{,B,H,D}
   instruction and ending with a STREX{,B,H,D} instruction.  If such a sequence
   is found, attempt to step through it.  The end of the sequence address is
   added to the next_pcs list.  */

static std::vector<CORE_ADDR>
arm_deal_with_atomic_sequence_raw (struct arm_get_next_pcs *self)
{
  int byte_order_for_code = self->byte_order_for_code;
  CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
  CORE_ADDR pc = regcache_read_pc (self->regcache);
  CORE_ADDR loc = pc;
  unsigned int insn;
  int insn_count;
  int index;
  int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed).  */
  const int atomic_sequence_length = 16; /* Instruction sequence length.  */

  /* Assume all atomic sequences start with a ldrex{,b,h,d} instruction.
     Note that we do not currently support conditionally executed atomic
     instructions.  */
  insn = self->ops->read_mem_uint (loc, 4, byte_order_for_code);

  loc += 4;
  if ((insn & 0xff9000f0) != 0xe1900090)
    return {};

  /* Assume that no atomic sequence is longer than "atomic_sequence_length"
     instructions.  */
  for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
    {
      insn = self->ops->read_mem_uint (loc, 4, byte_order_for_code);

      loc += 4;

      /* Assume that there is at most one conditional branch in the atomic
         sequence.  If a conditional branch is found, put a breakpoint in
         its destination address.  */
      if (bits (insn, 24, 27) == 0xa)
	{
          if (last_breakpoint > 0)
            return {}; /* More than one conditional branch found, fallback
			  to the standard single-step code.  */

	  breaks[1] = BranchDest (loc - 4, insn);
	  last_breakpoint++;
        }

      /* We do not support atomic sequences that use any *other* instructions
         but conditional branches to change the PC.  Fall back to standard
	 code to avoid losing control of execution.  */
      else if (arm_instruction_changes_pc (insn))
	return {};

      /* If we find a strex{,b,h,d}, we're done.  */
      if ((insn & 0xff9000f0) == 0xe1800090)
	break;
    }

  /* If we didn't find the strex{,b,h,d}, we cannot handle the sequence.  */
  if (insn_count == atomic_sequence_length)
    return {};

  /* Insert a breakpoint right after the end of the atomic sequence.  */
  breaks[0] = loc;

  /* Check for duplicated breakpoints.  Check also for a breakpoint
     placed (branch instruction's destination) anywhere in sequence.  */
  if (last_breakpoint
      && (breaks[1] == breaks[0]
	  || (breaks[1] >= pc && breaks[1] < loc)))
    last_breakpoint = 0;

  std::vector<CORE_ADDR> next_pcs;

  /* Adds the breakpoints to the list to be inserted.  */
  for (index = 0; index <= last_breakpoint; index++)
    next_pcs.push_back (breaks[index]);

  return next_pcs;
}

/* Find the next possible PCs for thumb mode.  */

static std::vector<CORE_ADDR>
thumb_get_next_pcs_raw (struct arm_get_next_pcs *self)
{
  int byte_order = self->byte_order;
  int byte_order_for_code = self->byte_order_for_code;
  CORE_ADDR pc = regcache_read_pc (self->regcache);
  unsigned long pc_val = ((unsigned long) pc) + 4;	/* PC after prefetch */
  unsigned short inst1;
  CORE_ADDR nextpc = pc + 2;		/* Default is next instruction.  */
  ULONGEST status, itstate;
  struct regcache *regcache = self->regcache;
  std::vector<CORE_ADDR> next_pcs;

  nextpc = MAKE_THUMB_ADDR (nextpc);
  pc_val = MAKE_THUMB_ADDR (pc_val);

  inst1 = self->ops->read_mem_uint (pc, 2, byte_order_for_code);

  /* Thumb-2 conditional execution support.  There are eight bits in
     the CPSR which describe conditional execution state.  Once
     reconstructed (they're in a funny order), the low five bits
     describe the low bit of the condition for each instruction and
     how many instructions remain.  The high three bits describe the
     base condition.  One of the low four bits will be set if an IT
     block is active.  These bits read as zero on earlier
     processors.  */
  status = regcache_raw_get_unsigned (regcache, ARM_PS_REGNUM);
  itstate = ((status >> 8) & 0xfc) | ((status >> 25) & 0x3);

  /* If-Then handling.  On GNU/Linux, where this routine is used, we
     use an undefined instruction as a breakpoint.  Unlike BKPT, IT
     can disable execution of the undefined instruction.  So we might
     miss the breakpoint if we set it on a skipped conditional
     instruction.  Because conditional instructions can change the
     flags, affecting the execution of further instructions, we may
     need to set two breakpoints.  */

  if (self->has_thumb2_breakpoint)
    {
      if ((inst1 & 0xff00) == 0xbf00 && (inst1 & 0x000f) != 0)
	{
	  /* An IT instruction.  Because this instruction does not
	     modify the flags, we can accurately predict the next
	     executed instruction.  */
	  itstate = inst1 & 0x00ff;
	  pc += thumb_insn_size (inst1);

	  while (itstate != 0 && ! condition_true (itstate >> 4, status))
	    {
	      inst1 = self->ops->read_mem_uint (pc, 2,byte_order_for_code);
	      pc += thumb_insn_size (inst1);
	      itstate = thumb_advance_itstate (itstate);
	    }

	  next_pcs.push_back (MAKE_THUMB_ADDR (pc));
	  return next_pcs;
	}
      else if (itstate != 0)
	{
	  /* We are in a conditional block.  Check the condition.  */
	  if (! condition_true (itstate >> 4, status))
	    {
	      /* Advance to the next executed instruction.  */
	      pc += thumb_insn_size (inst1);
	      itstate = thumb_advance_itstate (itstate);

	      while (itstate != 0 && ! condition_true (itstate >> 4, status))
		{
		  inst1 = self->ops->read_mem_uint (pc, 2, byte_order_for_code);

		  pc += thumb_insn_size (inst1);
		  itstate = thumb_advance_itstate (itstate);
		}

	      next_pcs.push_back (MAKE_THUMB_ADDR (pc));
	      return next_pcs;
	    }
	  else if ((itstate & 0x0f) == 0x08)
	    {
	      /* This is the last instruction of the conditional
		 block, and it is executed.  We can handle it normally
		 because the following instruction is not conditional,
		 and we must handle it normally because it is
		 permitted to branch.  Fall through.  */
	    }
	  else
	    {
	      int cond_negated;

	      /* There are conditional instructions after this one.
		 If this instruction modifies the flags, then we can
		 not predict what the next executed instruction will
		 be.  Fortunately, this instruction is architecturally
		 forbidden to branch; we know it will fall through.
		 Start by skipping past it.  */
	      pc += thumb_insn_size (inst1);
	      itstate = thumb_advance_itstate (itstate);

	      /* Set a breakpoint on the following instruction.  */
	      gdb_assert ((itstate & 0x0f) != 0);
	      next_pcs.push_back (MAKE_THUMB_ADDR (pc));

	      cond_negated = (itstate >> 4) & 1;

	      /* Skip all following instructions with the same
		 condition.  If there is a later instruction in the IT
		 block with the opposite condition, set the other
		 breakpoint there.  If not, then set a breakpoint on
		 the instruction after the IT block.  */
	      do
		{
		  inst1 = self->ops->read_mem_uint (pc, 2, byte_order_for_code);
		  pc += thumb_insn_size (inst1);
		  itstate = thumb_advance_itstate (itstate);
		}
	      while (itstate != 0 && ((itstate >> 4) & 1) == cond_negated);

	      next_pcs.push_back (MAKE_THUMB_ADDR (pc));

	      return next_pcs;
	    }
	}
    }
  else if (itstate & 0x0f)
    {
      /* We are in a conditional block.  Check the condition.  */
      int cond = itstate >> 4;

      if (! condition_true (cond, status))
	{
	  /* Advance to the next instruction.  All the 32-bit
	     instructions share a common prefix.  */
	  next_pcs.push_back (MAKE_THUMB_ADDR (pc + thumb_insn_size (inst1)));
	}

      return next_pcs;

      /* Otherwise, handle the instruction normally.  */
    }

  if ((inst1 & 0xff00) == 0xbd00)	/* pop {rlist, pc} */
    {
      CORE_ADDR sp;

      /* Fetch the saved PC from the stack.  It's stored above
         all of the other registers.  */
      unsigned long offset = bitcount (bits (inst1, 0, 7)) * INT_REGISTER_SIZE;
      sp = regcache_raw_get_unsigned (regcache, ARM_SP_REGNUM);
      nextpc = self->ops->read_mem_uint (sp + offset, 4, byte_order);
    }
  else if ((inst1 & 0xf000) == 0xd000)	/* conditional branch */
    {
      unsigned long cond = bits (inst1, 8, 11);
      if (cond == 0x0f)  /* 0x0f = SWI */
	{
	  nextpc = self->ops->syscall_next_pc (self);
	}
      else if (cond != 0x0f && condition_true (cond, status))
	nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
    }
  else if ((inst1 & 0xf800) == 0xe000)	/* unconditional branch */
    {
      nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
    }
  else if (thumb_insn_size (inst1) == 4) /* 32-bit instruction */
    {
      unsigned short inst2;
      inst2 = self->ops->read_mem_uint (pc + 2, 2, byte_order_for_code);

      /* Default to the next instruction.  */
      nextpc = pc + 4;
      nextpc = MAKE_THUMB_ADDR (nextpc);

      if ((inst1 & 0xf800) == 0xf000 && (inst2 & 0x8000) == 0x8000)
	{
	  /* Branches and miscellaneous control instructions.  */

	  if ((inst2 & 0x1000) != 0 || (inst2 & 0xd001) == 0xc000)
	    {
	      /* B, BL, BLX.  */
	      int j1, j2, imm1, imm2;

	      imm1 = sbits (inst1, 0, 10);
	      imm2 = bits (inst2, 0, 10);
	      j1 = bit (inst2, 13);
	      j2 = bit (inst2, 11);

	      unsigned long offset = ((imm1 << 12) + (imm2 << 1));
	      offset ^= ((!j2) << 22) | ((!j1) << 23);

	      nextpc = pc_val + offset;
	      /* For BLX make sure to clear the low bits.  */
	      if (bit (inst2, 12) == 0)
		nextpc = nextpc & 0xfffffffc;
	    }
	  else if (inst1 == 0xf3de && (inst2 & 0xff00) == 0x3f00)
	    {
	      /* SUBS PC, LR, #imm8.  */
	      nextpc = regcache_raw_get_unsigned (regcache, ARM_LR_REGNUM);
	      nextpc -= inst2 & 0x00ff;
	    }
	  else if ((inst2 & 0xd000) == 0x8000 && (inst1 & 0x0380) != 0x0380)
	    {
	      /* Conditional branch.  */
	      if (condition_true (bits (inst1, 6, 9), status))
		{
		  int sign, j1, j2, imm1, imm2;

		  sign = sbits (inst1, 10, 10);
		  imm1 = bits (inst1, 0, 5);
		  imm2 = bits (inst2, 0, 10);
		  j1 = bit (inst2, 13);
		  j2 = bit (inst2, 11);

		  unsigned long offset
		    = (sign << 20) + (j2 << 19) + (j1 << 18);
		  offset += (imm1 << 12) + (imm2 << 1);

		  nextpc = pc_val + offset;
		}
	    }
	}
      else if ((inst1 & 0xfe50) == 0xe810)
	{
	  /* Load multiple or RFE.  */
	  int rn, offset, load_pc = 1;

	  rn = bits (inst1, 0, 3);
	  if (bit (inst1, 7) && !bit (inst1, 8))
	    {
	      /* LDMIA or POP */
	      if (!bit (inst2, 15))
		load_pc = 0;
	      offset = bitcount (inst2) * 4 - 4;
	    }
	  else if (!bit (inst1, 7) && bit (inst1, 8))
	    {
	      /* LDMDB */
	      if (!bit (inst2, 15))
		load_pc = 0;
	      offset = -4;
	    }
	  else if (bit (inst1, 7) && bit (inst1, 8))
	    {
	      /* RFEIA */
	      offset = 0;
	    }
	  else if (!bit (inst1, 7) && !bit (inst1, 8))
	    {
	      /* RFEDB */
	      offset = -8;
	    }
	  else
	    load_pc = 0;

	  if (load_pc)
	    {
	      CORE_ADDR addr = regcache_raw_get_unsigned (regcache, rn);
	      nextpc = self->ops->read_mem_uint	(addr + offset, 4, byte_order);
	    }
	}
      else if ((inst1 & 0xffef) == 0xea4f && (inst2 & 0xfff0) == 0x0f00)
	{
	  /* MOV PC or MOVS PC.  */
	  nextpc = regcache_raw_get_unsigned (regcache, bits (inst2, 0, 3));
	  nextpc = MAKE_THUMB_ADDR (nextpc);
	}
      else if ((inst1 & 0xff70) == 0xf850 && (inst2 & 0xf000) == 0xf000)
	{
	  /* LDR PC.  */
	  CORE_ADDR base;
	  int rn, load_pc = 1;

	  rn = bits (inst1, 0, 3);
	  base = regcache_raw_get_unsigned (regcache, rn);
	  if (rn == ARM_PC_REGNUM)
	    {
	      base = (base + 4) & ~(CORE_ADDR) 0x3;
	      if (bit (inst1, 7))
		base += bits (inst2, 0, 11);
	      else
		base -= bits (inst2, 0, 11);
	    }
	  else if (bit (inst1, 7))
	    base += bits (inst2, 0, 11);
	  else if (bit (inst2, 11))
	    {
	      if (bit (inst2, 10))
		{
		  if (bit (inst2, 9))
		    base += bits (inst2, 0, 7);
		  else
		    base -= bits (inst2, 0, 7);
		}
	    }
	  else if ((inst2 & 0x0fc0) == 0x0000)
	    {
	      int shift = bits (inst2, 4, 5), rm = bits (inst2, 0, 3);
	      base += regcache_raw_get_unsigned (regcache, rm) << shift;
	    }
	  else
	    /* Reserved.  */
	    load_pc = 0;

	  if (load_pc)
	    nextpc
	      = self->ops->read_mem_uint (base, 4, byte_order);
	}
      else if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf000)
	{
	  /* TBB.  */
	  CORE_ADDR tbl_reg, table, offset, length;

	  tbl_reg = bits (inst1, 0, 3);
	  if (tbl_reg == 0x0f)
	    table = pc + 4;  /* Regcache copy of PC isn't right yet.  */
	  else
	    table = regcache_raw_get_unsigned (regcache, tbl_reg);

	  offset = regcache_raw_get_unsigned (regcache, bits (inst2, 0, 3));
	  length = 2 * self->ops->read_mem_uint (table + offset, 1, byte_order);
	  nextpc = pc_val + length;
	}
      else if ((inst1 & 0xfff0) == 0xe8d0 && (inst2 & 0xfff0) == 0xf010)
	{
	  /* TBH.  */
	  CORE_ADDR tbl_reg, table, offset, length;

	  tbl_reg = bits (inst1, 0, 3);
	  if (tbl_reg == 0x0f)
	    table = pc + 4;  /* Regcache copy of PC isn't right yet.  */
	  else
	    table = regcache_raw_get_unsigned (regcache, tbl_reg);

	  offset = 2 * regcache_raw_get_unsigned (regcache, bits (inst2, 0, 3));
	  length = 2 * self->ops->read_mem_uint (table + offset, 2, byte_order);
	  nextpc = pc_val + length;
	}
    }
  else if ((inst1 & 0xff00) == 0x4700)	/* bx REG, blx REG */
    {
      if (bits (inst1, 3, 6) == 0x0f)
	nextpc = UNMAKE_THUMB_ADDR (pc_val);
      else
	nextpc = regcache_raw_get_unsigned (regcache, bits (inst1, 3, 6));
    }
  else if ((inst1 & 0xff87) == 0x4687)	/* mov pc, REG */
    {
      if (bits (inst1, 3, 6) == 0x0f)
	nextpc = pc_val;
      else
	nextpc = regcache_raw_get_unsigned (regcache, bits (inst1, 3, 6));

      nextpc = MAKE_THUMB_ADDR (nextpc);
    }
  else if ((inst1 & 0xf500) == 0xb100)
    {
      /* CBNZ or CBZ.  */
      int imm = (bit (inst1, 9) << 6) + (bits (inst1, 3, 7) << 1);
      ULONGEST reg = regcache_raw_get_unsigned (regcache, bits (inst1, 0, 2));

      if (bit (inst1, 11) && reg != 0)
	nextpc = pc_val + imm;
      else if (!bit (inst1, 11) && reg == 0)
	nextpc = pc_val + imm;
    }

  next_pcs.push_back (nextpc);

  return next_pcs;
}

/* Get the raw next possible addresses.  PC in next_pcs is the current program
   counter, which is assumed to be executing in ARM mode.

   The values returned have the execution state of the next instruction
   encoded in it.  Use IS_THUMB_ADDR () to see whether the instruction is
   in Thumb-State, and gdbarch_addr_bits_remove () to get the plain memory
   address in GDB and arm_addr_bits_remove in GDBServer.  */

static std::vector<CORE_ADDR>
arm_get_next_pcs_raw (struct arm_get_next_pcs *self)
{
  int byte_order = self->byte_order;
  int byte_order_for_code = self->byte_order_for_code;
  unsigned long pc_val;
  unsigned long this_instr = 0;
  unsigned long status;
  CORE_ADDR nextpc;
  struct regcache *regcache = self->regcache;
  CORE_ADDR pc = regcache_read_pc (self->regcache);
  std::vector<CORE_ADDR> next_pcs;

  pc_val = (unsigned long) pc;
  this_instr = self->ops->read_mem_uint (pc, 4, byte_order_for_code);

  status = regcache_raw_get_unsigned (regcache, ARM_PS_REGNUM);
  nextpc = (CORE_ADDR) (pc_val + 4);	/* Default case */

  if (bits (this_instr, 28, 31) == INST_NV)
    switch (bits (this_instr, 24, 27))
      {
      case 0xa:
      case 0xb:
	{
	  /* Branch with Link and change to Thumb.  */
	  nextpc = BranchDest (pc, this_instr);
	  nextpc |= bit (this_instr, 24) << 1;
	  nextpc = MAKE_THUMB_ADDR (nextpc);
	  break;
	}
      case 0xc:
      case 0xd:
      case 0xe:
	/* Coprocessor register transfer.  */
        if (bits (this_instr, 12, 15) == 15)
	  error (_("Invalid update to pc in instruction"));
	break;
      }
  else if (condition_true (bits (this_instr, 28, 31), status))
    {
      switch (bits (this_instr, 24, 27))
	{
	case 0x0:
	case 0x1:			/* data processing */
	case 0x2:
	case 0x3:
	  {
	    unsigned long operand1, operand2, result = 0;
	    unsigned long rn;
	    int c;

	    if (bits (this_instr, 12, 15) != 15)
	      break;

	    if (bits (this_instr, 22, 25) == 0
		&& bits (this_instr, 4, 7) == 9)	/* multiply */
	      error (_("Invalid update to pc in instruction"));

	    /* BX <reg>, BLX <reg> */
	    if (bits (this_instr, 4, 27) == 0x12fff1
		|| bits (this_instr, 4, 27) == 0x12fff3)
	      {
		rn = bits (this_instr, 0, 3);
		nextpc = ((rn == ARM_PC_REGNUM)
			  ? (pc_val + 8)
			  : regcache_raw_get_unsigned (regcache, rn));

		next_pcs.push_back (nextpc);
		return next_pcs;
	      }

	    /* Multiply into PC.  */
	    c = (status & FLAG_C) ? 1 : 0;
	    rn = bits (this_instr, 16, 19);
	    operand1 = ((rn == ARM_PC_REGNUM)
			? (pc_val + 8)
			: regcache_raw_get_unsigned (regcache, rn));

	    if (bit (this_instr, 25))
	      {
		unsigned long immval = bits (this_instr, 0, 7);
		unsigned long rotate = 2 * bits (this_instr, 8, 11);
		operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
		  & 0xffffffff;
	      }
	    else		/* operand 2 is a shifted register.  */
	      operand2 = shifted_reg_val (regcache, this_instr, c,
					  pc_val, status);

	    switch (bits (this_instr, 21, 24))
	      {
	      case 0x0:	/*and */
		result = operand1 & operand2;
		break;

	      case 0x1:	/*eor */
		result = operand1 ^ operand2;
		break;

	      case 0x2:	/*sub */
		result = operand1 - operand2;
		break;

	      case 0x3:	/*rsb */
		result = operand2 - operand1;
		break;

	      case 0x4:	/*add */
		result = operand1 + operand2;
		break;

	      case 0x5:	/*adc */
		result = operand1 + operand2 + c;
		break;

	      case 0x6:	/*sbc */
		result = operand1 - operand2 + c;
		break;

	      case 0x7:	/*rsc */
		result = operand2 - operand1 + c;
		break;

	      case 0x8:
	      case 0x9:
	      case 0xa:
	      case 0xb:	/* tst, teq, cmp, cmn */
		result = (unsigned long) nextpc;
		break;

	      case 0xc:	/*orr */
		result = operand1 | operand2;
		break;

	      case 0xd:	/*mov */
		/* Always step into a function.  */
		result = operand2;
		break;

	      case 0xe:	/*bic */
		result = operand1 & ~operand2;
		break;

	      case 0xf:	/*mvn */
		result = ~operand2;
		break;
	      }
	      nextpc = self->ops->addr_bits_remove (self, result);
	    break;
	  }

	case 0x4:
	case 0x5:		/* data transfer */
	case 0x6:
	case 0x7:
	  if (bits (this_instr, 25, 27) == 0x3 && bit (this_instr, 4) == 1)
	    {
	      /* Media instructions and architecturally undefined
		 instructions.  */
	      break;
	    }

	  if (bit (this_instr, 20))
	    {
	      /* load */
	      if (bits (this_instr, 12, 15) == 15)
		{
		  /* rd == pc */
		  unsigned long rn;
		  unsigned long base;

		  if (bit (this_instr, 22))
		    error (_("Invalid update to pc in instruction"));

		  /* byte write to PC */
		  rn = bits (this_instr, 16, 19);
		  base = ((rn == ARM_PC_REGNUM)
			  ? (pc_val + 8)
			  : regcache_raw_get_unsigned (regcache, rn));

		  if (bit (this_instr, 24))
		    {
		      /* pre-indexed */
		      int c = (status & FLAG_C) ? 1 : 0;
		      unsigned long offset =
		      (bit (this_instr, 25)
		       ? shifted_reg_val (regcache, this_instr, c,
					  pc_val, status)
		       : bits (this_instr, 0, 11));

		      if (bit (this_instr, 23))
			base += offset;
		      else
			base -= offset;
		    }
		  nextpc
		    = (CORE_ADDR) self->ops->read_mem_uint ((CORE_ADDR) base,
							    4, byte_order);
		}
	    }
	  break;

	case 0x8:
	case 0x9:		/* block transfer */
	  if (bit (this_instr, 20))
	    {
	      /* LDM */
	      if (bit (this_instr, 15))
		{
		  /* loading pc */
		  int offset = 0;
		  CORE_ADDR rn_val_offset = 0;
		  unsigned long rn_val
		    = regcache_raw_get_unsigned (regcache,
						 bits (this_instr, 16, 19));

		  if (bit (this_instr, 23))
		    {
		      /* up */
		      unsigned long reglist = bits (this_instr, 0, 14);
		      offset = bitcount (reglist) * 4;
		      if (bit (this_instr, 24))		/* pre */
			offset += 4;
		    }
		  else if (bit (this_instr, 24))
		    offset = -4;

		  rn_val_offset = rn_val + offset;
		  nextpc = (CORE_ADDR) self->ops->read_mem_uint (rn_val_offset,
								 4, byte_order);
		}
	    }
	  break;

	case 0xb:		/* branch & link */
	case 0xa:		/* branch */
	  {
	    nextpc = BranchDest (pc, this_instr);
	    break;
	  }

	case 0xc:
	case 0xd:
	case 0xe:		/* coproc ops */
	  break;
	case 0xf:		/* SWI */
	  {
	    nextpc = self->ops->syscall_next_pc (self);
	  }
	  break;

	default:
	  error (_("Bad bit-field extraction"));
	  return next_pcs;
	}
    }

  next_pcs.push_back (nextpc);

  return next_pcs;
}

/* See arm-get-next-pcs.h.  */

std::vector<CORE_ADDR>
arm_get_next_pcs (struct arm_get_next_pcs *self)
{
  std::vector<CORE_ADDR> next_pcs;

  if (self->ops->is_thumb (self))
    {
      next_pcs = thumb_deal_with_atomic_sequence_raw (self);
      if (next_pcs.empty ())
	next_pcs = thumb_get_next_pcs_raw (self);
    }
  else
    {
      next_pcs = arm_deal_with_atomic_sequence_raw (self);
      if (next_pcs.empty ())
	next_pcs = arm_get_next_pcs_raw (self);
    }

  if (self->ops->fixup != NULL)
    {
      for (CORE_ADDR &pc_ref : next_pcs)
	pc_ref = self->ops->fixup (self, pc_ref);
    }

  return next_pcs;
}