1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
|
/* varobj support for Ada.
Copyright (C) 2012-2017 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "ada-lang.h"
#include "varobj.h"
#include "language.h"
#include "valprint.h"
/* Implementation principle used in this unit:
For our purposes, the meat of the varobj object is made of two
elements: The varobj's (struct) value, and the varobj's (struct)
type. In most situations, the varobj has a non-NULL value, and
the type becomes redundant, as it can be directly derived from
the value. In the initial implementation of this unit, most
routines would only take a value, and return a value.
But there are many situations where it is possible for a varobj
to have a NULL value. For instance, if the varobj becomes out of
scope. Or better yet, when the varobj is the child of another
NULL pointer varobj. In that situation, we must rely on the type
instead of the value to create the child varobj.
That's why most functions below work with a (value, type) pair.
The value may or may not be NULL. But the type is always expected
to be set. When the value is NULL, then we work with the type
alone, and keep the value NULL. But when the value is not NULL,
then we work using the value, because it provides more information.
But we still always set the type as well, even if that type could
easily be derived from the value. The reason behind this is that
it allows the code to use the type without having to worry about
it being set or not. It makes the code clearer. */
static int ada_varobj_get_number_of_children (struct value *parent_value,
struct type *parent_type);
/* A convenience function that decodes the VALUE_PTR/TYPE_PTR couple:
If there is a value (*VALUE_PTR not NULL), then perform the decoding
using it, and compute the associated type from the resulting value.
Otherwise, compute a static approximation of *TYPE_PTR, leaving
*VALUE_PTR unchanged.
The results are written in place. */
static void
ada_varobj_decode_var (struct value **value_ptr, struct type **type_ptr)
{
if (*value_ptr)
{
*value_ptr = ada_get_decoded_value (*value_ptr);
*type_ptr = ada_check_typedef (value_type (*value_ptr));
}
else
*type_ptr = ada_get_decoded_type (*type_ptr);
}
/* Return a string containing an image of the given scalar value.
VAL is the numeric value, while TYPE is the value's type.
This is useful for plain integers, of course, but even more
so for enumerated types. */
static std::string
ada_varobj_scalar_image (struct type *type, LONGEST val)
{
string_file buf;
ada_print_scalar (type, val, &buf);
return std::move (buf.string ());
}
/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair designates
a struct or union, compute the (CHILD_VALUE, CHILD_TYPE) couple
corresponding to the field number FIELDNO. */
static void
ada_varobj_struct_elt (struct value *parent_value,
struct type *parent_type,
int fieldno,
struct value **child_value,
struct type **child_type)
{
struct value *value = NULL;
struct type *type = NULL;
if (parent_value)
{
value = value_field (parent_value, fieldno);
type = value_type (value);
}
else
type = TYPE_FIELD_TYPE (parent_type, fieldno);
if (child_value)
*child_value = value;
if (child_type)
*child_type = type;
}
/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a pointer or
reference, return a (CHILD_VALUE, CHILD_TYPE) couple corresponding
to the dereferenced value. */
static void
ada_varobj_ind (struct value *parent_value,
struct type *parent_type,
struct value **child_value,
struct type **child_type)
{
struct value *value = NULL;
struct type *type = NULL;
if (ada_is_array_descriptor_type (parent_type))
{
/* This can only happen when PARENT_VALUE is NULL. Otherwise,
ada_get_decoded_value would have transformed our parent_type
into a simple array pointer type. */
gdb_assert (parent_value == NULL);
gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_TYPEDEF);
/* Decode parent_type by the equivalent pointer to (decoded)
array. */
while (TYPE_CODE (parent_type) == TYPE_CODE_TYPEDEF)
parent_type = TYPE_TARGET_TYPE (parent_type);
parent_type = ada_coerce_to_simple_array_type (parent_type);
parent_type = lookup_pointer_type (parent_type);
}
/* If parent_value is a null pointer, then only perform static
dereferencing. We cannot dereference null pointers. */
if (parent_value && value_as_address (parent_value) == 0)
parent_value = NULL;
if (parent_value)
{
value = ada_value_ind (parent_value);
type = value_type (value);
}
else
type = TYPE_TARGET_TYPE (parent_type);
if (child_value)
*child_value = value;
if (child_type)
*child_type = type;
}
/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a simple
array (TYPE_CODE_ARRAY), return the (CHILD_VALUE, CHILD_TYPE)
pair corresponding to the element at ELT_INDEX. */
static void
ada_varobj_simple_array_elt (struct value *parent_value,
struct type *parent_type,
int elt_index,
struct value **child_value,
struct type **child_type)
{
struct value *value = NULL;
struct type *type = NULL;
if (parent_value)
{
struct value *index_value =
value_from_longest (TYPE_INDEX_TYPE (parent_type), elt_index);
value = ada_value_subscript (parent_value, 1, &index_value);
type = value_type (value);
}
else
type = TYPE_TARGET_TYPE (parent_type);
if (child_value)
*child_value = value;
if (child_type)
*child_type = type;
}
/* Given the decoded value and decoded type of a variable object,
adjust the value and type to those necessary for getting children
of the variable object.
The replacement is performed in place. */
static void
ada_varobj_adjust_for_child_access (struct value **value,
struct type **type)
{
/* Pointers to struct/union types are special: Instead of having
one child (the struct), their children are the components of
the struct/union type. We handle this situation by dereferencing
the (value, type) couple. */
if (TYPE_CODE (*type) == TYPE_CODE_PTR
&& (TYPE_CODE (TYPE_TARGET_TYPE (*type)) == TYPE_CODE_STRUCT
|| TYPE_CODE (TYPE_TARGET_TYPE (*type)) == TYPE_CODE_UNION)
&& !ada_is_array_descriptor_type (TYPE_TARGET_TYPE (*type))
&& !ada_is_constrained_packed_array_type (TYPE_TARGET_TYPE (*type)))
ada_varobj_ind (*value, *type, value, type);
/* If this is a tagged type, we need to transform it a bit in order
to be able to fetch its full view. As always with tagged types,
we can only do that if we have a value. */
if (*value != NULL && ada_is_tagged_type (*type, 1))
{
*value = ada_tag_value_at_base_address (*value);
*type = value_type (*value);
}
}
/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is an array
(any type of array, "simple" or not), return the number of children
that this array contains. */
static int
ada_varobj_get_array_number_of_children (struct value *parent_value,
struct type *parent_type)
{
LONGEST lo, hi;
if (parent_value == NULL
&& is_dynamic_type (TYPE_INDEX_TYPE (parent_type)))
{
/* This happens when listing the children of an object
which does not exist in memory (Eg: when requesting
the children of a null pointer, which is allowed by
varobj). The array index type being dynamic, we cannot
determine how many elements this array has. Just assume
it has none. */
return 0;
}
if (!get_array_bounds (parent_type, &lo, &hi))
{
/* Could not get the array bounds. Pretend this is an empty array. */
warning (_("unable to get bounds of array, assuming null array"));
return 0;
}
/* Ada allows the upper bound to be less than the lower bound,
in order to specify empty arrays... */
if (hi < lo)
return 0;
return hi - lo + 1;
}
/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair is a struct or
union, return the number of children this struct contains. */
static int
ada_varobj_get_struct_number_of_children (struct value *parent_value,
struct type *parent_type)
{
int n_children = 0;
int i;
gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT
|| TYPE_CODE (parent_type) == TYPE_CODE_UNION);
for (i = 0; i < TYPE_NFIELDS (parent_type); i++)
{
if (ada_is_ignored_field (parent_type, i))
continue;
if (ada_is_wrapper_field (parent_type, i))
{
struct value *elt_value;
struct type *elt_type;
ada_varobj_struct_elt (parent_value, parent_type, i,
&elt_value, &elt_type);
if (ada_is_tagged_type (elt_type, 0))
{
/* We must not use ada_varobj_get_number_of_children
to determine is element's number of children, because
this function first calls ada_varobj_decode_var,
which "fixes" the element. For tagged types, this
includes reading the object's tag to determine its
real type, which happens to be the parent_type, and
leads to an infinite loop (because the element gets
fixed back into the parent). */
n_children += ada_varobj_get_struct_number_of_children
(elt_value, elt_type);
}
else
n_children += ada_varobj_get_number_of_children (elt_value, elt_type);
}
else if (ada_is_variant_part (parent_type, i))
{
/* In normal situations, the variant part of the record should
have been "fixed". Or, in other words, it should have been
replaced by the branch of the variant part that is relevant
for our value. But there are still situations where this
can happen, however (Eg. when our parent is a NULL pointer).
We do not support showing this part of the record for now,
so just pretend this field does not exist. */
}
else
n_children++;
}
return n_children;
}
/* Assuming that the (PARENT_VALUE, PARENT_TYPE) pair designates
a pointer, return the number of children this pointer has. */
static int
ada_varobj_get_ptr_number_of_children (struct value *parent_value,
struct type *parent_type)
{
struct type *child_type = TYPE_TARGET_TYPE (parent_type);
/* Pointer to functions and to void do not have a child, since
you cannot print what they point to. */
if (TYPE_CODE (child_type) == TYPE_CODE_FUNC
|| TYPE_CODE (child_type) == TYPE_CODE_VOID)
return 0;
/* All other types have 1 child. */
return 1;
}
/* Return the number of children for the (PARENT_VALUE, PARENT_TYPE)
pair. */
static int
ada_varobj_get_number_of_children (struct value *parent_value,
struct type *parent_type)
{
ada_varobj_decode_var (&parent_value, &parent_type);
ada_varobj_adjust_for_child_access (&parent_value, &parent_type);
/* A typedef to an array descriptor in fact represents a pointer
to an unconstrained array. These types always have one child
(the unconstrained array). */
if (ada_is_array_descriptor_type (parent_type)
&& TYPE_CODE (parent_type) == TYPE_CODE_TYPEDEF)
return 1;
if (TYPE_CODE (parent_type) == TYPE_CODE_ARRAY)
return ada_varobj_get_array_number_of_children (parent_value,
parent_type);
if (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT
|| TYPE_CODE (parent_type) == TYPE_CODE_UNION)
return ada_varobj_get_struct_number_of_children (parent_value,
parent_type);
if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
return ada_varobj_get_ptr_number_of_children (parent_value,
parent_type);
/* All other types have no child. */
return 0;
}
/* Describe the child of the (PARENT_VALUE, PARENT_TYPE) pair
whose index is CHILD_INDEX:
- If CHILD_NAME is not NULL, then a copy of the child's name
is saved in *CHILD_NAME. This copy must be deallocated
with xfree after use.
- If CHILD_VALUE is not NULL, then save the child's value
in *CHILD_VALUE. Same thing for the child's type with
CHILD_TYPE if not NULL.
- If CHILD_PATH_EXPR is not NULL, then compute the child's
path expression. The resulting string must be deallocated
after use with xfree.
Computing the child's path expression requires the PARENT_PATH_EXPR
to be non-NULL. Otherwise, PARENT_PATH_EXPR may be null if
CHILD_PATH_EXPR is NULL.
PARENT_NAME is the name of the parent, and should never be NULL. */
static void ada_varobj_describe_child (struct value *parent_value,
struct type *parent_type,
const char *parent_name,
const char *parent_path_expr,
int child_index,
std::string *child_name,
struct value **child_value,
struct type **child_type,
std::string *child_path_expr);
/* Same as ada_varobj_describe_child, but limited to struct/union
objects. */
static void
ada_varobj_describe_struct_child (struct value *parent_value,
struct type *parent_type,
const char *parent_name,
const char *parent_path_expr,
int child_index,
std::string *child_name,
struct value **child_value,
struct type **child_type,
std::string *child_path_expr)
{
int fieldno;
int childno = 0;
gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT);
for (fieldno = 0; fieldno < TYPE_NFIELDS (parent_type); fieldno++)
{
if (ada_is_ignored_field (parent_type, fieldno))
continue;
if (ada_is_wrapper_field (parent_type, fieldno))
{
struct value *elt_value;
struct type *elt_type;
int elt_n_children;
ada_varobj_struct_elt (parent_value, parent_type, fieldno,
&elt_value, &elt_type);
if (ada_is_tagged_type (elt_type, 0))
{
/* Same as in ada_varobj_get_struct_number_of_children:
For tagged types, we must be careful to not call
ada_varobj_get_number_of_children, to prevent our
element from being fixed back into the parent. */
elt_n_children = ada_varobj_get_struct_number_of_children
(elt_value, elt_type);
}
else
elt_n_children =
ada_varobj_get_number_of_children (elt_value, elt_type);
/* Is the child we're looking for one of the children
of this wrapper field? */
if (child_index - childno < elt_n_children)
{
if (ada_is_tagged_type (elt_type, 0))
{
/* Same as in ada_varobj_get_struct_number_of_children:
For tagged types, we must be careful to not call
ada_varobj_describe_child, to prevent our element
from being fixed back into the parent. */
ada_varobj_describe_struct_child
(elt_value, elt_type, parent_name, parent_path_expr,
child_index - childno, child_name, child_value,
child_type, child_path_expr);
}
else
ada_varobj_describe_child (elt_value, elt_type,
parent_name, parent_path_expr,
child_index - childno,
child_name, child_value,
child_type, child_path_expr);
return;
}
/* The child we're looking for is beyond this wrapper
field, so skip all its children. */
childno += elt_n_children;
continue;
}
else if (ada_is_variant_part (parent_type, fieldno))
{
/* In normal situations, the variant part of the record should
have been "fixed". Or, in other words, it should have been
replaced by the branch of the variant part that is relevant
for our value. But there are still situations where this
can happen, however (Eg. when our parent is a NULL pointer).
We do not support showing this part of the record for now,
so just pretend this field does not exist. */
continue;
}
if (childno == child_index)
{
if (child_name)
{
/* The name of the child is none other than the field's
name, except that we need to strip suffixes from it.
For instance, fields with alignment constraints will
have an __XVA suffix added to them. */
const char *field_name = TYPE_FIELD_NAME (parent_type, fieldno);
int child_name_len = ada_name_prefix_len (field_name);
*child_name = string_printf ("%.*s", child_name_len, field_name);
}
if (child_value && parent_value)
ada_varobj_struct_elt (parent_value, parent_type, fieldno,
child_value, NULL);
if (child_type)
ada_varobj_struct_elt (parent_value, parent_type, fieldno,
NULL, child_type);
if (child_path_expr)
{
/* The name of the child is none other than the field's
name, except that we need to strip suffixes from it.
For instance, fields with alignment constraints will
have an __XVA suffix added to them. */
const char *field_name = TYPE_FIELD_NAME (parent_type, fieldno);
int child_name_len = ada_name_prefix_len (field_name);
*child_path_expr =
string_printf ("(%s).%.*s", parent_path_expr,
child_name_len, field_name);
}
return;
}
childno++;
}
/* Something went wrong. Either we miscounted the number of
children, or CHILD_INDEX was too high. But we should never
reach here. We don't have enough information to recover
nicely, so just raise an assertion failure. */
gdb_assert_not_reached ("unexpected code path");
}
/* Same as ada_varobj_describe_child, but limited to pointer objects.
Note that CHILD_INDEX is unused in this situation, but still provided
for consistency of interface with other routines describing an object's
child. */
static void
ada_varobj_describe_ptr_child (struct value *parent_value,
struct type *parent_type,
const char *parent_name,
const char *parent_path_expr,
int child_index,
std::string *child_name,
struct value **child_value,
struct type **child_type,
std::string *child_path_expr)
{
if (child_name)
*child_name = string_printf ("%s.all", parent_name);
if (child_value && parent_value)
ada_varobj_ind (parent_value, parent_type, child_value, NULL);
if (child_type)
ada_varobj_ind (parent_value, parent_type, NULL, child_type);
if (child_path_expr)
*child_path_expr = string_printf ("(%s).all", parent_path_expr);
}
/* Same as ada_varobj_describe_child, limited to simple array objects
(TYPE_CODE_ARRAY only).
Assumes that the (PARENT_VALUE, PARENT_TYPE) pair is properly decoded.
This is done by ada_varobj_describe_child before calling us. */
static void
ada_varobj_describe_simple_array_child (struct value *parent_value,
struct type *parent_type,
const char *parent_name,
const char *parent_path_expr,
int child_index,
std::string *child_name,
struct value **child_value,
struct type **child_type,
std::string *child_path_expr)
{
struct type *index_type;
int real_index;
gdb_assert (TYPE_CODE (parent_type) == TYPE_CODE_ARRAY);
index_type = TYPE_INDEX_TYPE (parent_type);
real_index = child_index + ada_discrete_type_low_bound (index_type);
if (child_name)
*child_name = ada_varobj_scalar_image (index_type, real_index);
if (child_value && parent_value)
ada_varobj_simple_array_elt (parent_value, parent_type, real_index,
child_value, NULL);
if (child_type)
ada_varobj_simple_array_elt (parent_value, parent_type, real_index,
NULL, child_type);
if (child_path_expr)
{
std::string index_img = ada_varobj_scalar_image (index_type, real_index);
/* Enumeration litterals by themselves are potentially ambiguous.
For instance, consider the following package spec:
package Pck is
type Color is (Red, Green, Blue, White);
type Blood_Cells is (White, Red);
end Pck;
In this case, the litteral "red" for instance, or even
the fully-qualified litteral "pck.red" cannot be resolved
by itself. Type qualification is needed to determine which
enumeration litterals should be used.
The following variable will be used to contain the name
of the array index type when such type qualification is
needed. */
const char *index_type_name = NULL;
/* If the index type is a range type, find the base type. */
while (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
index_type = TYPE_TARGET_TYPE (index_type);
if (TYPE_CODE (index_type) == TYPE_CODE_ENUM
|| TYPE_CODE (index_type) == TYPE_CODE_BOOL)
{
index_type_name = ada_type_name (index_type);
if (index_type_name)
index_type_name = ada_decode (index_type_name);
}
if (index_type_name != NULL)
*child_path_expr =
string_printf ("(%s)(%.*s'(%s))", parent_path_expr,
ada_name_prefix_len (index_type_name),
index_type_name, index_img.c_str ());
else
*child_path_expr =
string_printf ("(%s)(%s)", parent_path_expr, index_img.c_str ());
}
}
/* See description at declaration above. */
static void
ada_varobj_describe_child (struct value *parent_value,
struct type *parent_type,
const char *parent_name,
const char *parent_path_expr,
int child_index,
std::string *child_name,
struct value **child_value,
struct type **child_type,
std::string *child_path_expr)
{
/* We cannot compute the child's path expression without
the parent's path expression. This is a pre-condition
for calling this function. */
if (child_path_expr)
gdb_assert (parent_path_expr != NULL);
ada_varobj_decode_var (&parent_value, &parent_type);
ada_varobj_adjust_for_child_access (&parent_value, &parent_type);
if (child_name)
*child_name = std::string ();
if (child_value)
*child_value = NULL;
if (child_type)
*child_type = NULL;
if (child_path_expr)
*child_path_expr = std::string ();
if (ada_is_array_descriptor_type (parent_type)
&& TYPE_CODE (parent_type) == TYPE_CODE_TYPEDEF)
{
ada_varobj_describe_ptr_child (parent_value, parent_type,
parent_name, parent_path_expr,
child_index, child_name,
child_value, child_type,
child_path_expr);
return;
}
if (TYPE_CODE (parent_type) == TYPE_CODE_ARRAY)
{
ada_varobj_describe_simple_array_child
(parent_value, parent_type, parent_name, parent_path_expr,
child_index, child_name, child_value, child_type,
child_path_expr);
return;
}
if (TYPE_CODE (parent_type) == TYPE_CODE_STRUCT)
{
ada_varobj_describe_struct_child (parent_value, parent_type,
parent_name, parent_path_expr,
child_index, child_name,
child_value, child_type,
child_path_expr);
return;
}
if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
{
ada_varobj_describe_ptr_child (parent_value, parent_type,
parent_name, parent_path_expr,
child_index, child_name,
child_value, child_type,
child_path_expr);
return;
}
/* It should never happen. But rather than crash, report dummy names
and return a NULL child_value. */
if (child_name)
*child_name = "???";
}
/* Return the name of the child number CHILD_INDEX of the (PARENT_VALUE,
PARENT_TYPE) pair. PARENT_NAME is the name of the PARENT. */
static std::string
ada_varobj_get_name_of_child (struct value *parent_value,
struct type *parent_type,
const char *parent_name, int child_index)
{
std::string child_name;
ada_varobj_describe_child (parent_value, parent_type, parent_name,
NULL, child_index, &child_name, NULL,
NULL, NULL);
return child_name;
}
/* Return the path expression of the child number CHILD_INDEX of
the (PARENT_VALUE, PARENT_TYPE) pair. PARENT_NAME is the name
of the parent, and PARENT_PATH_EXPR is the parent's path expression.
Both must be non-NULL. */
static std::string
ada_varobj_get_path_expr_of_child (struct value *parent_value,
struct type *parent_type,
const char *parent_name,
const char *parent_path_expr,
int child_index)
{
std::string child_path_expr;
ada_varobj_describe_child (parent_value, parent_type, parent_name,
parent_path_expr, child_index, NULL,
NULL, NULL, &child_path_expr);
return child_path_expr;
}
/* Return the value of child number CHILD_INDEX of the (PARENT_VALUE,
PARENT_TYPE) pair. PARENT_NAME is the name of the parent. */
static struct value *
ada_varobj_get_value_of_child (struct value *parent_value,
struct type *parent_type,
const char *parent_name, int child_index)
{
struct value *child_value;
ada_varobj_describe_child (parent_value, parent_type, parent_name,
NULL, child_index, NULL, &child_value,
NULL, NULL);
return child_value;
}
/* Return the type of child number CHILD_INDEX of the (PARENT_VALUE,
PARENT_TYPE) pair. */
static struct type *
ada_varobj_get_type_of_child (struct value *parent_value,
struct type *parent_type,
int child_index)
{
struct type *child_type;
ada_varobj_describe_child (parent_value, parent_type, NULL, NULL,
child_index, NULL, NULL, &child_type, NULL);
return child_type;
}
/* Return a string that contains the image of the given VALUE, using
the print options OPTS as the options for formatting the result.
The resulting string must be deallocated after use with xfree. */
static std::string
ada_varobj_get_value_image (struct value *value,
struct value_print_options *opts)
{
string_file buffer;
common_val_print (value, &buffer, 0, opts, current_language);
return std::move (buffer.string ());
}
/* Assuming that the (VALUE, TYPE) pair designates an array varobj,
return a string that is suitable for use in the "value" field of
the varobj output. Most of the time, this is the number of elements
in the array inside square brackets, but there are situations where
it's useful to add more info.
OPTS are the print options used when formatting the result.
The result should be deallocated after use using xfree. */
static std::string
ada_varobj_get_value_of_array_variable (struct value *value,
struct type *type,
struct value_print_options *opts)
{
const int numchild = ada_varobj_get_array_number_of_children (value, type);
/* If we have a string, provide its contents in the "value" field.
Otherwise, the only other way to inspect the contents of the string
is by looking at the value of each element, as in any other array,
which is not very convenient... */
if (value
&& ada_is_string_type (type)
&& (opts->format == 0 || opts->format == 's'))
{
std::string str = ada_varobj_get_value_image (value, opts);
return string_printf ("[%d] %s", numchild, str.c_str ());
}
else
return string_printf ("[%d]", numchild);
}
/* Return a string representation of the (VALUE, TYPE) pair, using
the given print options OPTS as our formatting options. */
static std::string
ada_varobj_get_value_of_variable (struct value *value,
struct type *type,
struct value_print_options *opts)
{
ada_varobj_decode_var (&value, &type);
switch (TYPE_CODE (type))
{
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
return "{...}";
case TYPE_CODE_ARRAY:
return ada_varobj_get_value_of_array_variable (value, type, opts);
default:
if (!value)
return "";
else
return ada_varobj_get_value_image (value, opts);
}
}
/* Ada specific callbacks for VAROBJs. */
static int
ada_number_of_children (const struct varobj *var)
{
return ada_varobj_get_number_of_children (var->value, var->type);
}
static std::string
ada_name_of_variable (const struct varobj *parent)
{
return c_varobj_ops.name_of_variable (parent);
}
static std::string
ada_name_of_child (const struct varobj *parent, int index)
{
return ada_varobj_get_name_of_child (parent->value, parent->type,
parent->name.c_str (), index);
}
static std::string
ada_path_expr_of_child (const struct varobj *child)
{
const struct varobj *parent = child->parent;
const char *parent_path_expr = varobj_get_path_expr (parent);
return ada_varobj_get_path_expr_of_child (parent->value,
parent->type,
parent->name.c_str (),
parent_path_expr,
child->index);
}
static struct value *
ada_value_of_child (const struct varobj *parent, int index)
{
return ada_varobj_get_value_of_child (parent->value, parent->type,
parent->name.c_str (), index);
}
static struct type *
ada_type_of_child (const struct varobj *parent, int index)
{
return ada_varobj_get_type_of_child (parent->value, parent->type,
index);
}
static std::string
ada_value_of_variable (const struct varobj *var,
enum varobj_display_formats format)
{
struct value_print_options opts;
varobj_formatted_print_options (&opts, format);
return ada_varobj_get_value_of_variable (var->value, var->type, &opts);
}
/* Implement the "value_is_changeable_p" routine for Ada. */
static bool
ada_value_is_changeable_p (const struct varobj *var)
{
struct type *type = var->value ? value_type (var->value) : var->type;
if (ada_is_array_descriptor_type (type)
&& TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
{
/* This is in reality a pointer to an unconstrained array.
its value is changeable. */
return true;
}
if (ada_is_string_type (type))
{
/* We display the contents of the string in the array's
"value" field. The contents can change, so consider
that the array is changeable. */
return true;
}
return varobj_default_value_is_changeable_p (var);
}
/* Implement the "value_has_mutated" routine for Ada. */
static bool
ada_value_has_mutated (const struct varobj *var, struct value *new_val,
struct type *new_type)
{
int from = -1;
int to = -1;
/* If the number of fields have changed, then for sure the type
has mutated. */
if (ada_varobj_get_number_of_children (new_val, new_type)
!= var->num_children)
return true;
/* If the number of fields have remained the same, then we need
to check the name of each field. If they remain the same,
then chances are the type hasn't mutated. This is technically
an incomplete test, as the child's type might have changed
despite the fact that the name remains the same. But we'll
handle this situation by saying that the child has mutated,
not this value.
If only part (or none!) of the children have been fetched,
then only check the ones we fetched. It does not matter
to the frontend whether a child that it has not fetched yet
has mutated or not. So just assume it hasn't. */
varobj_restrict_range (var->children, &from, &to);
for (int i = from; i < to; i++)
if (ada_varobj_get_name_of_child (new_val, new_type,
var->name.c_str (), i)
!= var->children[i]->name)
return true;
return false;
}
/* varobj operations for ada. */
const struct lang_varobj_ops ada_varobj_ops =
{
ada_number_of_children,
ada_name_of_variable,
ada_name_of_child,
ada_path_expr_of_child,
ada_value_of_child,
ada_type_of_child,
ada_value_of_variable,
ada_value_is_changeable_p,
ada_value_has_mutated,
varobj_default_is_path_expr_parent
};
|