summaryrefslogtreecommitdiff
path: root/bfd/elf32-hppa.c
blob: 6bd7f67a0ab6df7537118e33da66d101f5762e67 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
/* BFD back-end for HP PA-RISC ELF files.
   Copyright (C) 1990, 91, 92, 93, 94, 95, 96, 1997
   Free Software Foundation, Inc.

   Written by

	Center for Software Science
	Department of Computer Science
	University of Utah

This file is part of BFD, the Binary File Descriptor library.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */

#include "bfd.h"
#include "sysdep.h"
#include "bfdlink.h"
#include "libbfd.h"
#include "elf-bfd.h"

/* The internal type of a symbol table extension entry.  */
typedef unsigned long symext_entryS;

/* The external type of a symbol table extension entry.  */
#define ELF32_PARISC_SX_SIZE (4)
#define ELF32_PARISC_SX_GET(bfd, addr) bfd_h_get_32 ((bfd), (addr))
#define ELF32_PARISC_SX_PUT(bfd, val, addr) \
  bfd_h_put_32 ((bfd), (val), (addr))

/* HPPA symbol table extension entry types */
enum elf32_hppa_symextn_types
{
  PARISC_SXT_NULL,
  PARISC_SXT_SYMNDX,
  PARISC_SXT_ARG_RELOC,
};

/* These macros compose and decompose the value of a symextn entry:

   entry_type = ELF32_PARISC_SX_TYPE(word);
   entry_value = ELF32_PARISC_SX_VAL(word);
   word = ELF32_PARISC_SX_WORD(type,val);  */

#define ELF32_PARISC_SX_TYPE(p)		((p) >> 24)
#define ELF32_PARISC_SX_VAL(p)		((p) & 0xFFFFFF)
#define ELF32_PARISC_SX_WORD(type,val)	(((type) << 24) + (val & 0xFFFFFF))

/* The following was added facilitate implementation of the .hppa_symextn
   section.  This section is built after the symbol table is built in the
   elf_write_object_contents routine (called from bfd_close).  It is built
   so late because it requires information that is not known until
   the symbol and string table sections have been allocated, and
   the symbol table has been built. */

#define SYMEXTN_SECTION_NAME ".PARISC.symext"

struct symext_chain
  {
    symext_entryS entry;
    struct symext_chain *next;
  };

typedef struct symext_chain symext_chainS;

/* We use three different hash tables to hold information for
   linking PA ELF objects.

   The first is the elf32_hppa_link_hash_table which is derived
   from the standard ELF linker hash table.  We use this as a place to
   attach other hash tables and static information.

   The second is the stub hash table which is derived from the
   base BFD hash table.  The stub hash table holds the information
   necessary to build the linker stubs during a link.

   The last hash table keeps track of argument location information needed
   to build hash tables.  Each function with nonzero argument location
   bits will have an entry in this table.  */

/* Hash table for linker stubs.  */

struct elf32_hppa_stub_hash_entry
{
  /* Base hash table entry structure, we can get the name of the stub
     (and thus know exactly what actions it performs) from the base
     hash table entry.  */
  struct bfd_hash_entry root;

  /* Offset of the beginning of this stub.  */
  bfd_vma offset;

  /* Given the symbol's value and its section we can determine its final
     value when building the stubs (so the stub knows where to jump.  */
  symvalue target_value;
  asection *target_section;
};

struct elf32_hppa_stub_hash_table
{
  /* The hash table itself.  */
  struct bfd_hash_table root;

  /* The stub BFD.  */
  bfd *stub_bfd;

  /* Where to place the next stub.  */
  bfd_byte *location;

  /* Current offset in the stub section.  */
  unsigned int offset;

};

/* Hash table for argument location information.  */

struct elf32_hppa_args_hash_entry
{
  /* Base hash table entry structure.  */
  struct bfd_hash_entry root;

  /* The argument location bits for this entry.  */
  int arg_bits;
};

struct elf32_hppa_args_hash_table
{
  /* The hash table itself.  */
  struct bfd_hash_table root;
};

struct elf32_hppa_link_hash_entry
{
  struct elf_link_hash_entry root;
};

struct elf32_hppa_link_hash_table
{
  /* The main hash table.  */
  struct elf_link_hash_table root;

  /* The stub hash table.  */
  struct elf32_hppa_stub_hash_table *stub_hash_table;

  /* The argument relocation bits hash table.  */
  struct elf32_hppa_args_hash_table *args_hash_table;

  /* A count of the number of output symbols.  */
  unsigned int output_symbol_count;

  /* Stuff so we can handle DP relative relocations.  */
  long global_value;
  int global_sym_defined;
};

/* FIXME.  */
#define ARGUMENTS	0
#define RETURN_VALUE	1

/* The various argument relocations that may be performed.  */
typedef enum
{
  /* No relocation.  */
  NO,
  /* Relocate 32 bits from GR to FP register.  */
  GF,
  /* Relocate 64 bits from a GR pair to FP pair.  */
  GD,
  /* Relocate 32 bits from FP to GR.  */
  FG,
  /* Relocate 64 bits from FP pair to GR pair.  */
  DG,
} arg_reloc_type;

/* What is being relocated (eg which argument or the return value).  */
typedef enum
{
  ARG0, ARG1, ARG2, ARG3, RET,
} arg_reloc_location;


/* ELF32/HPPA relocation support

	This file contains ELF32/HPPA relocation support as specified
	in the Stratus FTX/Golf Object File Format (SED-1762) dated
	February 1994.  */

#include "elf32-hppa.h"
#include "hppa_stubs.h"

static bfd_reloc_status_type hppa_elf_reloc
  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd *, char **));

static unsigned long hppa_elf_relocate_insn
  PARAMS ((bfd *, asection *, unsigned long, unsigned long, long,
	   long, unsigned long, unsigned long, unsigned long));

static bfd_reloc_status_type hppa_elf_reloc
  PARAMS ((bfd *, arelent *, asymbol *, PTR, asection *, bfd*, char **));

static reloc_howto_type * elf_hppa_reloc_type_lookup
  PARAMS ((bfd *, bfd_reloc_code_real_type));

static boolean elf32_hppa_set_section_contents
  PARAMS ((bfd *, sec_ptr, PTR, file_ptr, bfd_size_type));

static void elf32_hppa_info_to_howto
  PARAMS ((bfd *, arelent *, Elf32_Internal_Rela *));

static boolean elf32_hppa_backend_symbol_table_processing
  PARAMS ((bfd *, elf_symbol_type *, unsigned int));

static void elf32_hppa_backend_begin_write_processing
  PARAMS ((bfd *, struct bfd_link_info *));

static void elf32_hppa_backend_final_write_processing
  PARAMS ((bfd *, boolean));

static void add_entry_to_symext_chain
  PARAMS ((bfd *, unsigned int, unsigned int, symext_chainS **,
	   symext_chainS **));

static void
elf_hppa_tc_make_sections PARAMS ((bfd *, symext_chainS *));

static boolean hppa_elf_is_local_label_name PARAMS ((bfd *, const char *));

static boolean elf32_hppa_add_symbol_hook
  PARAMS ((bfd *, struct bfd_link_info *, const Elf_Internal_Sym *,
	   const char **, flagword *, asection **, bfd_vma *));

static bfd_reloc_status_type elf32_hppa_bfd_final_link_relocate
  PARAMS ((reloc_howto_type *, bfd *, bfd *, asection *,
	   bfd_byte *, bfd_vma, bfd_vma, bfd_vma, struct bfd_link_info *,
	   asection *, const char *, int));

static struct bfd_link_hash_table *elf32_hppa_link_hash_table_create
  PARAMS ((bfd *));

static struct bfd_hash_entry *
elf32_hppa_stub_hash_newfunc
  PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));

static struct bfd_hash_entry *
elf32_hppa_args_hash_newfunc
  PARAMS ((struct bfd_hash_entry *, struct bfd_hash_table *, const char *));

static boolean
elf32_hppa_relocate_section
  PARAMS ((bfd *, struct bfd_link_info *, bfd *, asection *,
	   bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Sym *, asection **));

static boolean
elf32_hppa_stub_hash_table_init
  PARAMS ((struct elf32_hppa_stub_hash_table *, bfd *,
	   struct bfd_hash_entry *(*) PARAMS ((struct bfd_hash_entry *,
					       struct bfd_hash_table *,
					       const char *))));

static boolean
elf32_hppa_build_one_stub PARAMS ((struct bfd_hash_entry *, PTR));

static boolean
elf32_hppa_read_symext_info
  PARAMS ((bfd *, Elf_Internal_Shdr *, struct elf32_hppa_args_hash_table *,
	   Elf_Internal_Sym *));

static unsigned int elf32_hppa_size_of_stub
  PARAMS ((unsigned int, unsigned int, bfd_vma, bfd_vma, const char *));

static boolean elf32_hppa_arg_reloc_needed
  PARAMS ((unsigned int, unsigned int, arg_reloc_type []));

static void elf32_hppa_name_of_stub
  PARAMS ((unsigned int, unsigned int, bfd_vma, bfd_vma, char *));

static boolean elf32_hppa_size_symext PARAMS ((struct bfd_hash_entry *, PTR));

static boolean elf32_hppa_link_output_symbol_hook
  PARAMS ((bfd *, struct bfd_link_info *, const char *,
	   Elf_Internal_Sym *, asection *));

/* ELF/PA relocation howto entries.  */

static reloc_howto_type elf_hppa_howto_table[ELF_HOWTO_TABLE_SIZE] =
{
  {R_PARISC_NONE, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_NONE"},
  /* The values in DIR32 are to placate the check in
     _bfd_stab_section_find_nearest_line.  */
  {R_PARISC_DIR32, 0, 2, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DIR32", false, 0, 0xffffffff, false},
  {R_PARISC_DIR21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DIR21L"},
  {R_PARISC_DIR17R, 0, 0, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DIR17R"},
  {R_PARISC_DIR17F, 0, 0, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DIR17F"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_DIR14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DIR14R"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},

  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_PCREL21L, 0, 0, 21, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL21L"},
  {R_PARISC_PCREL17R, 0, 0, 17, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL17R"},
  {R_PARISC_PCREL17F, 0, 0, 17, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL17F"},
  {R_PARISC_PCREL17C, 0, 0, 17, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL17C"},
  {R_PARISC_PCREL14R, 0, 0, 14, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL14R"},
  {R_PARISC_PCREL14F, 0, 0, 14, true, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PCREL14F"},

  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_DPREL21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DPREL21L"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_DPREL14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DPREL14R"},
  {R_PARISC_DPREL14F, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DPREL14F"},

  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_DLTREL21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTREL21L"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_DLTREL14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTREL14R"},
  {R_PARISC_DLTREL14F, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTREL14F"},

  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_DLTIND21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTIND21L"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_DLTIND14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTIND14R"},
  {R_PARISC_DLTIND14F, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_DLTIND14F"},

  {R_PARISC_SETBASE, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_SETBASE"},
  {R_PARISC_BASEREL32, 0, 0, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL32"},
  {R_PARISC_BASEREL21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL21L"},
  {R_PARISC_BASEREL17R, 0, 0, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL17R"},
  {R_PARISC_BASEREL17F, 0, 0, 17, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL17F"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_BASEREL14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL14R"},
  {R_PARISC_BASEREL14F, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_BASEREL14F"},

  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_TEXTREL32, 0, 0, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_TEXTREL32"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},

  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_DATAREL32, 0, 0, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},


  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_PLABEL32, 0, 0, 32, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLABEL32"},
  {R_PARISC_PLABEL21L, 0, 0, 21, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLABEL21L"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_PLABEL14R, 0, 0, 14, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLABEL14R"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},

  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},

  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},

  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},

  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},


  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_PLTIND21L, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLTIND21L"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_UNIMPLEMENTED"},
  {R_PARISC_PLTIND14R, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLTIND14R"},
  {R_PARISC_PLTIND14F, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_PLTIND14F"},


  {R_PARISC_COPY, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_COPY"},
  {R_PARISC_GLOB_DAT, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_GLOB_DAT"},
  {R_PARISC_JMP_SLOT, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_JMP_SLOT"},
  {R_PARISC_RELATIVE, 0, 0, 0, false, 0, complain_overflow_bitfield, hppa_elf_reloc, "R_PARISC_RELATIVE"},

  {R_PARISC_UNIMPLEMENTED, 0, 0, 0, false, 0, complain_overflow_dont, NULL, "R_PARISC_UNIMPLEMENTED"},
};

/* Where (what register type) is an argument comming from?  */
typedef enum
{
  AR_NO,
  AR_GR,
  AR_FR,
  AR_FU,
  AR_FPDBL1,
  AR_FPDBL2,
} arg_location;

/* Horizontal represents the callee's argument location information,
   vertical represents caller's argument location information.  Value at a
   particular X,Y location represents what (if any) argument relocation
   needs to be performed to make caller and callee agree.  */

static CONST arg_reloc_type arg_mismatches[6][6] =
{
  {NO, NO, NO, NO, NO, NO},
  {NO, NO, GF, NO, GD, NO},
  {NO, FG, NO, NO, NO, NO},
  {NO, NO, NO, NO, NO, NO},
  {NO, DG, NO, NO, NO, NO},
  {NO, DG, NO, NO, NO, NO},
};

/* Likewise, but reversed for the return value.  */
static CONST arg_reloc_type ret_mismatches[6][6] =
{
  {NO, NO, NO, NO, NO, NO},
  {NO, NO, FG, NO, DG, NO},
  {NO, GF, NO, NO, NO, NO},
  {NO, NO, NO, NO, NO, NO},
  {NO, GD, NO, NO, NO, NO},
  {NO, GD, NO, NO, NO, NO},
};

/* Misc static crud for symbol extension records.  */
static symext_chainS *symext_rootP;
static symext_chainS *symext_lastP;
static bfd_size_type symext_chain_size;

/* FIXME: We should be able to try this static variable!  */
static bfd_byte *symextn_contents;


/* For linker stub hash tables.  */
#define elf32_hppa_stub_hash_lookup(table, string, create, copy) \
  ((struct elf32_hppa_stub_hash_entry *) \
   bfd_hash_lookup (&(table)->root, (string), (create), (copy)))

#define elf32_hppa_stub_hash_traverse(table, func, info) \
  (bfd_hash_traverse \
   (&(table)->root, \
    (boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) (func), \
    (info)))

/* For linker args hash tables.  */
#define elf32_hppa_args_hash_lookup(table, string, create, copy) \
  ((struct elf32_hppa_args_hash_entry *) \
   bfd_hash_lookup (&(table)->root, (string), (create), (copy)))

#define elf32_hppa_args_hash_traverse(table, func, info) \
  (bfd_hash_traverse \
   (&(table)->root, \
    (boolean (*) PARAMS ((struct bfd_hash_entry *, PTR))) (func), \
    (info)))

#define elf32_hppa_args_hash_table_init(table, newfunc) \
  (bfd_hash_table_init \
   (&(table)->root, \
    (struct bfd_hash_entry *(*) PARAMS ((struct bfd_hash_entry *, \
					 struct bfd_hash_table *, \
					 const char *))) (newfunc)))

/* For HPPA linker hash table.  */

#define elf32_hppa_link_hash_lookup(table, string, create, copy, follow)\
  ((struct elf32_hppa_link_hash_entry *)				\
   elf_link_hash_lookup (&(table)->root, (string), (create),		\
			 (copy), (follow)))

#define elf32_hppa_link_hash_traverse(table, func, info)		\
  (elf_link_hash_traverse						\
   (&(table)->root,							\
    (boolean (*) PARAMS ((struct elf_link_hash_entry *, PTR))) (func),	\
    (info)))

/* Get the PA ELF linker hash table from a link_info structure.  */

#define elf32_hppa_hash_table(p) \
  ((struct elf32_hppa_link_hash_table *) ((p)->hash))


/* Extract specific argument location bits for WHICH from
   the full argument location in AR.  */
#define EXTRACT_ARBITS(ar, which) ((ar) >> (8 - ((which) * 2))) & 3

/* Assorted hash table functions.  */

/* Initialize an entry in the stub hash table.  */

static struct bfd_hash_entry *
elf32_hppa_stub_hash_newfunc (entry, table, string)
     struct bfd_hash_entry *entry;
     struct bfd_hash_table *table;
     const char *string;
{
  struct elf32_hppa_stub_hash_entry *ret;

  ret = (struct elf32_hppa_stub_hash_entry *) entry;

  /* Allocate the structure if it has not already been allocated by a
     subclass.  */
  if (ret == NULL)
    ret = ((struct elf32_hppa_stub_hash_entry *)
	   bfd_hash_allocate (table,
			      sizeof (struct elf32_hppa_stub_hash_entry)));
  if (ret == NULL)
    return NULL;

  /* Call the allocation method of the superclass.  */
  ret = ((struct elf32_hppa_stub_hash_entry *)
	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));

  if (ret)
    {
      /* Initialize the local fields.  */
      ret->offset = 0;
      ret->target_value = 0;
      ret->target_section = NULL;
    }

  return (struct bfd_hash_entry *) ret;
}

/* Initialize a stub hash table.  */

static boolean
elf32_hppa_stub_hash_table_init (table, stub_bfd, newfunc)
     struct elf32_hppa_stub_hash_table *table;
     bfd *stub_bfd;
     struct bfd_hash_entry *(*newfunc) PARAMS ((struct bfd_hash_entry *,
						struct bfd_hash_table *,
						const char *));
{
  table->offset = 0;
  table->location = 0;
  table->stub_bfd = stub_bfd;
  return (bfd_hash_table_init (&table->root, newfunc));
}

/* Initialize an entry in the argument location hash table.  */

static struct bfd_hash_entry *
elf32_hppa_args_hash_newfunc (entry, table, string)
     struct bfd_hash_entry *entry;
     struct bfd_hash_table *table;
     const char *string;
{
  struct elf32_hppa_args_hash_entry *ret;

  ret = (struct elf32_hppa_args_hash_entry *) entry;

  /* Allocate the structure if it has not already been allocated by a
     subclass.  */
  if (ret == NULL)
    ret = ((struct elf32_hppa_args_hash_entry *)
	   bfd_hash_allocate (table,
			      sizeof (struct elf32_hppa_args_hash_entry)));
  if (ret == NULL)
    return NULL;

  /* Call the allocation method of the superclass.  */
  ret = ((struct elf32_hppa_args_hash_entry *)
	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, table, string));

  /* Initialize the local fields.  */
  if (ret)
    ret->arg_bits = 0;

  return (struct bfd_hash_entry *) ret;
}

/* Create the derived linker hash table.  The PA ELF port uses the derived
   hash table to keep information specific to the PA ELF linker (without
   using static variables).  */

static struct bfd_link_hash_table *
elf32_hppa_link_hash_table_create (abfd)
     bfd *abfd;
{
  struct elf32_hppa_link_hash_table *ret;

  ret = ((struct elf32_hppa_link_hash_table *)
	 bfd_alloc (abfd, sizeof (struct elf32_hppa_link_hash_table)));
  if (ret == NULL)
    return NULL;
  if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
				      _bfd_elf_link_hash_newfunc))
    {
      bfd_release (abfd, ret);
      return NULL;
    }
  ret->stub_hash_table = NULL;
  ret->args_hash_table = NULL;
  ret->output_symbol_count = 0;
  ret->global_value = 0;
  ret->global_sym_defined = 0;

  return &ret->root.root;
}

/* Relocate the given INSN given the various input parameters.

   FIXME: endianness and sizeof (long) issues abound here.  */

static unsigned long
hppa_elf_relocate_insn (abfd, input_sect, insn, address, sym_value,
			r_addend, r_format, r_field, pcrel)
     bfd *abfd;
     asection *input_sect;
     unsigned long insn;
     unsigned long address;
     long sym_value;
     long r_addend;
     unsigned long r_format;
     unsigned long r_field;
     unsigned long pcrel;
{
  unsigned char opcode = get_opcode (insn);
  long constant_value;

  switch (opcode)
    {
    case LDO:
    case LDB:
    case LDH:
    case LDW:
    case LDWM:
    case STB:
    case STH:
    case STW:
    case STWM:
    case COMICLR:
    case SUBI:
    case ADDIT:
    case ADDI:
    case LDIL:
    case ADDIL:
      constant_value = HPPA_R_CONSTANT (r_addend);

      if (pcrel)
	sym_value -= address;

      sym_value = hppa_field_adjust (sym_value, constant_value, r_field);
      return hppa_rebuild_insn (abfd, insn, sym_value, r_format);

    case BL:
    case BE:
    case BLE:
      /* XXX computing constant_value is not needed??? */
      constant_value = assemble_17 ((insn & 0x001f0000) >> 16,
				    (insn & 0x00001ffc) >> 2,
				    insn & 1);

      constant_value = (constant_value << 15) >> 15;
      if (pcrel)
	{
	  sym_value -=
	    address + input_sect->output_offset
	    + input_sect->output_section->vma;
	  sym_value = hppa_field_adjust (sym_value, -8, r_field);
	}
      else
	sym_value = hppa_field_adjust (sym_value, constant_value, r_field);

      return hppa_rebuild_insn (abfd, insn, sym_value >> 2, r_format);

    default:
      if (opcode == 0)
	{
	  constant_value = HPPA_R_CONSTANT (r_addend);

	  if (pcrel)
	    sym_value -= address;

	  return hppa_field_adjust (sym_value, constant_value, r_field);
	}
      else
	abort ();
    }
}

/* Relocate an HPPA ELF section.  */

static boolean
elf32_hppa_relocate_section (output_bfd, info, input_bfd, input_section,
			     contents, relocs, local_syms, local_sections)
     bfd *output_bfd;
     struct bfd_link_info *info;
     bfd *input_bfd;
     asection *input_section;
     bfd_byte *contents;
     Elf_Internal_Rela *relocs;
     Elf_Internal_Sym *local_syms;
     asection **local_sections;
{
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Rela *rel;
  Elf_Internal_Rela *relend;

  symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;

  rel = relocs;
  relend = relocs + input_section->reloc_count;
  for (; rel < relend; rel++)
    {
      int r_type;
      reloc_howto_type *howto;
      unsigned long r_symndx;
      struct elf_link_hash_entry *h;
      Elf_Internal_Sym *sym;
      asection *sym_sec;
      bfd_vma relocation;
      bfd_reloc_status_type r;
      const char *sym_name;

      r_type = ELF32_R_TYPE (rel->r_info);
      if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
	{
	  bfd_set_error (bfd_error_bad_value);
	  return false;
	}
      howto = elf_hppa_howto_table + r_type;

      r_symndx = ELF32_R_SYM (rel->r_info);

      if (info->relocateable)
	{
	  /* This is a relocateable link.  We don't have to change
	     anything, unless the reloc is against a section symbol,
	     in which case we have to adjust according to where the
	     section symbol winds up in the output section.  */
	  if (r_symndx < symtab_hdr->sh_info)
	    {
	      sym = local_syms + r_symndx;
	      if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
		{
		  sym_sec = local_sections[r_symndx];
		  rel->r_addend += sym_sec->output_offset;
		}
	    }

	  continue;
	}

      /* This is a final link.  */
      h = NULL;
      sym = NULL;
      sym_sec = NULL;
      if (r_symndx < symtab_hdr->sh_info)
	{
	  sym = local_syms + r_symndx;
	  sym_sec = local_sections[r_symndx];
	  relocation = ((ELF_ST_TYPE (sym->st_info) == STT_SECTION
			   ? 0 : sym->st_value)
			 + sym_sec->output_offset
			 + sym_sec->output_section->vma);
	}
      else
	{
	  long indx;

	  indx = r_symndx - symtab_hdr->sh_info;
	  h = elf_sym_hashes (input_bfd)[indx];
	  while (h->root.type == bfd_link_hash_indirect
		 || h->root.type == bfd_link_hash_warning)
	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
	  if (h->root.type == bfd_link_hash_defined
	      || h->root.type == bfd_link_hash_defweak)
	    {
	      sym_sec = h->root.u.def.section;
	      relocation = (h->root.u.def.value
			    + sym_sec->output_offset
			    + sym_sec->output_section->vma);
	    }
	  else if (h->root.type == bfd_link_hash_undefweak)
	    relocation = 0;
	  else
	    {
	      if (!((*info->callbacks->undefined_symbol)
		    (info, h->root.root.string, input_bfd,
		     input_section, rel->r_offset)))
		return false;
	      break;
	    }
	}

      if (h != NULL)
	sym_name = h->root.root.string;
      else
	{
	  sym_name = bfd_elf_string_from_elf_section (input_bfd,
						      symtab_hdr->sh_link,
						      sym->st_name);
	  if (sym_name == NULL)
	    return false;
	  if (*sym_name == '\0')
	    sym_name = bfd_section_name (input_bfd, sym_sec);
	}

      /* If args_hash_table is NULL, then we have encountered some
	 kind of link error (ex. undefined symbols).  Do not try to
	 apply any relocations, continue the loop so we can notify
	 the user of several errors in a single attempted link.  */
      if (elf32_hppa_hash_table (info)->args_hash_table == NULL)
	continue;

      r = elf32_hppa_bfd_final_link_relocate (howto, input_bfd, output_bfd,
					      input_section, contents,
					      rel->r_offset, relocation,
					      rel->r_addend, info, sym_sec,
					      sym_name, h == NULL);

      if (r != bfd_reloc_ok)
	{
	  switch (r)
	    {
	    /* This can happen for DP relative relocs if $global$ is
	       undefined.  This is a panic situation so we don't try
	       to continue.  */
	    case bfd_reloc_undefined:
	    case bfd_reloc_notsupported:
	      if (!((*info->callbacks->undefined_symbol)
		    (info, "$global$", input_bfd,
		     input_section, rel->r_offset)))
		return false;
	      return false;
	    case bfd_reloc_dangerous:
	      {
		/* We use this return value to indicate that we performed
		   a "dangerous" relocation.  This doesn't mean we did
		   the wrong thing, it just means there may be some cleanup
		   that needs to be done here.

		   In particular we had to swap the last call insn and its
		   delay slot.  If the delay slot insn needed a relocation,
		   then we'll need to adjust the next relocation entry's
		   offset to account for the fact that the insn moved.

		   This hair wouldn't be necessary if we inserted stubs
		   between procedures and used a "bl" to get to the stub.  */
		if (rel != relend)
		  {
		    Elf_Internal_Rela *next_rel = rel + 1;

		    if (rel->r_offset + 4 == next_rel->r_offset)
		      next_rel->r_offset -= 4;
		  }
		break;
	      }
	    default:
	    case bfd_reloc_outofrange:
	    case bfd_reloc_overflow:
	      {
		if (!((*info->callbacks->reloc_overflow)
		      (info, sym_name, howto->name, (bfd_vma) 0,
			input_bfd, input_section, rel->r_offset)))
		  return false;
	      }
	      break;
	    }
	}
    }

  return true;
}

/* Return one (or more) BFD relocations which implement the base
   relocation with modifications based on format and field.  */

elf32_hppa_reloc_type **
hppa_elf_gen_reloc_type (abfd, base_type, format, field, ignore, sym)
     bfd *abfd;
     elf32_hppa_reloc_type base_type;
     int format;
     int field;
     int ignore;
     asymbol *sym;
{
  elf32_hppa_reloc_type *finaltype;
  elf32_hppa_reloc_type **final_types;

  /* Allocate slots for the BFD relocation.  */
  final_types = ((elf32_hppa_reloc_type **)
		 bfd_alloc (abfd, sizeof (elf32_hppa_reloc_type *) * 2));
  if (final_types == NULL)
    return NULL;

  /* Allocate space for the relocation itself.  */
  finaltype = ((elf32_hppa_reloc_type *)
	       bfd_alloc (abfd, sizeof (elf32_hppa_reloc_type)));
  if (finaltype == NULL)
    return NULL;

  /* Some reasonable defaults.  */
  final_types[0] = finaltype;
  final_types[1] = NULL;

#define final_type finaltype[0]

  final_type = base_type;

  /* Just a tangle of nested switch statements to deal with the braindamage
     that a different field selector means a completely different relocation
     for PA ELF.  */
  switch (base_type)
    {
    case R_HPPA:
    case R_HPPA_ABS_CALL:
      switch (format)
	{
	case 14:
	  switch (field)
	    {
	    case e_rsel:
	    case e_rrsel:
	      final_type = R_PARISC_DIR14R;
	      break;
	    case e_rtsel:
	      final_type = R_PARISC_DLTREL14R;
	      break;
	    case e_tsel:
	      final_type = R_PARISC_DLTREL14F;
	      break;
	    case e_rpsel:
	      final_type = R_PARISC_PLABEL14R;
	      break;
	    default:
	      return NULL;
	    }
	  break;

	case 17:
	  switch (field)
	    {
	    case e_fsel:
	      final_type = R_PARISC_DIR17F;
	      break;
	    case e_rsel:
	    case e_rrsel:
	      final_type = R_PARISC_DIR17R;
	      break;
	    default:
	      return NULL;
	    }
	  break;

	case 21:
	  switch (field)
	    {
	    case e_lsel:
	    case e_lrsel:
	      final_type = R_PARISC_DIR21L;
	      break;
	    case e_ltsel:
	      final_type = R_PARISC_DLTREL21L;
	      break;
	    case e_lpsel:
	      final_type = R_PARISC_PLABEL21L;
	      break;
	    default:
	      return NULL;
	    }
	  break;

	case 32:
	  switch (field)
	    {
	    case e_fsel:
	      final_type = R_PARISC_DIR32;
	      break;
	    case e_psel:
	      final_type = R_PARISC_PLABEL32;
	      break;
	    default:
	      return NULL;
	    }
	  break;

	default:
	  return NULL;
	}
      break;


    case R_HPPA_GOTOFF:
      switch (format)
	{
	case 14:
	  switch (field)
	    {
	    case e_rsel:
	    case e_rrsel:
	      final_type = R_PARISC_DPREL14R;
	      break;
	    case e_fsel:
	      final_type = R_PARISC_DPREL14F;
	      break;
	    default:
	      return NULL;
	    }
	  break;

	case 21:
	  switch (field)
	    {
	    case e_lrsel:
	    case e_lsel:
	      final_type = R_PARISC_DPREL21L;
	      break;
	    default:
	      return NULL;
	    }
	  break;

	default:
	  return NULL;
	}
      break;


    case R_HPPA_PCREL_CALL:
      switch (format)
	{
	case 14:
	  switch (field)
	    {
	    case e_rsel:
	    case e_rrsel:
	      final_type = R_PARISC_PCREL14R;
	      break;
	    case e_fsel:
	      final_type = R_PARISC_PCREL14F;
	      break;
	    default:
	      return NULL;
	    }
	  break;

	case 17:
	  switch (field)
	    {
	    case e_rsel:
	    case e_rrsel:
	      final_type = R_PARISC_PCREL17R;
	      break;
	    case e_fsel:
	      final_type = R_PARISC_PCREL17F;
	      break;
	    default:
	      return NULL;
	    }
	  break;

	case 21:
	  switch (field)
	    {
	    case e_lsel:
	    case e_lrsel:
	      final_type = R_PARISC_PCREL21L;
	      break;
	    default:
	      return NULL;
	    }
	  break;

	default:
	  return NULL;
	}
      break;

    default:
      return NULL;
    }

  return final_types;
}

#undef final_type

/* Set the contents of a particular section at a particular location.  */

static boolean
elf32_hppa_set_section_contents (abfd, section, location, offset, count)
     bfd *abfd;
     sec_ptr section;
     PTR location;
     file_ptr offset;
     bfd_size_type count;
{
  /* Ignore write requests for the symbol extension section until we've
     had the chance to rebuild it ourselves.  */
  if (!strcmp (section->name, ".PARISC.symextn") && !symext_chain_size)
    return true;
  else
    return _bfd_elf_set_section_contents (abfd, section, location,
					  offset, count);
}

/* Translate from an elf into field into a howto relocation pointer.  */

static void
elf32_hppa_info_to_howto (abfd, cache_ptr, dst)
     bfd *abfd;
     arelent *cache_ptr;
     Elf32_Internal_Rela *dst;
{
  BFD_ASSERT (ELF32_R_TYPE(dst->r_info) < (unsigned int) R_PARISC_UNIMPLEMENTED);
  cache_ptr->howto = &elf_hppa_howto_table[ELF32_R_TYPE (dst->r_info)];
}


/* Actually perform a relocation.  NOTE this is (mostly) superceeded
   by elf32_hppa_bfd_final_link_relocate which is called by the new
   fast linker.  */

static bfd_reloc_status_type
hppa_elf_reloc (abfd, reloc_entry, symbol_in, data, input_section, output_bfd,
		error_message)
     bfd *abfd;
     arelent *reloc_entry;
     asymbol *symbol_in;
     PTR data;
     asection *input_section;
     bfd *output_bfd;
     char **error_message;
{
  /* It is no longer valid to call hppa_elf_reloc when creating
     a final executable.  */
  if (output_bfd)
    {
      reloc_entry->address += input_section->output_offset;

      /* Work around lossage in generic elf code to write relocations.
	 (maps different section symbols into the same symbol index).  */
      if ((symbol_in->flags & BSF_SECTION_SYM)
	  && symbol_in->section)
	reloc_entry->addend += symbol_in->section->output_offset;
      return bfd_reloc_ok;
    }
  else
    {
      *error_message = (char *) _("Unsupported call to hppa_elf_reloc");
      return bfd_reloc_notsupported;
    }
}

/* Actually perform a relocation as part of a final link.  This can get
   rather hairy when linker stubs are needed.  */

static bfd_reloc_status_type
elf32_hppa_bfd_final_link_relocate (howto, input_bfd, output_bfd,
				    input_section, contents, offset, value,
				    addend, info, sym_sec, sym_name, is_local)
     reloc_howto_type *howto;
     bfd *input_bfd;
     bfd *output_bfd;
     asection *input_section;
     bfd_byte *contents;
     bfd_vma offset;
     bfd_vma value;
     bfd_vma addend;
     struct bfd_link_info *info;
     asection *sym_sec;
     const char *sym_name;
     int is_local;
{
  unsigned long insn;
  unsigned long r_type = howto->type;
  unsigned long r_format = howto->bitsize;
  unsigned long r_field = e_fsel;
  bfd_byte *hit_data = contents + offset;
  boolean r_pcrel = howto->pc_relative;

  insn = bfd_get_32 (input_bfd, hit_data);

  /* Make sure we have a value for $global$.  FIXME isn't this effectively
     just like the gp pointer on MIPS?  Can we use those routines for this
     purpose?  */
  if (!elf32_hppa_hash_table (info)->global_sym_defined)
    {
      struct elf_link_hash_entry *h;
      asection *sec;

      h = elf_link_hash_lookup (elf_hash_table (info), "$global$", false,
				 false, false);

      /* If there isn't a $global$, then we're in deep trouble.  */
      if (h == NULL)
	return bfd_reloc_notsupported;

      /* If $global$ isn't a defined symbol, then we're still in deep
	 trouble.  */
      if (h->root.type != bfd_link_hash_defined)
	return bfd_reloc_undefined;

      sec = h->root.u.def.section;
      elf32_hppa_hash_table (info)->global_value = (h->root.u.def.value
						    + sec->output_section->vma
						    + sec->output_offset);
      elf32_hppa_hash_table (info)->global_sym_defined = 1;
    }

  switch (r_type)
    {
    case R_PARISC_NONE:
      break;

    case R_PARISC_DIR32:
    case R_PARISC_DIR17F:
    case R_PARISC_PCREL17C:
      r_field = e_fsel;
      goto do_basic_type_1;
    case R_PARISC_DIR21L:
    case R_PARISC_PCREL21L:
      r_field = e_lrsel;
      goto do_basic_type_1;
    case R_PARISC_DIR17R:
    case R_PARISC_PCREL17R:
    case R_PARISC_DIR14R:
    case R_PARISC_PCREL14R:
      r_field = e_rrsel;
      goto do_basic_type_1;

    /* For all the DP relative relocations, we need to examine the symbol's
       section.  If it's a code section, then "data pointer relative" makes
       no sense.  In that case we don't adjust the "value", and for 21 bit
       addil instructions, we change the source addend register from %dp to
       %r0.  */
    case R_PARISC_DPREL21L:
      r_field = e_lrsel;
      if (sym_sec->flags & SEC_CODE)
	{
	  if ((insn & 0xfc000000) >> 26 == 0xa
	       && (insn & 0x03e00000) >> 21 == 0x1b)
	    insn &= ~0x03e00000;
	}
      else
	value -= elf32_hppa_hash_table (info)->global_value;
      goto do_basic_type_1;
    case R_PARISC_DPREL14R:
      r_field = e_rrsel;
      if ((sym_sec->flags & SEC_CODE) == 0)
	value -= elf32_hppa_hash_table (info)->global_value;
      goto do_basic_type_1;
    case R_PARISC_DPREL14F:
      r_field = e_fsel;
      if ((sym_sec->flags & SEC_CODE) == 0)
	value -= elf32_hppa_hash_table (info)->global_value;
      goto do_basic_type_1;

    /* These cases are separate as they may involve a lot more work
       to deal with linker stubs.  */
    case R_PARISC_PLABEL32:
    case R_PARISC_PLABEL21L:
    case R_PARISC_PLABEL14R:
    case R_PARISC_PCREL17F:
      {
	bfd_vma location;
	unsigned int len, caller_args, callee_args;
	arg_reloc_type arg_reloc_types[5];
	struct elf32_hppa_args_hash_table *args_hash_table;
	struct elf32_hppa_args_hash_entry *args_hash;
	char *new_name, *stub_name;

	/* Get the field selector right.  We'll need it in a minute.  */
	if (r_type == R_PARISC_PCREL17F
	    || r_type == R_PARISC_PLABEL32)
	  r_field = e_fsel;
	else if (r_type == R_PARISC_PLABEL21L)
	  r_field = e_lrsel;
	else if (r_type == R_PARISC_PLABEL14R)
	  r_field = e_rrsel;

	/* Find out where we are and where we're going.  */
	location = (offset +
		    input_section->output_offset +
		    input_section->output_section->vma);

	/* Now look for the argument relocation bits associated with the
	   target.  */
	len = strlen (sym_name) + 1;
	if (is_local)
	  len += 9;
	new_name = bfd_malloc (len);
	if (!new_name)
	  return bfd_reloc_notsupported;
	strcpy (new_name, sym_name);

	/* Local symbols have unique IDs.  */
	if (is_local)
	  sprintf (new_name + len - 10, "_%08x", (int)sym_sec);

	args_hash_table = elf32_hppa_hash_table (info)->args_hash_table;

	args_hash = elf32_hppa_args_hash_lookup (args_hash_table,
						 new_name, false, false);
	if (args_hash == NULL)
	  callee_args = 0;
	else
	  callee_args = args_hash->arg_bits;

	/* If this is a CALL relocation, then get the caller's bits
	   from the addend.  Else use the magic 0x155 value for PLABELS.

	   Also we don't care about the destination (value) for PLABELS.  */
	if (r_type == R_PARISC_PCREL17F)
	  caller_args = HPPA_R_ARG_RELOC (addend);
	else
	  {
	    caller_args = 0x155;
	    location = value;
	  }

	/* Any kind of linker stub needed?  */
	if (((int)(value - location) > 0x3ffff)
	    || ((int)(value - location) < (int)0xfffc0000)
	    || elf32_hppa_arg_reloc_needed (caller_args, callee_args,
					    arg_reloc_types))
	  {
	    struct elf32_hppa_stub_hash_table *stub_hash_table;
	    struct elf32_hppa_stub_hash_entry *stub_hash;
	    asection *stub_section;

	    /* Build a name for the stub.  */

	    len = strlen (new_name);
	    len += 23;
	    stub_name = bfd_malloc (len);
	    if (!stub_name)
	      return bfd_reloc_notsupported;
	    elf32_hppa_name_of_stub (caller_args, callee_args,
				     location, value, stub_name);
	    strcat (stub_name, new_name);
	    free (new_name);

	    stub_hash_table = elf32_hppa_hash_table (info)->stub_hash_table;

	    stub_hash
	      = elf32_hppa_stub_hash_lookup (stub_hash_table, stub_name,
					     false, false);

	    /* We're done with that name.  */
	    free (stub_name);

	    /* The stub BFD only has one section.  */
	    stub_section = stub_hash_table->stub_bfd->sections;

	    if (stub_hash != NULL)
	      {

		if (r_type == R_PARISC_PCREL17F)
		  {
		    unsigned long delay_insn;
		    unsigned int opcode, rtn_reg, ldo_target_reg, ldo_src_reg;

		    /* We'll need to peek at the next insn.  */
		    delay_insn = bfd_get_32 (input_bfd, hit_data + 4);
		    opcode = get_opcode (delay_insn);

		    /* We also need to know the return register for this
		       call.  */
		    rtn_reg = (insn & 0x03e00000) >> 21;

		    ldo_src_reg = (delay_insn & 0x03e00000) >> 21;
		    ldo_target_reg = (delay_insn & 0x001f0000) >> 16;

		    /* Munge up the value and other parameters for
		       hppa_elf_relocate_insn.  */

		    value = (stub_hash->offset
			     + stub_section->output_offset
			     + stub_section->output_section->vma);

		    r_format = 17;
		    r_field = e_fsel;
		    r_pcrel = 0;
		    addend = 0;

		    /* We need to peek at the delay insn and determine if
		       we'll need to swap the branch and its delay insn.  */
		    if ((insn & 2)
			|| (opcode == LDO
			    && ldo_target_reg == rtn_reg)
			|| (delay_insn == 0x08000240))
		      {
			/* No need to swap the branch and its delay slot, but
			   we do need to make sure to jump past the return
			   pointer update in the stub.  */
			value += 4;

			/* If the delay insn does a return pointer adjustment,
			   then we have to make sure it stays valid.  */
			if (opcode == LDO
			    && ldo_target_reg == rtn_reg)
			  {
			    delay_insn &= 0xfc00ffff;
			    delay_insn |= ((31 << 21) | (31 << 16));
			    bfd_put_32 (input_bfd, delay_insn, hit_data + 4);
			  }
			/* Use a BLE to reach the stub.  */
			insn = BLE_SR4_R0;
		      }
		    else
		      {
			/* Wonderful, we have to swap the call insn and its
			   delay slot.  */
			bfd_put_32 (input_bfd, delay_insn, hit_data);
			/* Use a BLE,n to reach the stub.  */
			insn = (BLE_SR4_R0 | 0x2);
			bfd_put_32 (input_bfd, insn, hit_data + 4);
			insn = hppa_elf_relocate_insn (input_bfd,
						       input_section,
						       insn, offset + 4,
						       value, addend,
						       r_format, r_field,
						       r_pcrel);
			/* Update the instruction word.  */
			bfd_put_32 (input_bfd, insn, hit_data + 4);
			return bfd_reloc_dangerous;
		      }
		  }
		else
		  {
		    /* PLABEL stuff is easy.  */

		    value = (stub_hash->offset
			     + stub_section->output_offset
			     + stub_section->output_section->vma);
		    /* We don't need the RP adjustment for PLABELs.  */
		    value += 4;
		    if (r_type == R_PARISC_PLABEL32)
		      r_format = 32;
		    else if (r_type == R_PARISC_PLABEL21L)
		      r_format = 21;
		    else if (r_type == R_PARISC_PLABEL14R)
		      r_format = 14;

		    r_pcrel = 0;
		    addend = 0;
		  }
		}
	      else
		return bfd_reloc_notsupported;
	  }
	goto do_basic_type_1;
      }

do_basic_type_1:
      insn = hppa_elf_relocate_insn (input_bfd, input_section, insn,
				     offset, value, addend, r_format,
				     r_field, r_pcrel);
      break;

    /* Something we don't know how to handle.  */
    default:
      return bfd_reloc_notsupported;
    }

  /* Update the instruction word.  */
  bfd_put_32 (input_bfd, insn, hit_data);
  return (bfd_reloc_ok);
}

/* Return the address of the howto table entry to perform the CODE
   relocation for an ARCH machine.  */

static reloc_howto_type *
elf_hppa_reloc_type_lookup (abfd, code)
     bfd *abfd;
     bfd_reloc_code_real_type code;
{
  if ((int) code < (int) R_PARISC_UNIMPLEMENTED)
    {
      BFD_ASSERT ((int) elf_hppa_howto_table[(int) code].type == (int) code);
      return &elf_hppa_howto_table[(int) code];
    }
  return NULL;
}

/* Return true if SYM represents a local label symbol.  */

static boolean
hppa_elf_is_local_label_name (abfd, name)
     bfd *abfd;
     const char *name;
{
  return (name[0] == 'L' && name[1] == '$');
}

/* Do any backend specific processing when beginning to write an object
   file.  For PA ELF we need to determine the size of the symbol extension
   section *before* any other output processing happens.  */

static void
elf32_hppa_backend_begin_write_processing (abfd, info)
     bfd *abfd;
     struct bfd_link_info *info;
{
  unsigned int i;
  asection *symextn_sec;

  /* Size up the symbol extension section.  */
  if ((abfd->outsymbols == NULL
       && info == NULL)
      || symext_chain_size != 0)
    return;

  if (info == NULL)
    {
      /* We were not called from the BFD ELF linker code, so we need
	 to examine the output BFD's outsymbols.

	 Note we can not build the symbol extensions now as the symbol
	 map hasn't been set up.  */
      for (i = 0; i < abfd->symcount; i++)
	{
	  elf_symbol_type *symbol = (elf_symbol_type *)abfd->outsymbols[i];

	  /* Only functions ever need an entry in the symbol extension
	     section.  */
	  if (!(symbol->symbol.flags & BSF_FUNCTION))
	    continue;

	  /* And only if they specify the locations of their arguments.  */
	  if (symbol->tc_data.hppa_arg_reloc == 0)
	    continue;

	  /* Yup.  This function symbol needs an entry.  */
	  symext_chain_size += 2 * ELF32_PARISC_SX_SIZE;
	}
    }
  else if (info->relocateable == true)
    {
      struct elf32_hppa_args_hash_table *table;
      table = elf32_hppa_hash_table (info)->args_hash_table;

      /* Determine the size of the symbol extension section.  */
      elf32_hppa_args_hash_traverse (table,
				     elf32_hppa_size_symext,
				     &symext_chain_size);
    }

  /* Now create the section and set its size.  We'll fill in the
     contents later.  */
  symextn_sec = bfd_get_section_by_name (abfd, SYMEXTN_SECTION_NAME);
  if (symextn_sec == NULL)
    symextn_sec = bfd_make_section (abfd, SYMEXTN_SECTION_NAME);

  bfd_set_section_flags (abfd, symextn_sec,
			 SEC_LOAD | SEC_HAS_CONTENTS | SEC_DATA);
  symextn_sec->output_section = symextn_sec;
  symextn_sec->output_offset = 0;
  bfd_set_section_alignment (abfd, symextn_sec, 2);
  bfd_set_section_size (abfd, symextn_sec, symext_chain_size);
}

/* Called for each entry in the args location hash table.  For each
   entry we bump the size pointer by 2 records (16 bytes).  */

static boolean
elf32_hppa_size_symext (gen_entry, in_args)
     struct bfd_hash_entry *gen_entry;
     PTR in_args;
{
  bfd_size_type *sizep = (bfd_size_type *)in_args;

  *sizep += 2 * ELF32_PARISC_SX_SIZE;
  return true;
}

/* Backend routine called by the linker for each output symbol.

   For PA ELF we use this opportunity to add an appropriate entry
   to the symbol extension chain for function symbols.  */

static boolean
elf32_hppa_link_output_symbol_hook (abfd, info, name, sym, section)
     bfd *abfd;
     struct bfd_link_info *info;
     const char *name;
     Elf_Internal_Sym *sym;
     asection *section;
{
  char *new_name;
  unsigned int len, index;
  struct elf32_hppa_args_hash_table *args_hash_table;
  struct elf32_hppa_args_hash_entry *args_hash;

  /* If the args hash table is NULL, then we've encountered an error
     of some sorts (for example, an undefined symbol).  In that case
     we've got nothing else to do.

     NOTE: elf_link_output_symbol will abort if we return false here!  */
  if (elf32_hppa_hash_table (info)->args_hash_table == NULL)
    return true;

  index = elf32_hppa_hash_table (info)->output_symbol_count++;

  /* We need to look up this symbol in the args hash table to see if
     it has argument relocation bits.  */
  if (ELF_ST_TYPE (sym->st_info) != STT_FUNC)
    return true;

  /* We know it's a function symbol of some kind.  */
  len = strlen (name) + 1;
  if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
    len += 9;

  new_name = bfd_malloc (len);
  if (new_name == NULL)
    return false;

  strcpy (new_name, name);
  if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
    sprintf (new_name + len - 10, "_%08x", (int)section);

  /* Now that we have the unique name, we can look it up in the
     args hash table.  */
  args_hash_table = elf32_hppa_hash_table (info)->args_hash_table;
  args_hash = elf32_hppa_args_hash_lookup (args_hash_table, new_name,
					   false, false);
  free (new_name);
  if (args_hash == NULL)
    return true;

  /* We know this symbol has arg reloc bits.  */
  add_entry_to_symext_chain (abfd, args_hash->arg_bits,
			     index, &symext_rootP, &symext_lastP);
  return true;
}

/* Perform any processing needed late in the object file writing process.
   For PA ELF we build and set the contents of the symbol extension
   section.  */

static void
elf32_hppa_backend_final_write_processing (abfd, linker)
     bfd *abfd;
     boolean linker;
{
  asection *symextn_sec;
  unsigned int i;

  /* Now build the symbol extension section.  */
  if (symext_chain_size == 0)
    return;

  if (! linker)
    {
      /* We were not called from the backend linker, so we still need
	 to build the symbol extension chain.

         Look at each symbol, adding the appropriate information to the
	 symbol extension section list as necessary.  */
      for (i = 0; i < abfd->symcount; i++)
	{
	  elf_symbol_type *symbol = (elf_symbol_type *) abfd->outsymbols[i];

	  /* Only functions ever need an entry in the symbol extension
	     section.  */
	  if (!(symbol->symbol.flags & BSF_FUNCTION))
	    continue;

	  /* And only if they specify the locations of their arguments.  */
	  if (symbol->tc_data.hppa_arg_reloc == 0)
	    continue;

	  /* Add this symbol's information to the chain.  */
	  add_entry_to_symext_chain (abfd, symbol->tc_data.hppa_arg_reloc,
				     symbol->symbol.udata.i, &symext_rootP,
				     &symext_lastP);
	}
    }

  /* Now fill in the contents of the symbol extension section.  */
  elf_hppa_tc_make_sections (abfd, symext_rootP);

  /* And attach that as the section's contents.  */
  symextn_sec = bfd_get_section_by_name (abfd, SYMEXTN_SECTION_NAME);
  if (symextn_sec == (asection *) 0)
    abort();

  symextn_sec->contents = (void *)symextn_contents;

  bfd_set_section_contents (abfd, symextn_sec, symextn_sec->contents,
			    symextn_sec->output_offset, symextn_sec->_raw_size);
}

/* Update the symbol extention chain to include the symbol pointed to
   by SYMBOLP if SYMBOLP is a function symbol.  Used internally and by GAS.  */

static void
add_entry_to_symext_chain (abfd, arg_reloc, sym_idx, symext_root, symext_last)
     bfd *abfd;
     unsigned int arg_reloc;
     unsigned int sym_idx;
     symext_chainS **symext_root;
     symext_chainS **symext_last;
{
  symext_chainS *symextP;

  /* Allocate memory and initialize this entry.  */
  symextP = (symext_chainS *) bfd_alloc (abfd, sizeof (symext_chainS) * 2);
  if (!symextP)
    abort();			/* FIXME */

  symextP[0].entry = ELF32_PARISC_SX_WORD (PARISC_SXT_SYMNDX, sym_idx);
  symextP[0].next = &symextP[1];

  symextP[1].entry = ELF32_PARISC_SX_WORD (PARISC_SXT_ARG_RELOC, arg_reloc);
  symextP[1].next = NULL;

  /* Now update the chain itself so it can be walked later to build
     the symbol extension section.  */
  if (*symext_root == NULL)
    {
      *symext_root = &symextP[0];
      *symext_last = &symextP[1];
    }
  else
    {
      (*symext_last)->next = &symextP[0];
      *symext_last = &symextP[1];
    }
}

/* Build the symbol extension section.  */

static void
elf_hppa_tc_make_sections (abfd, symext_root)
     bfd *abfd;
     symext_chainS *symext_root;
{
  symext_chainS *symextP;
  unsigned int i;
  asection *symextn_sec;

  symextn_sec = bfd_get_section_by_name (abfd, SYMEXTN_SECTION_NAME);

  /* Grab some memory for the contents of the symbol extension section
     itself.  */
  symextn_contents = (bfd_byte *) bfd_zalloc (abfd,
					      symextn_sec->_raw_size);
  if (!symextn_contents)
    abort();			/* FIXME */

  /* Fill in the contents of the symbol extension chain.  */
  for (i = 0, symextP = symext_root; symextP; symextP = symextP->next, ++i)
    ELF32_PARISC_SX_PUT (abfd, (bfd_vma) symextP->entry,
			 symextn_contents + i * ELF32_PARISC_SX_SIZE);

  return;
}

/* Do some PA ELF specific work after reading in the symbol table.
   In particular attach the argument relocation from the
   symbol extension section to the appropriate symbols.  */

static boolean
elf32_hppa_backend_symbol_table_processing (abfd, esyms,symcnt)
     bfd *abfd;
     elf_symbol_type *esyms;
     unsigned int symcnt;
{
  Elf32_Internal_Shdr *symextn_hdr =
    bfd_elf_find_section (abfd, SYMEXTN_SECTION_NAME);
  unsigned int i, current_sym_idx = 0;

  /* If no symbol extension existed, then all symbol extension information
     is assumed to be zero.  */
  if (symextn_hdr == NULL)
    {
      for (i = 0; i < symcnt; i++)
	esyms[i].tc_data.hppa_arg_reloc = 0;
      return (true);
    }

  /* FIXME:  Why not use bfd_get_section_contents here?  Also should give
     memory back when we're done.  */
  /* Allocate a buffer of the appropriate size for the symextn section.  */
  symextn_hdr->contents = bfd_zalloc(abfd,symextn_hdr->sh_size);
  if (!symextn_hdr->contents)
    return false;

  /* Read in the symextn section.  */
  if (bfd_seek (abfd, symextn_hdr->sh_offset, SEEK_SET) == -1)
    return false;
  if (bfd_read ((PTR) symextn_hdr->contents, 1, symextn_hdr->sh_size, abfd)
      != symextn_hdr->sh_size)
    return false;

  /* Parse entries in the symbol extension section, updating the symtab
     entries as we go */
  for (i = 0; i < symextn_hdr->sh_size / ELF32_PARISC_SX_SIZE; i++)
    {
      symext_entryS se =
	ELF32_PARISC_SX_GET (abfd,
			     ((unsigned char *)symextn_hdr->contents
			      + i * ELF32_PARISC_SX_SIZE));
      unsigned int se_value = ELF32_PARISC_SX_VAL (se);
      unsigned int se_type = ELF32_PARISC_SX_TYPE (se);

      switch (se_type)
	{
	case PARISC_SXT_NULL:
	  break;

	case PARISC_SXT_SYMNDX:
	  if (se_value >= symcnt)
	    {
	      bfd_set_error (bfd_error_bad_value);
	      return (false);
	    }
	  current_sym_idx = se_value - 1;
	  break;

	case PARISC_SXT_ARG_RELOC:
	  esyms[current_sym_idx].tc_data.hppa_arg_reloc = se_value;
	  break;

	default:
	  bfd_set_error (bfd_error_bad_value);
	  return (false);
	}
    }
  return (true);
}

/* Read and attach the symbol extension information for the symbols
   in INPUT_BFD to the argument location hash table.  Handle locals
   if DO_LOCALS is true; likewise for globals when DO_GLOBALS is true.  */

static boolean
elf32_hppa_read_symext_info (input_bfd, symtab_hdr, args_hash_table, local_syms)
     bfd *input_bfd;
     Elf_Internal_Shdr *symtab_hdr;
     struct elf32_hppa_args_hash_table *args_hash_table;
     Elf_Internal_Sym *local_syms;
{
  asection *symextn_sec;
  bfd_byte *contents;
  unsigned int i, n_entries, current_index = 0;

  /* Get the symbol extension section for this BFD.  If no section exists
     then there's nothing to do.  Likewise if the section exists, but
     has no contents.  */
  symextn_sec = bfd_get_section_by_name (input_bfd, SYMEXTN_SECTION_NAME);
  if (symextn_sec == NULL)
    return true;

  /* Done separately so we can turn off SEC_HAS_CONTENTS (see below).  */
  if (symextn_sec->_raw_size == 0)
    {
      symextn_sec->flags &= ~SEC_HAS_CONTENTS;
      return true;
    }

  contents = (bfd_byte *) bfd_malloc ((size_t) symextn_sec->_raw_size);
  if (contents == NULL)
    return false;

  /* How gross.  We turn off SEC_HAS_CONTENTS for the input symbol extension
     sections to keep the generic ELF/BFD code from trying to do anything
     with them.  We have to undo that hack temporarily so that we can read
     in the contents with the generic code.  */
  symextn_sec->flags |= SEC_HAS_CONTENTS;
  if (bfd_get_section_contents (input_bfd, symextn_sec, contents,
				0, symextn_sec->_raw_size) == false)
    {
      symextn_sec->flags &= ~SEC_HAS_CONTENTS;
      free (contents);
      return false;
    }

  /* Gross.  Turn off SEC_HAS_CONTENTS for the input symbol extension
     sections (see above).  */
  symextn_sec->flags &= ~SEC_HAS_CONTENTS;

  n_entries = symextn_sec->_raw_size / ELF32_PARISC_SX_SIZE;
  for (i = 0; i < n_entries; i++)
    {
      symext_entryS entry =
	ELF32_PARISC_SX_GET (input_bfd, contents + i * ELF32_PARISC_SX_SIZE);
      unsigned int value = ELF32_PARISC_SX_VAL (entry);
      unsigned int type = ELF32_PARISC_SX_TYPE (entry);
      struct elf32_hppa_args_hash_entry *args_hash;

      switch (type)
	{
	case PARISC_SXT_NULL:
	  break;

	case PARISC_SXT_SYMNDX:
	  if (value >= symtab_hdr->sh_size / sizeof (Elf32_External_Sym))
	    {
	      bfd_set_error (bfd_error_bad_value);
	      free (contents);
	      return false;
	    }
	  current_index = value;
	  break;

	case PARISC_SXT_ARG_RELOC:
	  if (current_index < symtab_hdr->sh_info)
	    {
	      Elf_Internal_Shdr *hdr;
	      char *new_name;
	      const char *sym_name;
	      asection *sym_sec;
	      unsigned int len;

	      hdr = elf_elfsections (input_bfd)[local_syms[current_index].st_shndx];
	      sym_sec = hdr->bfd_section;
	      sym_name = bfd_elf_string_from_elf_section (input_bfd,
						      symtab_hdr->sh_link,
	 			        local_syms[current_index].st_name);
	      len = strlen (sym_name) + 10;
	      new_name = bfd_malloc (len);
	      if (new_name == NULL)
		{
		  free (contents);
		  return false;
		}
	      strcpy (new_name, sym_name);
	      sprintf (new_name + len - 10, "_%08x", (int)sym_sec);

	      /* This is a global symbol with argument location info.
		 We need to enter it into the hash table.  */
	      args_hash = elf32_hppa_args_hash_lookup (args_hash_table,
						       new_name, true,
						       true);
	      free (new_name);
	      if (args_hash == NULL)
		{
		  free (contents);
		  return false;
		}
	      args_hash->arg_bits = value;
	      break;
	    }
	  else if (current_index >= symtab_hdr->sh_info)
	    {
	      struct elf_link_hash_entry *h;

	      current_index -= symtab_hdr->sh_info;
	      h = elf_sym_hashes(input_bfd)[current_index];
	      /* This is a global symbol with argument location
		 information.  We need to enter it into the hash table.  */
	      args_hash = elf32_hppa_args_hash_lookup (args_hash_table,
						       h->root.root.string,
						       true, true);
	      if (args_hash == NULL)
		{
		  bfd_set_error (bfd_error_bad_value);
		  free (contents);
		  return false;
		}
	      args_hash->arg_bits = value;
	      break;
	    }
	  else
	    break;

	default:
	  bfd_set_error (bfd_error_bad_value);
	  free (contents);
	  return false;
	}
    }
  free (contents);
  return true;
}

/* Undo the generic ELF code's subtraction of section->vma from the
   value of each external symbol.  */

static boolean
elf32_hppa_add_symbol_hook (abfd, info, sym, namep, flagsp, secp, valp)
     bfd *abfd;
     struct bfd_link_info *info;
     const Elf_Internal_Sym *sym;
     const char **namep;
     flagword *flagsp;
     asection **secp;
     bfd_vma *valp;
{
  *valp += (*secp)->vma;
  return true;
}

/* Determine the name of the stub needed to perform a call assuming the
   argument relocation bits for caller and callee are in CALLER and CALLEE
   for a call from LOCATION to DESTINATION.  Copy the name into STUB_NAME.  */

static void
elf32_hppa_name_of_stub (caller, callee, location, destination, stub_name)
     unsigned int caller, callee;
     bfd_vma location, destination;
     char *stub_name;
{
  arg_reloc_type arg_reloc_types[5];

  if (elf32_hppa_arg_reloc_needed (caller, callee, arg_reloc_types))
    {
      arg_reloc_location i;
      /* Fill in the basic template.  */
      strcpy (stub_name, "__XX_XX_XX_XX_XX_stub_");

      /* Now fix the specifics.  */
      for (i = ARG0; i <= RET; i++)
	switch (arg_reloc_types[i])
	  {
	    case NO:
	      stub_name[3 * i + 2] = 'N';
	      stub_name[3 * i + 3] = 'O';
	      break;
	    case GF:
	      stub_name[3 * i + 2] = 'G';
	      stub_name[3 * i + 3] = 'F';
	      break;
	    case FG:
	      stub_name[3 * i + 2] = 'F';
	      stub_name[3 * i + 3] = 'G';
	      break;
	    case GD:
	      stub_name[3 * i + 2] = 'G';
	      stub_name[3 * i + 3] = 'D';
	      break;
	    case DG:
	      stub_name[3 * i + 2] = 'D';
	      stub_name[3 * i + 3] = 'G';
	      break;
	  }
    }
  else
    strcpy (stub_name, "_____long_branch_stub_");
}

/* Determine if an argument relocation stub is needed to perform a
   call assuming the argument relocation bits for caller and callee
   are in CALLER and CALLEE.  Place the type of relocations (if any)
   into stub_types_p.  */

static boolean
elf32_hppa_arg_reloc_needed (caller, callee, stub_types)
     unsigned int caller, callee;
     arg_reloc_type stub_types[5];
{
  /* Special case for no relocations.  */
  if (caller == 0 || callee == 0)
    return 0;
  else
    {
      arg_location caller_loc[5];
      arg_location callee_loc[5];

      /* Extract the location information for the argument and return
	 value on both the caller and callee sides.  */
      caller_loc[ARG0] = EXTRACT_ARBITS (caller, ARG0);
      callee_loc[ARG0] = EXTRACT_ARBITS (callee, ARG0);
      caller_loc[ARG1] = EXTRACT_ARBITS (caller, ARG1);
      callee_loc[ARG1] = EXTRACT_ARBITS (callee, ARG1);
      caller_loc[ARG2] = EXTRACT_ARBITS (caller, ARG2);
      callee_loc[ARG2] = EXTRACT_ARBITS (callee, ARG2);
      caller_loc[ARG3] = EXTRACT_ARBITS (caller, ARG3);
      callee_loc[ARG3] = EXTRACT_ARBITS (callee, ARG3);
      caller_loc[RET] = EXTRACT_ARBITS (caller, RET);
      callee_loc[RET] = EXTRACT_ARBITS (callee, RET);

      /* Check some special combinations.  This is necessary to
	 deal with double precision FP arguments.  */
      if (caller_loc[ARG0] == AR_FU || caller_loc[ARG1] == AR_FU)
	{
	  caller_loc[ARG0] = AR_FPDBL1;
	  caller_loc[ARG1] = AR_NO;
	}
      if (caller_loc[ARG2] == AR_FU || caller_loc[ARG3] == AR_FU)
	{
	  caller_loc[ARG2] = AR_FPDBL2;
	  caller_loc[ARG3] = AR_NO;
	}
      if (callee_loc[ARG0] == AR_FU || callee_loc[ARG1] == AR_FU)
	{
	  callee_loc[ARG0] = AR_FPDBL1;
	  callee_loc[ARG1] = AR_NO;
	}
      if (callee_loc[ARG2] == AR_FU || callee_loc[ARG3] == AR_FU)
	{
	  callee_loc[ARG2] = AR_FPDBL2;
	  callee_loc[ARG3] = AR_NO;
	}

      /* Now look up any relocation needed for each argument and the
	 return value.  */
      stub_types[ARG0] = arg_mismatches[caller_loc[ARG0]][callee_loc[ARG0]];
      stub_types[ARG1] = arg_mismatches[caller_loc[ARG1]][callee_loc[ARG1]];
      stub_types[ARG2] = arg_mismatches[caller_loc[ARG2]][callee_loc[ARG2]];
      stub_types[ARG3] = arg_mismatches[caller_loc[ARG3]][callee_loc[ARG3]];
      stub_types[RET] = ret_mismatches[caller_loc[RET]][callee_loc[RET]];

      return (stub_types[ARG0] != NO
	      || stub_types[ARG1] != NO
	      || stub_types[ARG2] != NO
	      || stub_types[ARG3] != NO
	      || stub_types[RET] != NO);
    }
}

/* Compute the size of the stub needed to call from LOCATION to DESTINATION
   (a function named SYM_NAME), with argument relocation bits CALLER and
   CALLEE.  Return zero if no stub is needed to perform such a call.  */

static unsigned int
elf32_hppa_size_of_stub (callee, caller, location, destination, sym_name)
     unsigned int callee, caller;
     bfd_vma location, destination;
     const char *sym_name;
{
  arg_reloc_type arg_reloc_types[5];

  /* Determine if a long branch or argument relocation stub is needed.
     If an argument relocation stub is needed, the relocation will be
     stored into arg_reloc_types.  */
  if (!(((int)(location - destination) > 0x3ffff)
	|| ((int)(location - destination) < (int)0xfffc0000)
	|| elf32_hppa_arg_reloc_needed (caller, callee, arg_reloc_types)))
    return 0;

  /* Some kind of stub is needed.  Determine how big it needs to be.
     First check for argument relocation stubs as they also handle
     long calls.  Then check for long calls to millicode and finally
     the normal long calls.  */
  if (arg_reloc_types[ARG0] != NO
      || arg_reloc_types[ARG1] != NO
      || arg_reloc_types[ARG2] != NO
      || arg_reloc_types[ARG3] != NO
      || arg_reloc_types[RET] != NO)
    {
      /* Some kind of argument relocation stub is needed.  */
      unsigned int len = 16;
      arg_reloc_location i;

      /* Each GR or FG relocation takes 2 insns, each GD or DG
	 relocation takes 3 insns.  Plus 4 more insns for the
         RP adjustment, ldil & (be | ble) and copy.  */
      for (i = ARG0; i <= RET; i++)
	switch (arg_reloc_types[i])
	  {
	    case GF:
	    case FG:
	      len += 8;
	      break;

	    case GD:
	    case DG:
	      len += 12;
	      break;

	    default:
	      break;
	  }

      /* Extra instructions are needed if we're relocating a return value.  */
      if (arg_reloc_types[RET] != NO)
	len += 12;

      return len;
    }
  else if (!strncmp ("$$", sym_name, 2)
      && strcmp ("$$dyncall", sym_name))
    return 12;
  else
    return 16;
}

/* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
   IN_ARGS contains the stub BFD and link info pointers.  */

static boolean
elf32_hppa_build_one_stub (gen_entry, in_args)
     struct bfd_hash_entry *gen_entry;
     PTR in_args;
{
  void **args = (void **)in_args;
  bfd *stub_bfd = (bfd *)args[0];
  struct bfd_link_info *info = (struct bfd_link_info *)args[1];
  struct elf32_hppa_stub_hash_entry *entry;
  struct elf32_hppa_stub_hash_table *stub_hash_table;
  bfd_byte *loc;
  symvalue sym_value;
  const char *sym_name;

  /* Initialize pointers to the stub hash table, the particular entry we
     are building a stub for, and where (in memory) we should place the stub
     instructions.  */
  entry = (struct elf32_hppa_stub_hash_entry *)gen_entry;
  stub_hash_table = elf32_hppa_hash_table(info)->stub_hash_table;
  loc = stub_hash_table->location;

  /* Make a note of the offset within the stubs for this entry.  */
  entry->offset = stub_hash_table->offset;

  /* The symbol's name starts at offset 22.  */
  sym_name = entry->root.string + 22;

  sym_value = (entry->target_value
	       + entry->target_section->output_offset
	       + entry->target_section->output_section->vma);

  if (strncmp ("_____long_branch_stub_", entry->root.string, 22))
    {
      /* This must be an argument or return value relocation stub.  */
      unsigned long insn;
      arg_reloc_location i;
      bfd_byte *begin_loc = loc;

      /* First the return pointer adjustment.  Depending on exact calling
	 sequence this instruction may be skipped.  */
      bfd_put_32 (stub_bfd, LDO_M4_R31_R31, loc);
      loc += 4;

      /* If we are relocating a return value, then we're going to have
	 to return into the stub.  So we have to save off the user's
	 return pointer into the stack at RP'.  */
      if (strncmp (entry->root.string + 14, "NO", 2))
	{
	  bfd_put_32 (stub_bfd, STW_R31_M8R30, loc);
	  loc += 4;
	}

      /* Iterate over the argument relocations, emitting instructions
	 to move them around as necessary.  */
      for (i = ARG0; i <= ARG3; i++)
	{
	  if (!strncmp (entry->root.string + 3 * i + 2, "GF", 2))
	    {
	      bfd_put_32 (stub_bfd, STW_ARG_M16R30 | ((26 - i) << 16), loc);
	      bfd_put_32 (stub_bfd, FLDW_M16R30_FARG | (4 + i), loc + 4);
	      loc += 8;
	    }
	  else if (!strncmp (entry->root.string + 3 * i + 2, "FG", 2))
	    {
	      bfd_put_32 (stub_bfd, FSTW_FARG_M16R30 | (4 + i), loc);
	      bfd_put_32 (stub_bfd, LDW_M16R30_ARG | ((26 - i) << 16), loc + 4);
	      loc += 8;
	    }
	  else if (!strncmp (entry->root.string + 3 * i + 2, "GD", 2))
	    {
	      bfd_put_32 (stub_bfd, STW_ARG_M12R30 | ((26 - i) << 16), loc);
	      bfd_put_32 (stub_bfd, STW_ARG_M16R30 | ((25 - i) << 16), loc + 4);
	      bfd_put_32 (stub_bfd, FLDD_M16R30_FARG | (5 + i), loc + 8);
	      loc += 12;
	    }
	  else if (!strncmp (entry->root.string + 3 * i + 2, "DG", 2))
	    {
	      bfd_put_32 (stub_bfd, FSTD_FARG_M16R30 | (5 + i), loc);
	      bfd_put_32 (stub_bfd, LDW_M12R30_ARG | ((26 - i) << 16), loc + 4);
	      bfd_put_32 (stub_bfd, LDW_M16R30_ARG | ((25 - i) << 16), loc + 8);
	      loc += 12;
	    }
	}

      /* Load the high bits of the target address into %r1.  */
      insn = hppa_rebuild_insn (stub_bfd, LDIL_R1,
				hppa_field_adjust (sym_value, 0, e_lrsel), 21);
      bfd_put_32 (stub_bfd, insn, loc);
      loc += 4;

      /* If we are relocating a return value, then we're going to have
	 to return into the stub, then perform the return value relocation.  */
      if (strncmp (entry->root.string + 14, "NO", 2))
	{
	  /* To return to the stub we "ble" to the target and copy the return
	     pointer from %r31 into %r2.  */
	  insn = hppa_rebuild_insn (stub_bfd,
				    BLE_SR4_R1,
				    hppa_field_adjust (sym_value, 0,
						       e_rrsel) >> 2,
				    17);
	  bfd_put_32 (stub_bfd, insn, loc);
	  bfd_put_32 (stub_bfd, COPY_R31_R2, loc + 4);

	  /* Reload the return pointer for our caller from the stack.  */
	  bfd_put_32 (stub_bfd, LDW_M8R30_R31, loc + 8);
	  loc += 12;

	  /* Perform the return value relocation.  */
	  if (!strncmp (entry->root.string + 14, "GF", 2))
	    {
	      bfd_put_32 (stub_bfd, STW_ARG_M16R30 | (28 << 16), loc);
	      bfd_put_32 (stub_bfd, FLDW_M16R30_FARG | 4, loc + 4);
	      loc += 8;
	    }
	  else if (!strncmp (entry->root.string + 14, "FG", 2))
	    {
	      bfd_put_32 (stub_bfd, FSTW_FARG_M16R30 | 4, loc);
	      bfd_put_32 (stub_bfd, LDW_M16R30_ARG | (28 << 16), loc + 4);
	      loc += 8;
	    }
	  else if (!strncmp (entry->root.string + 2, "GD", 2))
	    {
	      bfd_put_32 (stub_bfd, STW_ARG_M12R30 | (28 << 16), loc);
	      bfd_put_32 (stub_bfd, STW_ARG_M16R30 | (29 << 16), loc + 4);
	      bfd_put_32 (stub_bfd, FLDD_M16R30_FARG | 4, loc + 8);
	      loc += 12;
	    }
	  else if (!strncmp (entry->root.string + 2, "DG", 2))
	    {
	      bfd_put_32 (stub_bfd, FSTD_FARG_M16R30 | 4, loc);
	      bfd_put_32 (stub_bfd, LDW_M12R30_ARG | (28 << 16), loc + 4);
	      bfd_put_32 (stub_bfd, LDW_M16R30_ARG | (29 << 16), loc + 8);
	      loc += 12;
	    }
	  /* Branch back to the user's code now.  */
	  bfd_put_32 (stub_bfd, BV_N_0_R31, loc);
	  loc += 4;
	}
      else
	{
	  /* No return value relocation, so we can simply "be" to the
	     target and copy out return pointer into %r2.  */
	  insn = hppa_rebuild_insn (stub_bfd, BE_SR4_R1,
				    hppa_field_adjust (sym_value, 0,
						       e_rrsel) >> 2, 17);
	  bfd_put_32 (stub_bfd, insn, loc);
	  bfd_put_32 (stub_bfd, COPY_R31_R2, loc + 4);
	  loc += 8;
	}

      /* Update the location and offsets.  */
      stub_hash_table->location += (loc - begin_loc);
      stub_hash_table->offset += (loc - begin_loc);
    }
  else
    {
      /* Create one of two variant long branch stubs.  One for $$dyncall and
	 normal calls, the other for calls to millicode.  */
      unsigned long insn;
      int millicode_call = 0;

      if (!strncmp ("$$", sym_name, 2) && strcmp ("$$dyncall", sym_name))
	millicode_call = 1;

      /* First the return pointer adjustment.  Depending on exact calling
	 sequence this instruction may be skipped.  */
      bfd_put_32 (stub_bfd, LDO_M4_R31_R31, loc);

      /* The next two instructions are the long branch itself.  A long branch
	 is formed with "ldil" loading the upper bits of the target address
	 into a register, then branching with "be" which adds in the lower bits.
	 Long branches to millicode nullify the delay slot of the "be".  */
      insn = hppa_rebuild_insn (stub_bfd, LDIL_R1,
				hppa_field_adjust (sym_value, 0, e_lrsel), 21);
      bfd_put_32 (stub_bfd, insn, loc + 4);
      insn = hppa_rebuild_insn (stub_bfd, BE_SR4_R1 | (millicode_call ? 2 : 0),
				hppa_field_adjust (sym_value, 0, e_rrsel) >> 2,
				17);
      bfd_put_32 (stub_bfd, insn, loc + 8);

      if (!millicode_call)
	{
	  /* The sequence to call this stub places the return pointer into %r31,
	     the final target expects the return pointer in %r2, so copy the
	      return pointer into the proper register.  */
	  bfd_put_32 (stub_bfd, COPY_R31_R2, loc + 12);

	  /* Update the location and offsets.  */
	  stub_hash_table->location += 16;
	  stub_hash_table->offset += 16;
	}
      else
	{
	  /* Update the location and offsets.  */
	  stub_hash_table->location += 12;
	  stub_hash_table->offset += 12;
	}

    }
  return true;
}

/* External entry points for sizing and building linker stubs.  */

/* Build all the stubs associated with the current output file.  The
   stubs are kept in a hash table attached to the main linker hash
   table.  This is called via hppaelf_finish in the linker.  */

boolean
elf32_hppa_build_stubs (stub_bfd, info)
     bfd *stub_bfd;
     struct bfd_link_info *info;
{
  /* The stub BFD only has one section.  */
  asection *stub_sec = stub_bfd->sections;
  struct elf32_hppa_stub_hash_table *table;
  unsigned int size;
  void *args[2];

  /* So we can pass both the BFD for the stubs and the link info
     structure to the routine which actually builds stubs.  */
  args[0] = stub_bfd;
  args[1] = info;

  /* Allocate memory to hold the linker stubs.  */
  size = bfd_section_size (stub_bfd, stub_sec);
  stub_sec->contents = (unsigned char *) bfd_zalloc (stub_bfd, size);
  if (stub_sec->contents == NULL)
    return false;
  table = elf32_hppa_hash_table(info)->stub_hash_table;
  table->location = stub_sec->contents;

  /* Build the stubs as directed by the stub hash table.  */
  elf32_hppa_stub_hash_traverse (table, elf32_hppa_build_one_stub, args);

  return true;
}

/* Determine and set the size of the stub section for a final link.

   The basic idea here is to examine all the relocations looking for
   PC-relative calls to a target that is unreachable with a "bl"
   instruction or calls where the caller and callee disagree on the
   location of their arguments or return value.  */

boolean
elf32_hppa_size_stubs (stub_bfd, output_bfd, link_info)
     bfd *stub_bfd;
     bfd *output_bfd;
     struct bfd_link_info *link_info;
{
  bfd *input_bfd;
  asection *section, *stub_sec = 0;
  Elf_Internal_Shdr *symtab_hdr;
  Elf_Internal_Sym *local_syms, *isym, **all_local_syms;
  Elf32_External_Sym *ext_syms, *esym;
  unsigned int i, index, bfd_count = 0;
  struct elf32_hppa_stub_hash_table *stub_hash_table = 0;
  struct elf32_hppa_args_hash_table *args_hash_table = 0;

  /* Create and initialize the stub hash table.  */
  stub_hash_table = ((struct elf32_hppa_stub_hash_table *)
		     bfd_malloc (sizeof (struct elf32_hppa_stub_hash_table)));
  if (!stub_hash_table)
    goto error_return;

  if (!elf32_hppa_stub_hash_table_init (stub_hash_table, stub_bfd,
					elf32_hppa_stub_hash_newfunc))
    goto error_return;

  /* Likewise for the argument location hash table.  */
  args_hash_table = ((struct elf32_hppa_args_hash_table *)
		     bfd_malloc (sizeof (struct elf32_hppa_args_hash_table)));
  if (!args_hash_table)
    goto error_return;

  if (!elf32_hppa_args_hash_table_init (args_hash_table,
					elf32_hppa_args_hash_newfunc))
    goto error_return;

  /* Attach the hash tables to the main hash table.  */
  elf32_hppa_hash_table(link_info)->stub_hash_table = stub_hash_table;
  elf32_hppa_hash_table(link_info)->args_hash_table = args_hash_table;

  /* Count the number of input BFDs.  */
  for (input_bfd = link_info->input_bfds;
       input_bfd != NULL;
       input_bfd = input_bfd->link_next)
     bfd_count++;

  /* We want to read in symbol extension records only once.  To do this
     we need to read in the local symbols in parallel and save them for
     later use; so hold pointers to the local symbols in an array.  */
  all_local_syms
    = (Elf_Internal_Sym **) bfd_malloc (sizeof (Elf_Internal_Sym *)
					* bfd_count);
  if (all_local_syms == NULL)
    goto error_return;
  memset (all_local_syms, 0, sizeof (Elf_Internal_Sym *) * bfd_count);

  /* Walk over all the input BFDs adding entries to the args hash table
     for all the external functions.  */
  for (input_bfd = link_info->input_bfds, index = 0;
       input_bfd != NULL;
       input_bfd = input_bfd->link_next, index++)
    {
      /* We'll need the symbol table in a second.  */
      symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
      if (symtab_hdr->sh_info == 0)
	continue;

      /* We need an array of the local symbols attached to the input bfd.
	 Unfortunately, we're going to have to read & swap them in.  */
      local_syms
	= (Elf_Internal_Sym *) bfd_malloc (symtab_hdr->sh_info
					   * sizeof (Elf_Internal_Sym));
      if (local_syms == NULL)
	{
	  for (i = 0; i < bfd_count; i++)
	    if (all_local_syms[i])
	      free (all_local_syms[i]);
	  free (all_local_syms);
	  goto error_return;
	}
      all_local_syms[index] = local_syms;

      ext_syms
	= (Elf32_External_Sym *) bfd_malloc (symtab_hdr->sh_info
					     * sizeof (Elf32_External_Sym));
      if (ext_syms == NULL)
	{
	  for (i = 0; i < bfd_count; i++)
	    if (all_local_syms[i])
	      free (all_local_syms[i]);
	  free (all_local_syms);
	  goto error_return;
	}

      if (bfd_seek (input_bfd, symtab_hdr->sh_offset, SEEK_SET) != 0
	  || bfd_read (ext_syms, 1,
		       (symtab_hdr->sh_info
			* sizeof (Elf32_External_Sym)), input_bfd)
	  != (symtab_hdr->sh_info * sizeof (Elf32_External_Sym)))
	{
	  for (i = 0; i < bfd_count; i++)
	    if (all_local_syms[i])
	      free (all_local_syms[i]);
	  free (all_local_syms);
	  free (ext_syms);
	  goto error_return;
	}

      /* Swap the local symbols in.  */
      isym = local_syms;
      esym = ext_syms;
      for (i = 0; i < symtab_hdr->sh_info; i++, esym++, isym++)
	 bfd_elf32_swap_symbol_in (input_bfd, esym, isym);

      /* Now we can free the external symbols.  */
      free (ext_syms);

      if (elf32_hppa_read_symext_info (input_bfd, symtab_hdr, args_hash_table,
				       local_syms) == false)
	{
	  for (i = 0; i < bfd_count; i++)
	    if (all_local_syms[i])
	      free (all_local_syms[i]);
	  free (all_local_syms);
	  goto error_return;
	}
    }

  /* Magic as we know the stub bfd only has one section.  */
  stub_sec = stub_bfd->sections;

  /* If generating a relocateable output file, then we don't
     have to examine the relocs.  */
  if (link_info->relocateable)
    {
      for (i = 0; i < bfd_count; i++)
	if (all_local_syms[i])
	  free (all_local_syms[i]);
      free (all_local_syms);
      return true;
    }

  /* Now that we have argument location information for all the global
     functions we can start looking for stubs.  */
  for (input_bfd = link_info->input_bfds, index = 0;
       input_bfd != NULL;
       input_bfd = input_bfd->link_next, index++)
    {
      /* We'll need the symbol table in a second.  */
      symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
      if (symtab_hdr->sh_info == 0)
	continue;

      local_syms = all_local_syms[index];

      /* Walk over each section attached to the input bfd.  */
      for (section = input_bfd->sections;
	   section != NULL;
	   section = section->next)
	{
	  Elf_Internal_Shdr *input_rel_hdr;
	  Elf32_External_Rela *external_relocs, *erelaend, *erela;
	  Elf_Internal_Rela *internal_relocs, *irelaend, *irela;

	  /* If there aren't any relocs, then there's nothing to do.  */
	  if ((section->flags & SEC_RELOC) == 0
	      || section->reloc_count == 0)
	    continue;

	  /* Allocate space for the external relocations.  */
	  external_relocs
	    = ((Elf32_External_Rela *)
	       bfd_malloc (section->reloc_count
			   * sizeof (Elf32_External_Rela)));
	  if (external_relocs == NULL)
	    {
	      for (i = 0; i < bfd_count; i++)
		if (all_local_syms[i])
		  free (all_local_syms[i]);
	      free (all_local_syms);
	      goto error_return;
	    }

	  /* Likewise for the internal relocations.  */
	  internal_relocs
	    = ((Elf_Internal_Rela *)
	       bfd_malloc (section->reloc_count * sizeof (Elf_Internal_Rela)));
	  if (internal_relocs == NULL)
	    {
	      free (external_relocs);
	      for (i = 0; i < bfd_count; i++)
		if (all_local_syms[i])
		  free (all_local_syms[i]);
	      free (all_local_syms);
	      goto error_return;
	    }

	  /* Read in the external relocs.  */
	  input_rel_hdr = &elf_section_data (section)->rel_hdr;
	  if (bfd_seek (input_bfd, input_rel_hdr->sh_offset, SEEK_SET) != 0
	      || bfd_read (external_relocs, 1, input_rel_hdr->sh_size,
			   input_bfd) != input_rel_hdr->sh_size)
	    {
	      free (external_relocs);
	      free (internal_relocs);
	      for (i = 0; i < bfd_count; i++)
		if (all_local_syms[i])
		  free (all_local_syms[i]);
	      free (all_local_syms);
	      goto error_return;
	    }

	  /* Swap in the relocs.  */
	  erela = external_relocs;
	  erelaend = erela + section->reloc_count;
	  irela = internal_relocs;
	  for (; erela < erelaend; erela++, irela++)
	    bfd_elf32_swap_reloca_in (input_bfd, erela, irela);

	  /* We're done with the external relocs, free them.  */
	  free (external_relocs);

	  /* Now examine each relocation.  */
	  irela = internal_relocs;
	  irelaend = irela + section->reloc_count;
	  for (; irela < irelaend; irela++)
	    {
	      long r_type, callee_args, caller_args, size_of_stub;
	      unsigned long r_index;
	      struct elf_link_hash_entry *hash;
	      struct elf32_hppa_stub_hash_entry *stub_hash;
	      struct elf32_hppa_args_hash_entry *args_hash;
	      Elf_Internal_Sym *sym;
	      asection *sym_sec;
	      const char *sym_name;
	      symvalue sym_value;
	      bfd_vma location, destination;
	      char *new_name = NULL;

	      r_type = ELF32_R_TYPE (irela->r_info);
	      r_index = ELF32_R_SYM (irela->r_info);

	      if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
		{
		  bfd_set_error (bfd_error_bad_value);
		  free (internal_relocs);
		  for (i = 0; i < bfd_count; i++)
		    if (all_local_syms[i])
		      free (all_local_syms[i]);
		  free (all_local_syms);
		  goto error_return;
		}

	      /* Only look for stubs on call instructions or plabel
		 references.  */
	      if (r_type != R_PARISC_PCREL17F
		  && r_type != R_PARISC_PLABEL32
		  && r_type != R_PARISC_PLABEL21L
		  && r_type != R_PARISC_PLABEL14R)
		continue;

	      /* Now determine the call target, its name, value, section
		 and argument relocation bits.  */
	      hash = NULL;
	      sym = NULL;
	      sym_sec = NULL;
	      if (r_index < symtab_hdr->sh_info)
		{
		  /* It's a local symbol.  */
		  Elf_Internal_Shdr *hdr;

		  sym = local_syms + r_index;
		  hdr = elf_elfsections (input_bfd)[sym->st_shndx];
		  sym_sec = hdr->bfd_section;
		  sym_name = bfd_elf_string_from_elf_section (input_bfd,
							      symtab_hdr->sh_link,
							      sym->st_name);
		  sym_value = (ELF_ST_TYPE (sym->st_info) == STT_SECTION
			       ? 0 : sym->st_value);
		  destination = (sym_value
				 + sym_sec->output_offset
				 + sym_sec->output_section->vma);

		  /* Tack on an ID so we can uniquely identify this local
		     symbol in the stub or arg info hash tables.  */
		  new_name = bfd_malloc (strlen (sym_name) + 10);
		  if (new_name == 0)
		    {
		      free (internal_relocs);
		      for (i = 0; i < bfd_count; i++)
			if (all_local_syms[i])
			  free (all_local_syms[i]);
		      free (all_local_syms);
		      goto error_return;
		    }
		  sprintf (new_name, "%s_%08x", sym_name, (int)sym_sec);
		  sym_name = new_name;
		}
	      else
		{
		  /* It's an external symbol.  */
		  long index;

		  index = r_index - symtab_hdr->sh_info;
		  hash = elf_sym_hashes (input_bfd)[index];
		  if (hash->root.type == bfd_link_hash_defined
		      || hash->root.type == bfd_link_hash_defweak)
		    {
		      sym_sec = hash->root.u.def.section;
		      sym_name = hash->root.root.string;
		      sym_value = hash->root.u.def.value;
		      destination = (sym_value
				     + sym_sec->output_offset
				     + sym_sec->output_section->vma);
		    }
		  else
		    {
		      bfd_set_error (bfd_error_bad_value);
		      free (internal_relocs);
		      for (i = 0; i < bfd_count; i++)
			if (all_local_syms[i])
			  free (all_local_syms[i]);
		      free (all_local_syms);
		      goto error_return;
		    }
		}

	      args_hash = elf32_hppa_args_hash_lookup (args_hash_table,
						       sym_name, false, false);

	      /* Get both caller and callee argument information.  */
	      if (args_hash == NULL)
		callee_args = 0;
	      else
		callee_args = args_hash->arg_bits;

	      /* For calls get the caller's bits from the addend of
		 the call relocation.  For PLABELS the caller's bits
		 are assumed to have all args & return values in general
		 registers (0x155).  */
	      if (r_type == R_PARISC_PCREL17F)
		caller_args = HPPA_R_ARG_RELOC (irela->r_addend);
	      else
		caller_args = 0x155;

	      /* Now determine where the call point is.  */
	      location = (section->output_offset
			  + section->output_section->vma
			  + irela->r_offset);

	      /* We only care about the destination for PCREL function
		 calls (eg. we don't care for PLABELS).  */
	      if (r_type != R_PARISC_PCREL17F)
		location = destination;

	      /* Determine what (if any) linker stub is needed and its
		 size (in bytes).  */
	      size_of_stub = elf32_hppa_size_of_stub (callee_args,
						      caller_args,
						      location,
						      destination,
						      sym_name);
	      if (size_of_stub != 0)
		{
		  char *stub_name;
		  unsigned int len;

		  /* Get the name of this stub.  */
		  len = strlen (sym_name);
		  len += 23;

		  stub_name = bfd_malloc (len);
		  if (!stub_name)
		    {
		      /* Because sym_name was mallocd above for local
			 symbols.  */
		      if (r_index < symtab_hdr->sh_info)
			free (new_name);

		      free (internal_relocs);
		      for (i = 0; i < bfd_count; i++)
			if (all_local_syms[i])
			  free (all_local_syms[i]);
		      free (all_local_syms);
		      goto error_return;
		    }
		  elf32_hppa_name_of_stub (caller_args, callee_args,
					   location, destination, stub_name);
		  strcat (stub_name + 22, sym_name);

		  /* Because sym_name was malloced above for local symbols.  */
		  if (r_index < symtab_hdr->sh_info)
		    free (new_name);

		  stub_hash
		    = elf32_hppa_stub_hash_lookup (stub_hash_table, stub_name,
						   false, false);
		  if (stub_hash != NULL)
		    {
		      /* The proper stub has already been created, nothing
			 else to do.  */
		      free (stub_name);
		    }
		  else
		    {
		      bfd_set_section_size (stub_bfd, stub_sec,
					    (bfd_section_size (stub_bfd,
							       stub_sec)
					     + size_of_stub));

		      /* Enter this entry into the linker stub hash table.  */
		      stub_hash
			= elf32_hppa_stub_hash_lookup (stub_hash_table,
						       stub_name, true, true);
		      if (stub_hash == NULL)
			{
			  free (stub_name);
			  free (internal_relocs);
			  for (i = 0; i < bfd_count; i++)
			    if (all_local_syms[i])
			      free (all_local_syms[i]);
			  free (all_local_syms);
			  goto error_return;
			}

		      /* We'll need these to determine the address that the
			 stub will branch to.  */
		      stub_hash->target_value = sym_value;
		      stub_hash->target_section = sym_sec;
		    }
		  free (stub_name);
		}
	    }
	  /* We're done with the internal relocs, free them.  */
	  free (internal_relocs);
	}
    }
  /* We're done with the local symbols, free them.  */
  for (i = 0; i < bfd_count; i++)
    if (all_local_syms[i])
      free (all_local_syms[i]);
  free (all_local_syms);
  return true;

error_return:
  /* Return gracefully, avoiding dangling references to the hash tables.  */
  if (stub_hash_table)
    {
      elf32_hppa_hash_table(link_info)->stub_hash_table = NULL;
      free (stub_hash_table);
    }
  if (args_hash_table)
    {
      elf32_hppa_hash_table(link_info)->args_hash_table = NULL;
      free (args_hash_table);
    }
  /* Set the size of the stub section to zero since we're never going
     to create them.   Avoids losing when we try to get its contents
     too.  */
  bfd_set_section_size (stub_bfd, stub_sec, 0);
  return false;
}

/* Misc BFD support code.  */
#define bfd_elf32_bfd_reloc_type_lookup		elf_hppa_reloc_type_lookup
#define bfd_elf32_bfd_is_local_label_name	hppa_elf_is_local_label_name

/* Symbol extension stuff.  */
#define bfd_elf32_set_section_contents		elf32_hppa_set_section_contents
#define elf_info_to_howto			elf32_hppa_info_to_howto
#define elf_backend_symbol_table_processing \
  elf32_hppa_backend_symbol_table_processing
#define elf_backend_begin_write_processing \
  elf32_hppa_backend_begin_write_processing
#define elf_backend_final_write_processing \
  elf32_hppa_backend_final_write_processing

/* Stuff for the BFD linker.  */
#define elf_backend_relocate_section		elf32_hppa_relocate_section
#define elf_backend_add_symbol_hook		elf32_hppa_add_symbol_hook
#define elf_backend_link_output_symbol_hook \
  elf32_hppa_link_output_symbol_hook
#define bfd_elf32_bfd_link_hash_table_create \
  elf32_hppa_link_hash_table_create

#define TARGET_BIG_SYM		bfd_elf32_hppa_vec
#define TARGET_BIG_NAME		"elf32-hppa"
#define ELF_ARCH		bfd_arch_hppa
#define ELF_MACHINE_CODE	EM_PARISC
#define ELF_MAXPAGESIZE		0x1000

#include "elf32-target.h"