summaryrefslogtreecommitdiff
path: root/bfd/coff-h8300.c
blob: 221a2171aa344161fbaa66ad9bad899f5a87e215 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
/* BFD back-end for Renesas H8/300 COFF binaries.
   Copyright (C) 1990-2014 Free Software Foundation, Inc.
   Written by Steve Chamberlain, <sac@cygnus.com>.

   This file is part of BFD, the Binary File Descriptor library.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
   MA 02110-1301, USA.  */

#include "sysdep.h"
#include "bfd.h"
#include "libbfd.h"
#include "bfdlink.h"
#include "genlink.h"
#include "coff/h8300.h"
#include "coff/internal.h"
#include "libcoff.h"
#include "libiberty.h"

#define COFF_DEFAULT_SECTION_ALIGNMENT_POWER (1)

/* We derive a hash table from the basic BFD hash table to
   hold entries in the function vector.  Aside from the
   info stored by the basic hash table, we need the offset
   of a particular entry within the hash table as well as
   the offset where we'll add the next entry.  */

struct funcvec_hash_entry
  {
    /* The basic hash table entry.  */
    struct bfd_hash_entry root;

    /* The offset within the vectors section where
       this entry lives.  */
    bfd_vma offset;
  };

struct funcvec_hash_table
  {
    /* The basic hash table.  */
    struct bfd_hash_table root;

    bfd *abfd;

    /* Offset at which we'll add the next entry.  */
    unsigned int offset;
  };


/* To lookup a value in the function vector hash table.  */
#define funcvec_hash_lookup(table, string, create, copy) \
  ((struct funcvec_hash_entry *) \
   bfd_hash_lookup (&(table)->root, (string), (create), (copy)))

/* The derived h8300 COFF linker table.  Note it's derived from
   the generic linker hash table, not the COFF backend linker hash
   table!  We use this to attach additional data structures we
   need while linking on the h8300.  */
struct h8300_coff_link_hash_table {
  /* The main hash table.  */
  struct generic_link_hash_table root;

  /* Section for the vectors table.  This gets attached to a
     random input bfd, we keep it here for easy access.  */
  asection *vectors_sec;

  /* Hash table of the functions we need to enter into the function
     vector.  */
  struct funcvec_hash_table *funcvec_hash_table;
};

static struct bfd_link_hash_table *h8300_coff_link_hash_table_create (bfd *);

/* Get the H8/300 COFF linker hash table from a link_info structure.  */

#define h8300_coff_hash_table(p) \
  ((struct h8300_coff_link_hash_table *) ((coff_hash_table (p))))

/* Initialize fields within a funcvec hash table entry.  Called whenever
   a new entry is added to the funcvec hash table.  */

static struct bfd_hash_entry *
funcvec_hash_newfunc (struct bfd_hash_entry *entry,
		      struct bfd_hash_table *gen_table,
		      const char *string)
{
  struct funcvec_hash_entry *ret;
  struct funcvec_hash_table *table;

  ret = (struct funcvec_hash_entry *) entry;
  table = (struct funcvec_hash_table *) gen_table;

  /* Allocate the structure if it has not already been allocated by a
     subclass.  */
  if (ret == NULL)
    ret = ((struct funcvec_hash_entry *)
	   bfd_hash_allocate (gen_table,
			      sizeof (struct funcvec_hash_entry)));
  if (ret == NULL)
    return NULL;

  /* Call the allocation method of the superclass.  */
  ret = ((struct funcvec_hash_entry *)
	 bfd_hash_newfunc ((struct bfd_hash_entry *) ret, gen_table, string));

  if (ret == NULL)
    return NULL;

  /* Note where this entry will reside in the function vector table.  */
  ret->offset = table->offset;

  /* Bump the offset at which we store entries in the function
     vector.  We'd like to bump up the size of the vectors section,
     but it's not easily available here.  */
 switch (bfd_get_mach (table->abfd))
   {
   case bfd_mach_h8300:
   case bfd_mach_h8300hn:
   case bfd_mach_h8300sn:
     table->offset += 2;
     break;
   case bfd_mach_h8300h:
   case bfd_mach_h8300s:
     table->offset += 4;
     break;
   default:
     return NULL;
   }

  /* Everything went OK.  */
  return (struct bfd_hash_entry *) ret;
}

/* Initialize the function vector hash table.  */

static bfd_boolean
funcvec_hash_table_init (struct funcvec_hash_table *table,
			 bfd *abfd,
			 struct bfd_hash_entry *(*newfunc)
			   (struct bfd_hash_entry *,
			    struct bfd_hash_table *,
			    const char *),
			 unsigned int entsize)
{
  /* Initialize our local fields, then call the generic initialization
     routine.  */
  table->offset = 0;
  table->abfd = abfd;
  return (bfd_hash_table_init (&table->root, newfunc, entsize));
}

/* Create the derived linker hash table.  We use a derived hash table
   basically to hold "static" information during an H8/300 coff link
   without using static variables.  */

static struct bfd_link_hash_table *
h8300_coff_link_hash_table_create (bfd *abfd)
{
  struct h8300_coff_link_hash_table *ret;
  bfd_size_type amt = sizeof (struct h8300_coff_link_hash_table);

  ret = (struct h8300_coff_link_hash_table *) bfd_zmalloc (amt);
  if (ret == NULL)
    return NULL;
  if (!_bfd_link_hash_table_init (&ret->root.root, abfd,
				  _bfd_generic_link_hash_newfunc,
				  sizeof (struct generic_link_hash_entry)))
    {
      free (ret);
      return NULL;
    }

  return &ret->root.root;
}

/* Special handling for H8/300 relocs.
   We only come here for pcrel stuff and return normally if not an -r link.
   When doing -r, we can't do any arithmetic for the pcrel stuff, because
   the code in reloc.c assumes that we can manipulate the targets of
   the pcrel branches.  This isn't so, since the H8/300 can do relaxing,
   which means that the gap after the instruction may not be enough to
   contain the offset required for the branch, so we have to use only
   the addend until the final link.  */

static bfd_reloc_status_type
special (bfd *      abfd ATTRIBUTE_UNUSED,
	 arelent *  reloc_entry ATTRIBUTE_UNUSED,
	 asymbol *  symbol ATTRIBUTE_UNUSED,
	 void *     data ATTRIBUTE_UNUSED,
	 asection * input_section ATTRIBUTE_UNUSED,
	 bfd *      output_bfd,
	 char **    error_message ATTRIBUTE_UNUSED)
{
  if (output_bfd == (bfd *) NULL)
    return bfd_reloc_continue;

  /* Adjust the reloc address to that in the output section.  */
  reloc_entry->address += input_section->output_offset;
  return bfd_reloc_ok;
}

static reloc_howto_type howto_table[] =
{
  HOWTO (R_RELBYTE, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8", FALSE, 0x000000ff, 0x000000ff, FALSE),
  HOWTO (R_RELWORD, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
  HOWTO (R_RELLONG, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "32", FALSE, 0xffffffff, 0xffffffff, FALSE),
  HOWTO (R_PCRBYTE, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8", FALSE, 0x000000ff, 0x000000ff, TRUE),
  HOWTO (R_PCRWORD, 0, 1, 16, TRUE, 0, complain_overflow_signed, special, "DISP16", FALSE, 0x0000ffff, 0x0000ffff, TRUE),
  HOWTO (R_PCRLONG, 0, 2, 32, TRUE, 0, complain_overflow_signed, special, "DISP32", FALSE, 0xffffffff, 0xffffffff, TRUE),
  HOWTO (R_MOV16B1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:16", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
  HOWTO (R_MOV16B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:16", FALSE, 0x000000ff, 0x000000ff, FALSE),
  HOWTO (R_JMP1, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "16/pcrel", FALSE, 0x0000ffff, 0x0000ffff, FALSE),
  HOWTO (R_JMP2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pcrecl/16", FALSE, 0x000000ff, 0x000000ff, FALSE),
  HOWTO (R_JMPL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield, special, "24/pcrell", FALSE, 0x00ffffff, 0x00ffffff, FALSE),
  HOWTO (R_JMPL2, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "pc8/24", FALSE, 0x000000ff, 0x000000ff, FALSE),
  HOWTO (R_MOV24B1, 0, 1, 32, FALSE, 0, complain_overflow_bitfield, special, "relaxable mov.b:24", FALSE, 0xffffffff, 0xffffffff, FALSE),
  HOWTO (R_MOV24B2, 0, 1, 8, FALSE, 0, complain_overflow_bitfield, special, "relaxed mov.b:24", FALSE, 0x0000ffff, 0x0000ffff, FALSE),

  /* An indirect reference to a function.  This causes the function's address
     to be added to the function vector in lo-mem and puts the address of
     the function vector's entry in the jsr instruction.  */
  HOWTO (R_MEM_INDIRECT, 0, 0, 8, FALSE, 0, complain_overflow_bitfield, special, "8/indirect", FALSE, 0x000000ff, 0x000000ff, FALSE),

  /* Internal reloc for relaxing.  This is created when a 16-bit pc-relative
     branch is turned into an 8-bit pc-relative branch.  */
  HOWTO (R_PCRWORD_B, 0, 0, 8, TRUE, 0, complain_overflow_bitfield, special, "relaxed bCC:16", FALSE, 0x000000ff, 0x000000ff, FALSE),

  HOWTO (R_MOVL1, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,special, "32/24 relaxable move", FALSE, 0xffffffff, 0xffffffff, FALSE),

  HOWTO (R_MOVL2, 0, 1, 16, FALSE, 0, complain_overflow_bitfield, special, "32/24 relaxed move", FALSE, 0x0000ffff, 0x0000ffff, FALSE),

  HOWTO (R_BCC_INV, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "DISP8 inverted", FALSE, 0x000000ff, 0x000000ff, TRUE),

  HOWTO (R_JMP_DEL, 0, 0, 8, TRUE, 0, complain_overflow_signed, special, "Deleted jump", FALSE, 0x000000ff, 0x000000ff, TRUE),
};

/* Turn a howto into a reloc number.  */

#define SELECT_RELOC(x,howto) \
  { x.r_type = select_reloc (howto); }

#define BADMAG(x) (H8300BADMAG (x) && H8300HBADMAG (x) && H8300SBADMAG (x) \
				   && H8300HNBADMAG(x) && H8300SNBADMAG(x))
#define H8300 1			/* Customize coffcode.h  */
#define __A_MAGIC_SET__

/* Code to swap in the reloc.  */
#define SWAP_IN_RELOC_OFFSET	H_GET_32
#define SWAP_OUT_RELOC_OFFSET	H_PUT_32
#define SWAP_OUT_RELOC_EXTRA(abfd, src, dst) \
  dst->r_stuff[0] = 'S'; \
  dst->r_stuff[1] = 'C';

static int
select_reloc (reloc_howto_type *howto)
{
  return howto->type;
}

/* Code to turn a r_type into a howto ptr, uses the above howto table.  */

static void
rtype2howto (arelent *internal, struct internal_reloc *dst)
{
  switch (dst->r_type)
    {
    case R_RELBYTE:
      internal->howto = howto_table + 0;
      break;
    case R_RELWORD:
      internal->howto = howto_table + 1;
      break;
    case R_RELLONG:
      internal->howto = howto_table + 2;
      break;
    case R_PCRBYTE:
      internal->howto = howto_table + 3;
      break;
    case R_PCRWORD:
      internal->howto = howto_table + 4;
      break;
    case R_PCRLONG:
      internal->howto = howto_table + 5;
      break;
    case R_MOV16B1:
      internal->howto = howto_table + 6;
      break;
    case R_MOV16B2:
      internal->howto = howto_table + 7;
      break;
    case R_JMP1:
      internal->howto = howto_table + 8;
      break;
    case R_JMP2:
      internal->howto = howto_table + 9;
      break;
    case R_JMPL1:
      internal->howto = howto_table + 10;
      break;
    case R_JMPL2:
      internal->howto = howto_table + 11;
      break;
    case R_MOV24B1:
      internal->howto = howto_table + 12;
      break;
    case R_MOV24B2:
      internal->howto = howto_table + 13;
      break;
    case R_MEM_INDIRECT:
      internal->howto = howto_table + 14;
      break;
    case R_PCRWORD_B:
      internal->howto = howto_table + 15;
      break;
    case R_MOVL1:
      internal->howto = howto_table + 16;
      break;
    case R_MOVL2:
      internal->howto = howto_table + 17;
      break;
    case R_BCC_INV:
      internal->howto = howto_table + 18;
      break;
    case R_JMP_DEL:
      internal->howto = howto_table + 19;
      break;
    default:
      abort ();
      break;
    }
}

#define RTYPE2HOWTO(internal, relocentry) rtype2howto (internal, relocentry)

/* Perform any necessary magic to the addend in a reloc entry.  */

#define CALC_ADDEND(abfd, symbol, ext_reloc, cache_ptr) \
 cache_ptr->addend = ext_reloc.r_offset;

#define RELOC_PROCESSING(relent,reloc,symbols,abfd,section) \
 reloc_processing (relent, reloc, symbols, abfd, section)

static void
reloc_processing (arelent *relent, struct internal_reloc *reloc,
		  asymbol **symbols, bfd *abfd, asection *section)
{
  relent->address = reloc->r_vaddr;
  rtype2howto (relent, reloc);

  if (((int) reloc->r_symndx) > 0)
    relent->sym_ptr_ptr = symbols + obj_convert (abfd)[reloc->r_symndx];
  else
    relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;

  relent->addend = reloc->r_offset;
  relent->address -= section->vma;
}

static bfd_boolean
h8300_symbol_address_p (bfd *abfd, asection *input_section, bfd_vma address)
{
  asymbol **s;

  s = _bfd_generic_link_get_symbols (abfd);
  BFD_ASSERT (s != (asymbol **) NULL);

  /* Search all the symbols for one in INPUT_SECTION with
     address ADDRESS.  */
  while (*s)
    {
      asymbol *p = *s;

      if (p->section == input_section
	  && (input_section->output_section->vma
	      + input_section->output_offset
	      + p->value) == address)
	return TRUE;
      s++;
    }
  return FALSE;
}

/* If RELOC represents a relaxable instruction/reloc, change it into
   the relaxed reloc, notify the linker that symbol addresses
   have changed (bfd_perform_slip) and return how much the current
   section has shrunk by.

   FIXME: Much of this code has knowledge of the ordering of entries
   in the howto table.  This needs to be fixed.  */

static int
h8300_reloc16_estimate (bfd *abfd, asection *input_section, arelent *reloc,
			unsigned int shrink, struct bfd_link_info *link_info)
{
  bfd_vma value;
  bfd_vma dot;
  bfd_vma gap;
  static asection *last_input_section = NULL;
  static arelent *last_reloc = NULL;

  /* The address of the thing to be relocated will have moved back by
     the size of the shrink - but we don't change reloc->address here,
     since we need it to know where the relocation lives in the source
     uncooked section.  */
  bfd_vma address = reloc->address - shrink;

  if (input_section != last_input_section)
    last_reloc = NULL;

  /* Only examine the relocs which might be relaxable.  */
  switch (reloc->howto->type)
    {
      /* This is the 16-/24-bit absolute branch which could become an
	 8-bit pc-relative branch.  */
    case R_JMP1:
    case R_JMPL1:
      /* Get the address of the target of this branch.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);

      /* Get the address of the next instruction (not the reloc).  */
      dot = (input_section->output_section->vma
	     + input_section->output_offset + address);

      /* Adjust for R_JMP1 vs R_JMPL1.  */
      dot += (reloc->howto->type == R_JMP1 ? 1 : 2);

      /* Compute the distance from this insn to the branch target.  */
      gap = value - dot;

      /* If the distance is within -128..+128 inclusive, then we can relax
	 this jump.  +128 is valid since the target will move two bytes
	 closer if we do relax this branch.  */
      if ((int) gap >= -128 && (int) gap <= 128)
	{
	  bfd_byte code;

	  if (!bfd_get_section_contents (abfd, input_section, & code,
					 reloc->address, 1))
	    break;
	  code = bfd_get_8 (abfd, & code);

	  /* It's possible we may be able to eliminate this branch entirely;
	     if the previous instruction is a branch around this instruction,
	     and there's no label at this instruction, then we can reverse
	     the condition on the previous branch and eliminate this jump.

	       original:			new:
		 bCC lab1			bCC' lab2
		 jmp lab2
		lab1:				lab1:

	     This saves 4 bytes instead of two, and should be relatively
	     common.

	     Only perform this optimisation for jumps (code 0x5a) not
	     subroutine calls, as otherwise it could transform:

			     mov.w   r0,r0
			     beq     .L1
			     jsr     @_bar
		      .L1:   rts
		      _bar:  rts
	     into:
			     mov.w   r0,r0
			     bne     _bar
			     rts
		      _bar:  rts

	     which changes the call (jsr) into a branch (bne).  */
	  if (code == 0x5a
	      && gap <= 126
	      && last_reloc
	      && last_reloc->howto->type == R_PCRBYTE)
	    {
	      bfd_vma last_value;
	      last_value = bfd_coff_reloc16_get_value (last_reloc, link_info,
						       input_section) + 1;

	      if (last_value == dot + 2
		  && last_reloc->address + 1 == reloc->address
		  && !h8300_symbol_address_p (abfd, input_section, dot - 2))
		{
		  reloc->howto = howto_table + 19;
		  last_reloc->howto = howto_table + 18;
		  last_reloc->sym_ptr_ptr = reloc->sym_ptr_ptr;
		  last_reloc->addend = reloc->addend;
		  shrink += 4;
		  bfd_perform_slip (abfd, 4, input_section, address);
		  break;
		}
	    }

	  /* Change the reloc type.  */
	  reloc->howto = reloc->howto + 1;

	  /* This shrinks this section by two bytes.  */
	  shrink += 2;
	  bfd_perform_slip (abfd, 2, input_section, address);
	}
      break;

    /* This is the 16-bit pc-relative branch which could become an 8-bit
       pc-relative branch.  */
    case R_PCRWORD:
      /* Get the address of the target of this branch, add one to the value
	 because the addend field in PCrel jumps is off by -1.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section) + 1;

      /* Get the address of the next instruction if we were to relax.  */
      dot = input_section->output_section->vma +
	input_section->output_offset + address;

      /* Compute the distance from this insn to the branch target.  */
      gap = value - dot;

      /* If the distance is within -128..+128 inclusive, then we can relax
	 this jump.  +128 is valid since the target will move two bytes
	 closer if we do relax this branch.  */
      if ((int) gap >= -128 && (int) gap <= 128)
	{
	  /* Change the reloc type.  */
	  reloc->howto = howto_table + 15;

	  /* This shrinks this section by two bytes.  */
	  shrink += 2;
	  bfd_perform_slip (abfd, 2, input_section, address);
	}
      break;

    /* This is a 16-bit absolute address in a mov.b insn, which can
       become an 8-bit absolute address if it's in the right range.  */
    case R_MOV16B1:
      /* Get the address of the data referenced by this mov.b insn.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      value = bfd_h8300_pad_address (abfd, value);

      /* If the address is in the top 256 bytes of the address space
	 then we can relax this instruction.  */
      if (value >= 0xffffff00u)
	{
	  /* Change the reloc type.  */
	  reloc->howto = reloc->howto + 1;

	  /* This shrinks this section by two bytes.  */
	  shrink += 2;
	  bfd_perform_slip (abfd, 2, input_section, address);
	}
      break;

    /* Similarly for a 24-bit absolute address in a mov.b.  Note that
       if we can't relax this into an 8-bit absolute, we'll fall through
       and try to relax it into a 16-bit absolute.  */
    case R_MOV24B1:
      /* Get the address of the data referenced by this mov.b insn.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      value = bfd_h8300_pad_address (abfd, value);

      if (value >= 0xffffff00u)
	{
	  /* Change the reloc type.  */
	  reloc->howto = reloc->howto + 1;

	  /* This shrinks this section by four bytes.  */
	  shrink += 4;
	  bfd_perform_slip (abfd, 4, input_section, address);

	  /* Done with this reloc.  */
	  break;
	}

      /* FALLTHROUGH and try to turn the 24-/32-bit reloc into a 16-bit
	 reloc.  */

    /* This is a 24-/32-bit absolute address in a mov insn, which can
       become an 16-bit absolute address if it's in the right range.  */
    case R_MOVL1:
      /* Get the address of the data referenced by this mov insn.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      value = bfd_h8300_pad_address (abfd, value);

      /* If the address is a sign-extended 16-bit value then we can
         relax this instruction.  */
      if (value <= 0x7fff || value >= 0xffff8000u)
	{
	  /* Change the reloc type.  */
	  reloc->howto = howto_table + 17;

	  /* This shrinks this section by two bytes.  */
	  shrink += 2;
	  bfd_perform_slip (abfd, 2, input_section, address);
	}
      break;

      /* No other reloc types represent relaxing opportunities.  */
    default:
      break;
    }

  last_reloc = reloc;
  last_input_section = input_section;
  return shrink;
}

/* Handle relocations for the H8/300, including relocs for relaxed
   instructions.

   FIXME: Not all relocations check for overflow!  */

static void
h8300_reloc16_extra_cases (bfd *abfd, struct bfd_link_info *link_info,
			   struct bfd_link_order *link_order, arelent *reloc,
			   bfd_byte *data, unsigned int *src_ptr,
			   unsigned int *dst_ptr)
{
  unsigned int src_address = *src_ptr;
  unsigned int dst_address = *dst_ptr;
  asection *input_section = link_order->u.indirect.section;
  bfd_vma value;
  bfd_vma dot;
  int gap, tmp;
  unsigned char temp_code;

  switch (reloc->howto->type)
    {
    /* Generic 8-bit pc-relative relocation.  */
    case R_PCRBYTE:
      /* Get the address of the target of this branch.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);

      dot = (input_section->output_offset
	     + dst_address
	     + link_order->u.indirect.section->output_section->vma);

      gap = value - dot;

      /* Sanity check.  */
      if (gap < -128 || gap > 126)
	{
	  if (! ((*link_info->callbacks->reloc_overflow)
		 (link_info, NULL,
		  bfd_asymbol_name (*reloc->sym_ptr_ptr),
		  reloc->howto->name, reloc->addend, input_section->owner,
		  input_section, reloc->address)))
	    abort ();
	}

      /* Everything looks OK.  Apply the relocation and update the
	 src/dst address appropriately.  */
      bfd_put_8 (abfd, gap, data + dst_address);
      dst_address++;
      src_address++;

      /* All done.  */
      break;

    /* Generic 16-bit pc-relative relocation.  */
    case R_PCRWORD:
      /* Get the address of the target of this branch.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);

      /* Get the address of the instruction (not the reloc).  */
      dot = (input_section->output_offset
	     + dst_address
	     + link_order->u.indirect.section->output_section->vma + 1);

      gap = value - dot;

      /* Sanity check.  */
      if (gap > 32766 || gap < -32768)
	{
	  if (! ((*link_info->callbacks->reloc_overflow)
		 (link_info, NULL,
		  bfd_asymbol_name (*reloc->sym_ptr_ptr),
		  reloc->howto->name, reloc->addend, input_section->owner,
		  input_section, reloc->address)))
	    abort ();
	}

      /* Everything looks OK.  Apply the relocation and update the
	 src/dst address appropriately.  */
      bfd_put_16 (abfd, (bfd_vma) gap, data + dst_address);
      dst_address += 2;
      src_address += 2;

      /* All done.  */
      break;

    /* Generic 8-bit absolute relocation.  */
    case R_RELBYTE:
      /* Get the address of the object referenced by this insn.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);

      bfd_put_8 (abfd, value & 0xff, data + dst_address);
      dst_address += 1;
      src_address += 1;

      /* All done.  */
      break;

    /* Various simple 16-bit absolute relocations.  */
    case R_MOV16B1:
    case R_JMP1:
    case R_RELWORD:
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      bfd_put_16 (abfd, value, data + dst_address);
      dst_address += 2;
      src_address += 2;
      break;

    /* Various simple 24-/32-bit absolute relocations.  */
    case R_MOV24B1:
    case R_MOVL1:
    case R_RELLONG:
      /* Get the address of the target of this branch.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      bfd_put_32 (abfd, value, data + dst_address);
      dst_address += 4;
      src_address += 4;
      break;

    /* Another 24-/32-bit absolute relocation.  */
    case R_JMPL1:
      /* Get the address of the target of this branch.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);

      value = ((value & 0x00ffffff)
	       | (bfd_get_32 (abfd, data + src_address) & 0xff000000));
      bfd_put_32 (abfd, value, data + dst_address);
      dst_address += 4;
      src_address += 4;
      break;

      /* This is a 24-/32-bit absolute address in one of the following
	 instructions:

	   "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
	   "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", "ldc.w",
	   "stc.w" and "mov.[bwl]"

	 We may relax this into an 16-bit absolute address if it's in
	 the right range.  */
    case R_MOVL2:
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
      value = bfd_h8300_pad_address (abfd, value);

      /* Sanity check.  */
      if (value <= 0x7fff || value >= 0xffff8000u)
	{
	  /* Insert the 16-bit value into the proper location.  */
	  bfd_put_16 (abfd, value, data + dst_address);

	  /* Fix the opcode.  For all the instructions that belong to
	     this relaxation, we simply need to turn off bit 0x20 in
	     the previous byte.  */
	  data[dst_address - 1] &= ~0x20;
	  dst_address += 2;
	  src_address += 4;
	}
      else
	{
	  if (! ((*link_info->callbacks->reloc_overflow)
		 (link_info, NULL,
		  bfd_asymbol_name (*reloc->sym_ptr_ptr),
		  reloc->howto->name, reloc->addend, input_section->owner,
		  input_section, reloc->address)))
	    abort ();
	}
      break;

    /* A 16-bit absolute branch that is now an 8-bit pc-relative branch.  */
    case R_JMP2:
      /* Get the address of the target of this branch.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);

      /* Get the address of the next instruction.  */
      dot = (input_section->output_offset
	     + dst_address
	     + link_order->u.indirect.section->output_section->vma + 1);

      gap = value - dot;

      /* Sanity check.  */
      if (gap < -128 || gap > 126)
	{
	  if (! ((*link_info->callbacks->reloc_overflow)
		 (link_info, NULL,
		  bfd_asymbol_name (*reloc->sym_ptr_ptr),
		  reloc->howto->name, reloc->addend, input_section->owner,
		  input_section, reloc->address)))
	    abort ();
	}

      /* Now fix the instruction itself.  */
      switch (data[dst_address - 1])
	{
	case 0x5e:
	  /* jsr -> bsr */
	  bfd_put_8 (abfd, 0x55, data + dst_address - 1);
	  break;
	case 0x5a:
	  /* jmp -> bra */
	  bfd_put_8 (abfd, 0x40, data + dst_address - 1);
	  break;

	default:
	  abort ();
	}

      /* Write out the 8-bit value.  */
      bfd_put_8 (abfd, gap, data + dst_address);

      dst_address += 1;
      src_address += 3;

      break;

    /* A 16-bit pc-relative branch that is now an 8-bit pc-relative branch.  */
    case R_PCRWORD_B:
      /* Get the address of the target of this branch.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);

      /* Get the address of the instruction (not the reloc).  */
      dot = (input_section->output_offset
	     + dst_address
	     + link_order->u.indirect.section->output_section->vma - 1);

      gap = value - dot;

      /* Sanity check.  */
      if (gap < -128 || gap > 126)
	{
	  if (! ((*link_info->callbacks->reloc_overflow)
		 (link_info, NULL,
		  bfd_asymbol_name (*reloc->sym_ptr_ptr),
		  reloc->howto->name, reloc->addend, input_section->owner,
		  input_section, reloc->address)))
	    abort ();
	}

      /* Now fix the instruction.  */
      switch (data[dst_address - 2])
	{
	case 0x58:
	  /* bCC:16 -> bCC:8 */
	  /* Get the second byte of the original insn, which contains
	     the condition code.  */
	  tmp = data[dst_address - 1];

	  /* Compute the fisrt byte of the relaxed instruction.  The
	     original sequence 0x58 0xX0 is relaxed to 0x4X, where X
	     represents the condition code.  */
	  tmp &= 0xf0;
	  tmp >>= 4;
	  tmp |= 0x40;

	  /* Write it.  */
	  bfd_put_8 (abfd, tmp, data + dst_address - 2);
	  break;

	case 0x5c:
	  /* bsr:16 -> bsr:8 */
	  bfd_put_8 (abfd, 0x55, data + dst_address - 2);
	  break;

	default:
	  abort ();
	}

      /* Output the target.  */
      bfd_put_8 (abfd, gap, data + dst_address - 1);

      /* We don't advance dst_address -- the 8-bit reloc is applied at
	 dst_address - 1, so the next insn should begin at dst_address.  */
      src_address += 2;

      break;

    /* Similarly for a 24-bit absolute that is now 8 bits.  */
    case R_JMPL2:
      /* Get the address of the target of this branch.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);

      /* Get the address of the instruction (not the reloc).  */
      dot = (input_section->output_offset
	     + dst_address
	     + link_order->u.indirect.section->output_section->vma + 2);

      gap = value - dot;

      /* Fix the instruction.  */
      switch (data[src_address])
	{
	case 0x5e:
	  /* jsr -> bsr */
	  bfd_put_8 (abfd, 0x55, data + dst_address);
	  break;
	case 0x5a:
	  /* jmp ->bra */
	  bfd_put_8 (abfd, 0x40, data + dst_address);
	  break;
	default:
	  abort ();
	}

      bfd_put_8 (abfd, gap, data + dst_address + 1);
      dst_address += 2;
      src_address += 4;

      break;

      /* This is a 16-bit absolute address in one of the following
	 instructions:

	   "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
	   "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
	   "mov.b"

	 We may relax this into an 8-bit absolute address if it's in
	 the right range.  */
    case R_MOV16B2:
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);

      /* All instructions with R_H8_DIR16B2 start with 0x6a.  */
      if (data[dst_address - 2] != 0x6a)
	abort ();

      temp_code = data[src_address - 1];

      /* If this is a mov.b instruction, clear the lower nibble, which
	 contains the source/destination register number.  */
      if ((temp_code & 0x10) != 0x10)
	temp_code &= 0xf0;

      /* Fix up the opcode.  */
      switch (temp_code)
	{
	case 0x00:
	  /* This is mov.b @aa:16,Rd.  */
	  data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
	  break;
	case 0x80:
	  /* This is mov.b Rs,@aa:16.  */
	  data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
	  break;
	case 0x18:
	  /* This is a bit-maniputation instruction that stores one
	     bit into memory, one of "bclr", "bist", "bnot", "bset",
	     and "bst".  */
	  data[dst_address - 2] = 0x7f;
	  break;
	case 0x10:
	  /* This is a bit-maniputation instruction that loads one bit
	     from memory, one of "band", "biand", "bild", "bior",
	     "bixor", "bld", "bor", "btst", and "bxor".  */
	  data[dst_address - 2] = 0x7e;
	  break;
	default:
	  abort ();
	}

      bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
      src_address += 2;
      break;

      /* This is a 24-bit absolute address in one of the following
	 instructions:

	   "band", "bclr", "biand", "bild", "bior", "bist", "bixor",
	   "bld", "bnot", "bor", "bset", "bst", "btst", "bxor", and
	   "mov.b"

	 We may relax this into an 8-bit absolute address if it's in
	 the right range.  */
    case R_MOV24B2:
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);

      /* All instructions with R_MOV24B2 start with 0x6a.  */
      if (data[dst_address - 2] != 0x6a)
	abort ();

      temp_code = data[src_address - 1];

      /* If this is a mov.b instruction, clear the lower nibble, which
	 contains the source/destination register number.  */
      if ((temp_code & 0x30) != 0x30)
	temp_code &= 0xf0;

      /* Fix up the opcode.  */
      switch (temp_code)
	{
	case 0x20:
	  /* This is mov.b @aa:24/32,Rd.  */
	  data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x20;
	  break;
	case 0xa0:
	  /* This is mov.b Rs,@aa:24/32.  */
	  data[dst_address - 2] = (data[src_address - 1] & 0xf) | 0x30;
	  break;
	case 0x38:
	  /* This is a bit-maniputation instruction that stores one
	     bit into memory, one of "bclr", "bist", "bnot", "bset",
	     and "bst".  */
	  data[dst_address - 2] = 0x7f;
	  break;
	case 0x30:
	  /* This is a bit-maniputation instruction that loads one bit
	     from memory, one of "band", "biand", "bild", "bior",
	     "bixor", "bld", "bor", "btst", and "bxor".  */
	  data[dst_address - 2] = 0x7e;
	  break;
	default:
	  abort ();
	}

      bfd_put_8 (abfd, value & 0xff, data + dst_address - 1);
      src_address += 4;
      break;

    case R_BCC_INV:
      /* Get the address of the target of this branch.  */
      value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);

      dot = (input_section->output_offset
	     + dst_address
	     + link_order->u.indirect.section->output_section->vma) + 1;

      gap = value - dot;

      /* Sanity check.  */
      if (gap < -128 || gap > 126)
	{
	  if (! ((*link_info->callbacks->reloc_overflow)
		 (link_info, NULL,
		  bfd_asymbol_name (*reloc->sym_ptr_ptr),
		  reloc->howto->name, reloc->addend, input_section->owner,
		  input_section, reloc->address)))
	    abort ();
	}

      /* Everything looks OK.  Fix the condition in the instruction, apply
	 the relocation, and update the src/dst address appropriately.  */

      bfd_put_8 (abfd, bfd_get_8 (abfd, data + dst_address - 1) ^ 1,
		 data + dst_address - 1);
      bfd_put_8 (abfd, gap, data + dst_address);
      dst_address++;
      src_address++;

      /* All done.  */
      break;

    case R_JMP_DEL:
      src_address += 4;
      break;

    /* An 8-bit memory indirect instruction (jmp/jsr).

       There's several things that need to be done to handle
       this relocation.

       If this is a reloc against the absolute symbol, then
       we should handle it just R_RELBYTE.  Likewise if it's
       for a symbol with a value ge 0 and le 0xff.

       Otherwise it's a jump/call through the function vector,
       and the linker is expected to set up the function vector
       and put the right value into the jump/call instruction.  */
    case R_MEM_INDIRECT:
      {
	/* We need to find the symbol so we can determine it's
	   address in the function vector table.  */
	asymbol *symbol;
	const char *name;
	struct funcvec_hash_table *ftab;
	struct funcvec_hash_entry *h;
	struct h8300_coff_link_hash_table *htab;
	asection *vectors_sec;

	if (link_info->output_bfd->xvec != abfd->xvec)
	  {
	    (*_bfd_error_handler)
	      (_("cannot handle R_MEM_INDIRECT reloc when using %s output"),
	       link_info->output_bfd->xvec->name);

	    /* What else can we do?  This function doesn't allow return
	       of an error, and we don't want to call abort as that
	       indicates an internal error.  */
#ifndef EXIT_FAILURE
#define EXIT_FAILURE 1
#endif
	    xexit (EXIT_FAILURE);
	  }
	htab = h8300_coff_hash_table (link_info);
	vectors_sec = htab->vectors_sec;

	/* First see if this is a reloc against the absolute symbol
	   or against a symbol with a nonnegative value <= 0xff.  */
	symbol = *(reloc->sym_ptr_ptr);
	value = bfd_coff_reloc16_get_value (reloc, link_info, input_section);
	if (symbol == bfd_abs_section_ptr->symbol
	    || value <= 0xff)
	  {
	    /* This should be handled in a manner very similar to
	       R_RELBYTES.   If the value is in range, then just slam
	       the value into the right location.  Else trigger a
	       reloc overflow callback.  */
	    if (value <= 0xff)
	      {
		bfd_put_8 (abfd, value, data + dst_address);
		dst_address += 1;
		src_address += 1;
	      }
	    else
	      {
		if (! ((*link_info->callbacks->reloc_overflow)
		       (link_info, NULL,
			bfd_asymbol_name (*reloc->sym_ptr_ptr),
			reloc->howto->name, reloc->addend, input_section->owner,
			input_section, reloc->address)))
		  abort ();
	      }
	    break;
	  }

	/* This is a jump/call through a function vector, and we're
	   expected to create the function vector ourselves.

	   First look up this symbol in the linker hash table -- we need
	   the derived linker symbol which holds this symbol's index
	   in the function vector.  */
	name = symbol->name;
	if (symbol->flags & BSF_LOCAL)
	  {
	    char *new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);

	    if (new_name == NULL)
	      abort ();

	    sprintf (new_name, "%s_%08x", name, symbol->section->id);
	    name = new_name;
	  }

	ftab = htab->funcvec_hash_table;
	h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);

	/* This shouldn't ever happen.  If it does that means we've got
	   data corruption of some kind.  Aborting seems like a reasonable
	   thing to do here.  */
	if (h == NULL || vectors_sec == NULL)
	  abort ();

	/* Place the address of the function vector entry into the
	   reloc's address.  */
	bfd_put_8 (abfd,
		   vectors_sec->output_offset + h->offset,
		   data + dst_address);

	dst_address++;
	src_address++;

	/* Now create an entry in the function vector itself.  */
	switch (bfd_get_mach (input_section->owner))
	  {
	  case bfd_mach_h8300:
	  case bfd_mach_h8300hn:
	  case bfd_mach_h8300sn:
	    bfd_put_16 (abfd,
			bfd_coff_reloc16_get_value (reloc,
						    link_info,
						    input_section),
			vectors_sec->contents + h->offset);
	    break;
	  case bfd_mach_h8300h:
	  case bfd_mach_h8300s:
	    bfd_put_32 (abfd,
			bfd_coff_reloc16_get_value (reloc,
						    link_info,
						    input_section),
			vectors_sec->contents + h->offset);
	    break;
	  default:
	    abort ();
	  }

	/* Gross.  We've already written the contents of the vector section
	   before we get here...  So we write it again with the new data.  */
	bfd_set_section_contents (vectors_sec->output_section->owner,
				  vectors_sec->output_section,
				  vectors_sec->contents,
				  (file_ptr) vectors_sec->output_offset,
				  vectors_sec->size);
	break;
      }

    default:
      abort ();
      break;

    }

  *src_ptr = src_address;
  *dst_ptr = dst_address;
}

/* Routine for the h8300 linker.

   This routine is necessary to handle the special R_MEM_INDIRECT
   relocs on the h8300.  It's responsible for generating a vectors
   section and attaching it to an input bfd as well as sizing
   the vectors section.  It also creates our vectors hash table.

   It uses the generic linker routines to actually add the symbols.
   from this BFD to the bfd linker hash table.  It may add a few
   selected static symbols to the bfd linker hash table.  */

static bfd_boolean
h8300_bfd_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
{
  asection *sec;
  struct funcvec_hash_table *funcvec_hash_table;
  bfd_size_type amt;
  struct h8300_coff_link_hash_table *htab;

  /* Add the symbols using the generic code.  */
  _bfd_generic_link_add_symbols (abfd, info);

  if (info->output_bfd->xvec != abfd->xvec)
    return TRUE;

  htab = h8300_coff_hash_table (info);

  /* If we haven't created a vectors section, do so now.  */
  if (!htab->vectors_sec)
    {
      flagword flags;

      /* Make sure the appropriate flags are set, including SEC_IN_MEMORY.  */
      flags = (SEC_ALLOC | SEC_LOAD
	       | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_READONLY);
      htab->vectors_sec = bfd_make_section_with_flags (abfd, ".vectors",
						       flags);

      /* If the section wasn't created, or we couldn't set the flags,
	 quit quickly now, rather than dying a painful death later.  */
      if (!htab->vectors_sec)
	return FALSE;

      /* Also create the vector hash table.  */
      amt = sizeof (struct funcvec_hash_table);
      funcvec_hash_table = (struct funcvec_hash_table *) bfd_alloc (abfd, amt);

      if (!funcvec_hash_table)
	return FALSE;

      /* And initialize the funcvec hash table.  */
      if (!funcvec_hash_table_init (funcvec_hash_table, abfd,
				    funcvec_hash_newfunc,
				    sizeof (struct funcvec_hash_entry)))
	{
	  bfd_release (abfd, funcvec_hash_table);
	  return FALSE;
	}

      /* Store away a pointer to the funcvec hash table.  */
      htab->funcvec_hash_table = funcvec_hash_table;
    }

  /* Load up the function vector hash table.  */
  funcvec_hash_table = htab->funcvec_hash_table;

  /* Now scan the relocs for all the sections in this bfd; create
     additional space in the .vectors section as needed.  */
  for (sec = abfd->sections; sec; sec = sec->next)
    {
      long reloc_size, reloc_count, i;
      asymbol **symbols;
      arelent **relocs;

      /* Suck in the relocs, symbols & canonicalize them.  */
      reloc_size = bfd_get_reloc_upper_bound (abfd, sec);
      if (reloc_size <= 0)
	continue;

      relocs = (arelent **) bfd_malloc ((bfd_size_type) reloc_size);
      if (!relocs)
	return FALSE;

      /* The symbols should have been read in by _bfd_generic link_add_symbols
	 call abovec, so we can cheat and use the pointer to them that was
	 saved in the above call.  */
      symbols = _bfd_generic_link_get_symbols(abfd);
      reloc_count = bfd_canonicalize_reloc (abfd, sec, relocs, symbols);
      if (reloc_count <= 0)
	{
	  free (relocs);
	  continue;
	}

      /* Now walk through all the relocations in this section.  */
      for (i = 0; i < reloc_count; i++)
	{
	  arelent *reloc = relocs[i];
	  asymbol *symbol = *(reloc->sym_ptr_ptr);
	  const char *name;

	  /* We've got an indirect reloc.  See if we need to add it
	     to the function vector table.   At this point, we have
	     to add a new entry for each unique symbol referenced
	     by an R_MEM_INDIRECT relocation except for a reloc
	     against the absolute section symbol.  */
	  if (reloc->howto->type == R_MEM_INDIRECT
	      && symbol != bfd_abs_section_ptr->symbol)

	    {
	      struct funcvec_hash_table *ftab;
	      struct funcvec_hash_entry *h;

	      name = symbol->name;
	      if (symbol->flags & BSF_LOCAL)
		{
		  char *new_name;

		  new_name = bfd_malloc ((bfd_size_type) strlen (name) + 10);
		  if (new_name == NULL)
		    abort ();

		  sprintf (new_name, "%s_%08x", name, symbol->section->id);
		  name = new_name;
		}

	      /* Look this symbol up in the function vector hash table.  */
	      ftab = htab->funcvec_hash_table;
	      h = funcvec_hash_lookup (ftab, name, FALSE, FALSE);

	      /* If this symbol isn't already in the hash table, add
		 it and bump up the size of the hash table.  */
	      if (h == NULL)
		{
		  h = funcvec_hash_lookup (ftab, name, TRUE, TRUE);
		  if (h == NULL)
		    {
		      free (relocs);
		      return FALSE;
		    }

		  /* Bump the size of the vectors section.  Each vector
		     takes 2 bytes on the h8300 and 4 bytes on the h8300h.  */
		  switch (bfd_get_mach (abfd))
		    {
		    case bfd_mach_h8300:
		    case bfd_mach_h8300hn:
		    case bfd_mach_h8300sn:
		      htab->vectors_sec->size += 2;
		      break;
		    case bfd_mach_h8300h:
		    case bfd_mach_h8300s:
		      htab->vectors_sec->size += 4;
		      break;
		    default:
		      abort ();
		    }
		}
	    }
	}

      /* We're done with the relocations, release them.  */
      free (relocs);
    }

  /* Now actually allocate some space for the function vector.  It's
     wasteful to do this more than once, but this is easier.  */
  sec = htab->vectors_sec;
  if (sec->size != 0)
    {
      /* Free the old contents.  */
      if (sec->contents)
	free (sec->contents);

      /* Allocate new contents.  */
      sec->contents = bfd_malloc (sec->size);
    }

  return TRUE;
}

#define coff_reloc16_extra_cases h8300_reloc16_extra_cases
#define coff_reloc16_estimate h8300_reloc16_estimate
#define coff_bfd_link_add_symbols h8300_bfd_link_add_symbols
#define coff_bfd_link_hash_table_create h8300_coff_link_hash_table_create

#define COFF_LONG_FILENAMES

#ifndef bfd_pe_print_pdata
#define bfd_pe_print_pdata	NULL
#endif

#include "coffcode.h"

#undef coff_bfd_get_relocated_section_contents
#undef coff_bfd_relax_section
#define coff_bfd_get_relocated_section_contents \
  bfd_coff_reloc16_get_relocated_section_contents
#define coff_bfd_relax_section bfd_coff_reloc16_relax_section

CREATE_BIG_COFF_TARGET_VEC (h8300coff_vec, "coff-h8300", BFD_IS_RELAXABLE, 0, '_', NULL, COFF_SWAP_TABLE)