summaryrefslogtreecommitdiff
path: root/gdb/xtensa-tdep.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/xtensa-tdep.c')
-rw-r--r--gdb/xtensa-tdep.c1739
1 files changed, 1739 insertions, 0 deletions
diff --git a/gdb/xtensa-tdep.c b/gdb/xtensa-tdep.c
new file mode 100644
index 00000000000..d2c777d0a00
--- /dev/null
+++ b/gdb/xtensa-tdep.c
@@ -0,0 +1,1739 @@
+/* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
+
+ Copyright (C) 2003, 2005, 2006 Free Software Foundation, Inc.
+
+ This file is part of GDB.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 2 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ Boston, MA 02110-1301, USA. */
+
+#include "defs.h"
+#include "frame.h"
+#include "symtab.h"
+#include "symfile.h"
+#include "objfiles.h"
+#include "gdbtypes.h"
+#include "gdbcore.h"
+#include "value.h"
+#include "dis-asm.h"
+#include "inferior.h"
+#include "floatformat.h"
+#include "regcache.h"
+#include "reggroups.h"
+#include "regset.h"
+
+#include "dummy-frame.h"
+#include "elf/dwarf2.h"
+#include "dwarf2-frame.h"
+#include "dwarf2loc.h"
+#include "frame.h"
+#include "frame-base.h"
+#include "frame-unwind.h"
+
+#include "arch-utils.h"
+#include "gdbarch.h"
+#include "remote.h"
+#include "serial.h"
+
+#include "command.h"
+#include "gdbcmd.h"
+#include "gdb_assert.h"
+
+#include "xtensa-tdep.h"
+
+
+static int xtensa_debug_level = 0;
+
+#define DEBUGWARN(args...) \
+ if (xtensa_debug_level > 0) \
+ fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
+
+#define DEBUGINFO(args...) \
+ if (xtensa_debug_level > 1) \
+ fprintf_unfiltered (gdb_stdlog, "(info ) " args)
+
+#define DEBUGTRACE(args...) \
+ if (xtensa_debug_level > 2) \
+ fprintf_unfiltered (gdb_stdlog, "(trace) " args)
+
+#define DEBUGVERB(args...) \
+ if (xtensa_debug_level > 3) \
+ fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
+
+
+/* According to the ABI, the SP must be aligned to 16-byte boundaries. */
+
+#define SP_ALIGNMENT 16
+
+
+/* We use a6 through a11 for passing arguments to a function called by GDB. */
+
+#define ARGS_FIRST_REG A6_REGNUM
+#define ARGS_NUM_REGS 6
+#define REGISTER_SIZE 4
+
+
+/* Extract the call size from the return address or ps register. */
+
+#define PS_CALLINC_SHIFT 16
+#define PS_CALLINC_MASK 0x00030000
+#define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
+#define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
+
+
+/* Convert a live Ax register number to the corresponding Areg number. */
+
+#define AREG_NUMBER(r, wb) \
+ ((((r) - A0_REGNUM + (((wb) & WB_MASK)<<WB_SHIFT)) & AREGS_MASK) + AR_BASE)
+
+
+/* Define prototypes. */
+
+extern struct gdbarch_tdep *xtensa_config_tdep (struct gdbarch_info *);
+extern int xtensa_config_byte_order (struct gdbarch_info *);
+
+
+/* XTENSA_IS_ENTRY tests whether the first byte of an instruction
+ indicates that the instruction is an ENTRY instruction. */
+
+#define XTENSA_IS_ENTRY(op1) \
+ ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? ((op1) == 0x6c) : ((op1) == 0x36))
+
+#define XTENSA_ENTRY_LENGTH 3
+
+
+/* windowing_enabled() returns true, if windowing is enabled.
+ WOE must be set to 1; EXCM to 0.
+ Note: We assume that EXCM is always 0 for XEA1. */
+
+static inline int
+windowing_enabled (CORE_ADDR ps)
+{
+ return ((ps & (1 << 4)) == 0 && (ps & (1 << 18)) != 0);
+}
+
+/* Return the window size of the previous call to the function from which we
+ have just returned.
+
+ This function is used to extract the return value after a called function
+ has returned to the callee. On Xtensa, the register that holds the return
+ value (from the perspective of the caller) depends on what call
+ instruction was used. For now, we are assuming that the call instruction
+ precedes the current address, so we simply analyze the call instruction.
+ If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
+ method to call the inferior function. */
+
+static int
+extract_call_winsize (CORE_ADDR pc)
+{
+ int winsize = 4; /* Default: No call, e.g. dummy frame. */
+ int insn;
+ char buf[4];
+
+ DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
+
+ /* Read the previous instruction (should be a call[x]{4|8|12}. */
+ read_memory (pc-3, buf, 3);
+ insn = extract_unsigned_integer (buf, 3);
+
+ /* Decode call instruction:
+ Little Endian
+ call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
+ callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
+ Big Endian
+ call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
+ callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
+
+ /* Lookup call insn.
+ (Return the default value (4) if we can't find a valid call insn. */
+
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
+ {
+ if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
+ winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12 */
+ }
+ else
+ {
+ if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
+ winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12 */
+ }
+ return winsize;
+}
+
+
+/* REGISTER INFORMATION */
+
+/* Returns the name of a register. */
+
+static const char *
+xtensa_register_name (int regnum)
+{
+ /* Return the name stored in the register map. */
+ if (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS)
+ return REGMAP[regnum].name;
+
+ /* Invalid register number. */
+ internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
+ return 0;
+}
+
+
+/* Return the type of a register. Create a new type, if necessary. */
+
+static struct ctype_cache
+{
+ struct ctype_cache *next;
+ int size;
+ struct type *virtual_type;
+} *type_entries = NULL;
+
+static struct type *
+xtensa_register_type (struct gdbarch *gdbarch, int regnum)
+{
+ /* Return signed integer for ARx and Ax registers. */
+ if ((regnum >= AR_BASE && regnum < AR_BASE + NUM_AREGS)
+ || (regnum >= A0_BASE && regnum < A0_BASE + 16))
+ return builtin_type_int;
+
+ if (regnum == PC_REGNUM || regnum == A1_REGNUM)
+ return lookup_pointer_type (builtin_type_void);
+
+ /* Return the stored type for all other registers. */
+ else if (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS)
+ {
+ xtensa_register_t* reg = &REGMAP[regnum];
+
+ /* Set ctype for this register (only the first time we ask for it). */
+
+ if (reg->ctype == 0)
+ {
+ struct ctype_cache *tp;
+ int size = reg->byte_size;
+
+ /* We always use the memory representation, even if the register
+ width is smaller. */
+ switch (size)
+ {
+ case 1:
+ reg->ctype = builtin_type_uint8;
+ break;
+
+ case 2:
+ reg->ctype = builtin_type_uint16;
+ break;
+
+ case 4:
+ reg->ctype = builtin_type_uint32;
+ break;
+
+ case 8:
+ reg->ctype = builtin_type_uint64;
+ break;
+
+ case 16:
+ reg->ctype = builtin_type_uint128;
+ break;
+
+ default:
+ for (tp = type_entries; tp != NULL; tp = tp->next)
+ if (tp->size == size)
+ break;
+
+ if (tp == NULL)
+ {
+ char *name = xmalloc (16);
+ tp = xmalloc (sizeof (struct ctype_cache));
+ tp->next = type_entries;
+ type_entries = tp;
+ tp->size = size;
+
+ sprintf (name, "int%d", size * 8);
+ tp->virtual_type = init_type (TYPE_CODE_INT, size,
+ TYPE_FLAG_UNSIGNED, name,
+ NULL);
+ }
+
+ reg->ctype = tp->virtual_type;
+ }
+ }
+ return reg->ctype;
+ }
+
+ /* Invalid register number. */
+ internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
+ return 0;
+}
+
+
+/* Returns the 'local' register number for stubs, dwarf2, etc.
+ The debugging information enumerates registers starting from 0 for A0
+ to n for An. So, we only have to add the base number for A0. */
+
+static int
+xtensa_reg_to_regnum (int regnum)
+{
+ int i;
+
+ if (regnum >= 0 && regnum < 16)
+ return A0_BASE + regnum;
+
+ for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
+ if (regnum == REGMAP[i].target_number)
+ return i;
+
+ /* Invalid register number. */
+ internal_error (__FILE__, __LINE__,
+ _("invalid dwarf/stabs register number %d"), regnum);
+ return 0;
+}
+
+
+/* Handle the special case of masked registers. */
+
+/* Write the bits of a masked register to the various registers that
+ are combined into this register. Only the masked areas of these
+ registers are modified; the other fields are untouched.
+ (Note: The size of masked registers is always less or equal 32 bits.) */
+
+static void
+xtensa_register_write_masked (xtensa_register_t *reg, unsigned char *buffer)
+{
+ unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
+
+ const xtensa_mask_t *mask = reg->mask;
+
+ int shift = 0; /* Shift for next mask (mod 32). */
+ int start, size; /* Start bit and size of current mask. */
+
+ unsigned int *ptr = value;
+ unsigned int regval, m, mem = 0;
+
+ int bytesize = reg->byte_size;
+ int bitsize = bytesize * 8;
+ int i, r;
+
+ DEBUGTRACE ("xtensa_register_write_masked ()\n");
+
+ /* Copy the masked register to host byte-order. */
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ for (i = 0; i < bytesize; i++)
+ {
+ mem >>= 8;
+ mem |= (buffer[bytesize - i - 1] << 24);
+ if ((i & 3) == 3)
+ *ptr++ = mem;
+ }
+ else
+ for (i = 0; i < bytesize; i++)
+ {
+ mem >>= 8;
+ mem |= (buffer[i] << 24);
+ if ((i & 3) == 3)
+ *ptr++ = mem;
+ }
+
+ /* We might have to shift the final value:
+ bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
+ bytesize & 3 == x -> shift (4-x) * 8. */
+
+ *ptr = mem >> (((0 - bytesize) & 3) * 8);
+ ptr = value;
+ mem = *ptr;
+
+ /* Write the bits to the masked areas of the other registers. */
+ for (i = 0; i < mask->count; i++)
+ {
+ start = mask->mask[i].bit_start;
+ size = mask->mask[i].bit_size;
+ regval = mem >> shift;
+
+ if ((shift += size) > bitsize)
+ error (_("size of all masks is larger than the register"));
+
+ if (shift >= 32)
+ {
+ mem = *(++ptr);
+ shift -= 32;
+ bitsize -= 32;
+
+ if (shift > 0)
+ regval |= mem << (size - shift);
+ }
+
+ /* Make sure we have a valid register. */
+ r = mask->mask[i].reg_num;
+ if (r >= 0 && size > 0)
+ {
+ /* Don't overwrite the unmasked areas. */
+ m = 0xffffffff >> (32 - size) << start;
+ regval <<= start;
+ regval = (regval & m) | (read_register (r) & ~m);
+ write_register (r, regval);
+ }
+ }
+}
+
+
+/* Read the masked areas of the registers and assemble it into a single
+ register. */
+
+static void
+xtensa_register_read_masked (xtensa_register_t *reg, unsigned char *buffer)
+{
+ unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
+
+ const xtensa_mask_t *mask = reg->mask;
+
+ int shift = 0;
+ int start, size;
+
+ unsigned int *ptr = value;
+ unsigned int regval, mem = 0;
+
+ int bytesize = reg->byte_size;
+ int bitsize = bytesize * 8;
+ int i;
+
+ DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
+ reg->name == 0 ? "" : reg->name);
+
+ /* Assemble the register from the masked areas of other registers. */
+ for (i = 0; i < mask->count; i++)
+ {
+ int r = mask->mask[i].reg_num;
+ regval = (r >= 0) ? read_register (r) : 0;
+ start = mask->mask[i].bit_start;
+ size = mask->mask[i].bit_size;
+
+ regval >>= start;
+
+ if (size < 32)
+ regval &= (0xffffffff >> (32 - size));
+
+ mem |= regval << shift;
+
+ if ((shift += size) > bitsize)
+ error (_("size of all masks is larger than the register"));
+
+ if (shift >= 32)
+ {
+ *ptr++ = mem;
+ bitsize -= 32;
+ shift -= 32;
+
+ if (shift == 0)
+ mem = 0;
+ else
+ mem = regval >> (size - shift);
+ }
+ }
+
+ if (shift > 0)
+ *ptr = mem;
+
+ /* Copy value to target byte order. */
+ ptr = value;
+ mem = *ptr;
+
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ for (i = 0; i < bytesize; i++)
+ {
+ if ((i & 3) == 0)
+ mem = *ptr++;
+ buffer[bytesize - i - 1] = mem & 0xff;
+ mem >>= 8;
+ }
+ else
+ for (i = 0; i < bytesize; i++)
+ {
+ if ((i & 3) == 0)
+ mem = *ptr++;
+ buffer[i] = mem & 0xff;
+ mem >>= 8;
+ }
+}
+
+
+/* Read pseudo registers. */
+
+static void
+xtensa_pseudo_register_read (struct gdbarch *gdbarch,
+ struct regcache *regcache,
+ int regnum,
+ gdb_byte *buffer)
+{
+ DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
+ regnum, xtensa_register_name (regnum));
+
+ /* Check if it is FP (renumber it in this case -> A0...A15). */
+ if (regnum == FP_ALIAS)
+ error (_("trying to read FP"));
+
+ /* Read aliases a0..a15. */
+ if (regnum >= A0_REGNUM && regnum <= A15_REGNUM)
+ {
+ char *buf = (char *) alloca (MAX_REGISTER_SIZE);
+
+ regcache_raw_read (regcache, WB_REGNUM, buf);
+ regnum = AREG_NUMBER (regnum, extract_unsigned_integer (buf, 4));
+ }
+
+ /* We can always read 'regular' registers. */
+ if (regnum >= 0 && regnum < NUM_REGS)
+ regcache_raw_read (regcache, regnum, buffer);
+
+ /* Pseudo registers. */
+ else if (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS)
+ {
+ xtensa_register_t *reg = &REGMAP[regnum];
+ xtensa_register_type_t type = reg->type;
+ int flags = XTENSA_TARGET_FLAGS;
+
+ /* Can we read Unknown or Unmapped registers? */
+ if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
+ {
+ if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
+ {
+ warning (_("cannot read register %s"),
+ xtensa_register_name (regnum));
+ return;
+ }
+ }
+
+ /* Some targets cannot read TIE register files. */
+ else if (type == xtRegisterTypeTieRegfile)
+ {
+ /* Use 'fetch' to get register? */
+ if (flags & xtTargetFlagsUseFetchStore)
+ {
+ warning (_("cannot read register"));
+ return;
+ }
+
+ /* On some targets (esp. simulators), we can always read the reg. */
+ else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
+ {
+ warning (_("cannot read register"));
+ return;
+ }
+ }
+
+ /* We can always read mapped registers. */
+ else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
+ {
+ xtensa_register_read_masked (reg, (unsigned char *) buffer);
+ return;
+ }
+
+ /* Assume that we can read the register. */
+ regcache_raw_read (regcache, regnum, buffer);
+ }
+
+ else
+ internal_error (__FILE__, __LINE__,
+ _("invalid register number %d"), regnum);
+}
+
+
+/* Write pseudo registers. */
+
+static void
+xtensa_pseudo_register_write (struct gdbarch *gdbarch,
+ struct regcache *regcache,
+ int regnum,
+ const gdb_byte *buffer)
+{
+ DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
+ regnum, xtensa_register_name (regnum));
+
+ /* Check if this is FP. */
+ if (regnum == FP_ALIAS)
+ error (_("trying to write FP"));
+
+ /* Renumber register, if aliase a0..a15. */
+ if (regnum >= A0_REGNUM && regnum <= A15_REGNUM)
+ {
+ char *buf = (char *) alloca (MAX_REGISTER_SIZE);
+ unsigned int wb;
+
+ regcache_raw_read (regcache, WB_REGNUM, buf);
+ regnum = AREG_NUMBER (regnum, extract_unsigned_integer (buf, 4));
+ }
+
+ /* We can always write 'core' registers.
+ Note: We might have converted Ax->ARy. */
+ if (regnum >= 0 && regnum < NUM_REGS)
+ regcache_raw_write (regcache, regnum, buffer);
+
+ /* Pseudo registers. */
+ else if (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS)
+ {
+ xtensa_register_t *reg = &REGMAP[regnum];
+ xtensa_register_type_t type = reg->type;
+ int flags = XTENSA_TARGET_FLAGS;
+
+ /* On most targets, we can't write registers of type "Unknown"
+ or "Unmapped". */
+ if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
+ {
+ if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
+ {
+ warning (_("cannot write register %s"),
+ xtensa_register_name (regnum));
+ return;
+ }
+ }
+
+ /* Some targets cannot read TIE register files. */
+ else if (type == xtRegisterTypeTieRegfile)
+ {
+ /* Use 'store' to get register? */
+ if (flags & xtTargetFlagsUseFetchStore)
+ {
+ warning (_("cannot write register"));
+ return;
+ }
+
+ /* On some targets (esp. simulators), we can always write
+ the register. */
+
+ else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
+ {
+ warning (_("cannot write register"));
+ return;
+ }
+ }
+
+ /* We can always write mapped registers. */
+ else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
+ {
+ xtensa_register_write_masked (reg, (unsigned char *) buffer);
+ return;
+ }
+
+ /* Assume that we can write the register. */
+ regcache_raw_write (regcache, regnum, buffer);
+ }
+
+ else
+ internal_error (__FILE__, __LINE__,
+ _("invalid register number %d"), regnum);
+}
+
+
+static struct reggroup *xtensa_ar_reggroup;
+static struct reggroup *xtensa_user_reggroup;
+static struct reggroup *xtensa_vectra_reggroup;
+
+static void
+xtensa_init_reggroups (void)
+{
+ xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
+ xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
+ xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
+}
+
+
+static void
+xtensa_add_reggroups (struct gdbarch *gdbarch)
+{
+ reggroup_add (gdbarch, all_reggroup);
+ reggroup_add (gdbarch, save_reggroup);
+ reggroup_add (gdbarch, restore_reggroup);
+ reggroup_add (gdbarch, system_reggroup);
+ reggroup_add (gdbarch, vector_reggroup); /* vectra */
+ reggroup_add (gdbarch, general_reggroup); /* core */
+ reggroup_add (gdbarch, float_reggroup); /* float */
+
+ reggroup_add (gdbarch, xtensa_ar_reggroup); /* ar */
+ reggroup_add (gdbarch, xtensa_user_reggroup); /* user */
+ reggroup_add (gdbarch, xtensa_vectra_reggroup); /* vectra */
+}
+
+
+#define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
+ | XTENSA_REGISTER_FLAGS_WRITABLE \
+ | XTENSA_REGISTER_FLAGS_VOLATILE)
+
+#define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
+ | XTENSA_REGISTER_FLAGS_WRITABLE)
+
+static int
+xtensa_register_reggroup_p (struct gdbarch *gdbarch,
+ int regnum,
+ struct reggroup *group)
+{
+ xtensa_register_t* reg = &REGMAP[regnum];
+ xtensa_register_type_t type = reg->type;
+ xtensa_register_group_t rg = reg->group;
+
+ /* First, skip registers that are not visible to this target
+ (unknown and unmapped registers when not using ISS). */
+
+ if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
+ return 0;
+ if (group == all_reggroup)
+ return 1;
+ if (group == xtensa_ar_reggroup)
+ return rg & xtRegisterGroupAddrReg;
+ if (group == xtensa_user_reggroup)
+ return rg & xtRegisterGroupUser;
+ if (group == float_reggroup)
+ return rg & xtRegisterGroupFloat;
+ if (group == general_reggroup)
+ return rg & xtRegisterGroupGeneral;
+ if (group == float_reggroup)
+ return rg & xtRegisterGroupFloat;
+ if (group == system_reggroup)
+ return rg & xtRegisterGroupState;
+ if (group == vector_reggroup || group == xtensa_vectra_reggroup)
+ return rg & xtRegisterGroupVectra;
+ if (group == save_reggroup || group == restore_reggroup)
+ return (regnum < NUM_REGS
+ && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
+ else
+ return 1;
+}
+
+
+/* CORE FILE SUPPORT */
+
+/* Supply register REGNUM from the buffer specified by GREGS and LEN
+ in the general-purpose register set REGSET to register cache
+ REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
+
+static void
+xtensa_supply_gregset (const struct regset *regset,
+ struct regcache *rc,
+ int regnum,
+ const void *gregs,
+ size_t len)
+{
+ const xtensa_elf_gregset_t *regs = gregs;
+ int i;
+
+ DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...) \n", regnum);
+
+ if (regnum == PC_REGNUM || regnum == -1)
+ regcache_raw_supply (rc, PC_REGNUM, (char *) &regs->pc);
+ if (regnum == PS_REGNUM || regnum == -1)
+ regcache_raw_supply (rc, PS_REGNUM, (char *) &regs->ps);
+ if (regnum == WB_REGNUM || regnum == -1)
+ regcache_raw_supply (rc, WB_REGNUM, (char *) &regs->windowbase);
+ if (regnum == WS_REGNUM || regnum == -1)
+ regcache_raw_supply (rc, WS_REGNUM, (char *) &regs->windowstart);
+ if (regnum == LBEG_REGNUM || regnum == -1)
+ regcache_raw_supply (rc, LBEG_REGNUM, (char *) &regs->lbeg);
+ if (regnum == LEND_REGNUM || regnum == -1)
+ regcache_raw_supply (rc, LEND_REGNUM, (char *) &regs->lend);
+ if (regnum == LCOUNT_REGNUM || regnum == -1)
+ regcache_raw_supply (rc, LCOUNT_REGNUM, (char *) &regs->lcount);
+ if (regnum == SAR_REGNUM || regnum == -1)
+ regcache_raw_supply (rc, SAR_REGNUM, (char *) &regs->sar);
+ if (regnum == EXCCAUSE_REGNUM || regnum == -1)
+ regcache_raw_supply (rc, EXCCAUSE_REGNUM, (char *) &regs->exccause);
+ if (regnum == EXCVADDR_REGNUM || regnum == -1)
+ regcache_raw_supply (rc, EXCVADDR_REGNUM, (char *) &regs->excvaddr);
+ if (regnum >= AR_BASE && regnum < AR_BASE + NUM_AREGS)
+ regcache_raw_supply (rc, regnum, (char *) &regs->ar[regnum - AR_BASE]);
+ else if (regnum == -1)
+ {
+ for (i = 0; i < NUM_AREGS; ++i)
+ regcache_raw_supply (rc, AR_BASE + i, (char *) &regs->ar[i]);
+ }
+}
+
+
+/* Xtensa register set. */
+
+static struct regset
+xtensa_gregset =
+{
+ NULL,
+ xtensa_supply_gregset
+};
+
+
+/* Return the appropriate register set for the core section identified
+ by SECT_NAME and SECT_SIZE. */
+
+static const struct regset *
+xtensa_regset_from_core_section (struct gdbarch *core_arch,
+ const char *sect_name,
+ size_t sect_size)
+{
+ DEBUGTRACE ("xtensa_regset_from_core_section "
+ "(..., sect_name==\"%s\", sect_size==%x) \n",
+ sect_name, sect_size);
+
+ if (strcmp (sect_name, ".reg") == 0
+ && sect_size >= sizeof(xtensa_elf_gregset_t))
+ return &xtensa_gregset;
+
+ return NULL;
+}
+
+
+/* F R A M E */
+
+/* We currently don't support the call0-abi, so we have at max. 12 registers
+ saved on the stack. */
+
+#define XTENSA_NUM_SAVED_AREGS 12
+
+typedef struct xtensa_frame_cache
+{
+ CORE_ADDR base;
+ CORE_ADDR pc;
+ CORE_ADDR ra; /* The raw return address; use to compute call_inc. */
+ CORE_ADDR ps;
+ int wb; /* Base for this frame; -1 if not in regfile. */
+ int callsize; /* Call size to next frame. */
+ int ws;
+ CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
+ CORE_ADDR prev_sp;
+} xtensa_frame_cache_t;
+
+
+static struct xtensa_frame_cache *
+xtensa_alloc_frame_cache (void)
+{
+ xtensa_frame_cache_t *cache;
+ int i;
+
+ DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
+
+ cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
+
+ cache->base = 0;
+ cache->pc = 0;
+ cache->ra = 0;
+ cache->wb = 0;
+ cache->ps = 0;
+ cache->callsize = -1;
+ cache->prev_sp = 0;
+
+ for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
+ cache->aregs[i] = -1;
+
+ return cache;
+}
+
+
+static CORE_ADDR
+xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
+{
+ return address & ~15;
+}
+
+
+static CORE_ADDR
+xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+ char buf[8];
+
+ DEBUGTRACE ("xtensa_unwind_pc (next_frame = %p)\n", next_frame);
+
+ frame_unwind_register (next_frame, PC_REGNUM, buf);
+
+ DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int)
+ extract_typed_address (buf, builtin_type_void_func_ptr));
+
+ return extract_typed_address (buf, builtin_type_void_func_ptr);
+}
+
+
+static struct frame_id
+xtensa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
+{
+ CORE_ADDR pc, fp;
+ char buf[4];
+
+ /* next_frame->prev is a dummy frame. Return a frame ID of that frame. */
+
+ DEBUGTRACE ("xtensa_unwind_dummy_id ()\n");
+
+ pc = frame_pc_unwind (next_frame);
+ frame_unwind_register (next_frame, A1_REGNUM, buf);
+ fp = extract_unsigned_integer (buf, 4);
+
+ /* Make dummy frame ID unique by adding a constant. */
+ return frame_id_build (fp+SP_ALIGNMENT, pc);
+}
+
+
+static struct xtensa_frame_cache *
+xtensa_frame_cache (struct frame_info *next_frame, void **this_cache)
+{
+ xtensa_frame_cache_t *cache;
+ char buf[4];
+ CORE_ADDR ra, wb, ws, pc, sp, ps;
+ char op1;
+
+ DEBUGTRACE ("xtensa_frame_cache (next_frame %p, *this_cache %p)\n",
+ next_frame, this_cache ? *this_cache : (void*)0xdeadbeef);
+
+ /* Already cached? */
+ if (*this_cache)
+ return *this_cache;
+
+ /* Get pristine xtensa-frame. */
+ cache = xtensa_alloc_frame_cache ();
+ *this_cache = cache;
+
+ /* Get windowbase, windowstart, ps, and pc. */
+ wb = frame_unwind_register_unsigned (next_frame, WB_REGNUM);
+ ws = frame_unwind_register_unsigned (next_frame, WS_REGNUM);
+ ps = frame_unwind_register_unsigned (next_frame, PS_REGNUM);
+ pc = frame_unwind_register_unsigned (next_frame, PC_REGNUM);
+
+ op1 = read_memory_integer (pc, 1);
+ if (XTENSA_IS_ENTRY (op1) || !windowing_enabled (read_register (PS_REGNUM)))
+ {
+ int callinc = CALLINC (frame_unwind_register_unsigned (next_frame,
+ PS_REGNUM));
+ ra = frame_unwind_register_unsigned (next_frame,
+ A0_REGNUM + callinc * 4);
+
+ DEBUGINFO("[xtensa_frame_cache] 'entry' at 0x%08x\n (callinc = %d)",
+ (int)pc, callinc);
+
+ /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
+ cache->callsize = 0;
+ cache->wb = wb;
+ cache->ws = ws;
+ cache->prev_sp = read_register (A1_REGNUM);
+ }
+ else
+ {
+ ra = frame_unwind_register_unsigned (next_frame, A0_REGNUM);
+ cache->callsize = WINSIZE (ra);
+ cache->wb = (wb - (cache->callsize / 4)) & ((NUM_AREGS / 4) - 1);
+ cache->ws = ws & ~(1 << wb);
+ }
+
+ cache->pc = ((frame_func_unwind (next_frame) & 0xc0000000)
+ | (ra & 0x3fffffff));
+ cache->ps = (ps & ~PS_CALLINC_MASK) | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
+
+
+ /* Note: We could also calculate the location on stack when we actually
+ access the register. However, this approach, saving the location
+ in the cache frame, is probably easier to support the call0 ABI. */
+
+ if (cache->ws == 0)
+ {
+ int i;
+
+ /* Set A0...A3. */
+ sp = frame_unwind_register_unsigned (next_frame, A1_REGNUM) - 16;
+
+ for (i = 0; i < 4; i++, sp += 4)
+ {
+ cache->aregs[i] = sp;
+ }
+
+ if (cache->callsize > 4)
+ {
+ /* Set A4...A7/A11. */
+
+ sp = (CORE_ADDR) read_memory_integer (sp - 12, 4);
+ sp = (CORE_ADDR) read_memory_integer (sp - 12, 4);
+ sp -= cache->callsize * 4;
+
+ for ( /* i=4 */ ; i < cache->callsize; i++, sp += 4)
+ {
+ cache->aregs[i] = sp;
+ }
+ }
+ }
+
+ if (cache->prev_sp == 0)
+ {
+ if (cache->ws == 0)
+ {
+ /* Register window overflow already happened.
+ We can read caller's frame SP from the proper spill loction. */
+ cache->prev_sp =
+ read_memory_integer (cache->aregs[1],
+ register_size (current_gdbarch,
+ A1_REGNUM));
+ }
+ else
+ {
+ /* Read caller's frame SP directly from the previous window. */
+
+ int regnum = AREG_NUMBER (A1_REGNUM, cache->wb);
+
+ cache->prev_sp = read_register (regnum);
+ }
+ }
+
+ cache->base = frame_unwind_register_unsigned (next_frame,A1_REGNUM);
+
+ DEBUGINFO ("[xtensa_frame_cache] base 0x%08x, wb %d, "
+ "ws 0x%08x, callsize %d, pc 0x%08x, ps 0x%08x, prev_sp 0x%08x\n",
+ (unsigned int) cache->base, (unsigned int) cache->wb,
+ cache->ws, cache->callsize, (unsigned int) cache->pc,
+ (unsigned int) cache->ps, (unsigned int) cache->prev_sp);
+
+ return cache;
+}
+
+
+static void
+xtensa_frame_this_id (struct frame_info *next_frame,
+ void **this_cache,
+ struct frame_id *this_id)
+{
+ struct xtensa_frame_cache *cache =
+ xtensa_frame_cache (next_frame, this_cache);
+
+ DEBUGTRACE ("xtensa_frame_this_id (next 0x%08x, *this 0x%08x)\n",
+ (unsigned int) next_frame, (unsigned int) *this_cache);
+
+ if (cache->prev_sp == 0)
+ return;
+
+ (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
+}
+
+
+static void
+xtensa_frame_prev_register (struct frame_info *next_frame,
+ void **this_cache,
+ int regnum,
+ int *optimizedp,
+ enum lval_type *lvalp,
+ CORE_ADDR *addrp,
+ int *realnump,
+ gdb_byte *valuep)
+{
+ struct xtensa_frame_cache *cache =
+ xtensa_frame_cache (next_frame, this_cache);
+ CORE_ADDR saved_reg = 0;
+ int done = 1;
+
+ DEBUGTRACE ("xtensa_frame_prev_register (next 0x%08x, "
+ "*this 0x%08x, regnum %d (%s), ...)\n",
+ (unsigned int) next_frame,
+ *this_cache? (unsigned int) *this_cache : 0, regnum,
+ xtensa_register_name (regnum));
+
+ if (regnum == WS_REGNUM)
+ {
+ if (cache->ws != 0)
+ saved_reg = cache->ws;
+ else
+ saved_reg = 1 << cache->wb;
+ }
+ else if (regnum == WB_REGNUM)
+ saved_reg = cache->wb;
+ else if (regnum == PC_REGNUM)
+ saved_reg = cache->pc;
+ else if (regnum == PS_REGNUM)
+ saved_reg = cache->ps;
+ else
+ done = 0;
+
+ if (done)
+ {
+ *optimizedp = 0;
+ *lvalp = not_lval;
+ *addrp = 0;
+ *realnump = -1;
+ if (valuep)
+ store_unsigned_integer (valuep, 4, saved_reg);
+
+ return;
+ }
+
+ /* Convert Ax register numbers to ARx register numbers. */
+ if (regnum >= A0_REGNUM && regnum <= A15_REGNUM)
+ regnum = AREG_NUMBER (regnum, cache->wb);
+
+ /* Check if ARx register has been saved to stack. */
+ if (regnum >= AR_BASE && regnum <= (AR_BASE + NUM_AREGS))
+ {
+ int areg = regnum - AR_BASE - (cache->wb * 4);
+
+ if (areg >= 0
+ && areg < XTENSA_NUM_SAVED_AREGS
+ && cache->aregs[areg] != -1)
+ {
+ *optimizedp = 0;
+ *lvalp = lval_memory;
+ *addrp = cache->aregs[areg];
+ *realnump = -1;
+
+ if (valuep)
+ read_memory (*addrp, valuep,
+ register_size (current_gdbarch, regnum));
+
+ DEBUGINFO ("[xtensa_frame_prev_register] register on stack\n");
+ return;
+ }
+ }
+
+ /* Note: All other registers have been either saved to the dummy stack
+ or are still alive in the processor. */
+
+ *optimizedp = 0;
+ *lvalp = lval_register;
+ *addrp = 0;
+ *realnump = regnum;
+ if (valuep)
+ frame_unwind_register (next_frame, (*realnump), valuep);
+}
+
+
+static const struct frame_unwind
+xtensa_frame_unwind =
+{
+ NORMAL_FRAME,
+ xtensa_frame_this_id,
+ xtensa_frame_prev_register
+};
+
+static const struct frame_unwind *
+xtensa_frame_sniffer (struct frame_info *next_frame)
+{
+ return &xtensa_frame_unwind;
+}
+
+static CORE_ADDR
+xtensa_frame_base_address (struct frame_info *next_frame, void **this_cache)
+{
+ struct xtensa_frame_cache *cache =
+ xtensa_frame_cache (next_frame, this_cache);
+
+ return cache->base;
+}
+
+static const struct frame_base
+xtensa_frame_base =
+{
+ &xtensa_frame_unwind,
+ xtensa_frame_base_address,
+ xtensa_frame_base_address,
+ xtensa_frame_base_address
+};
+
+
+static void
+xtensa_extract_return_value (struct type *type,
+ struct regcache *regcache,
+ void *dst)
+{
+ bfd_byte *valbuf = dst;
+ int len = TYPE_LENGTH (type);
+ ULONGEST pc, wb;
+ int callsize, areg;
+ int offset = 0;
+
+ DEBUGTRACE ("xtensa_extract_return_value (...)\n");
+
+ gdb_assert(len > 0);
+
+ /* First, we have to find the caller window in the register file. */
+ regcache_raw_read_unsigned (regcache, PC_REGNUM, &pc);
+ callsize = extract_call_winsize (pc);
+
+ /* On Xtensa, we can return up to 4 words (or 2 when called by call12). */
+ if (len > (callsize > 8 ? 8 : 16))
+ internal_error (__FILE__, __LINE__,
+ _("cannot extract return value of %d bytes long"), len);
+
+ /* Get the register offset of the return register (A2) in the caller
+ window. */
+ regcache_raw_read_unsigned (regcache, WB_REGNUM, &wb);
+ areg = AREG_NUMBER(A2_REGNUM + callsize, wb);
+
+ DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
+
+ if (len < 4 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ offset = 4 - len;
+
+ for (; len > 0; len -= 4, areg++, valbuf += 4)
+ {
+ if (len < 4)
+ regcache_raw_read_part (regcache, areg, offset, len, valbuf);
+ else
+ regcache_raw_read (regcache, areg, valbuf);
+ }
+}
+
+
+static void
+xtensa_store_return_value (struct type *type,
+ struct regcache *regcache,
+ const void *dst)
+{
+ const bfd_byte *valbuf = dst;
+ unsigned int areg;
+ ULONGEST pc, wb;
+ int callsize;
+ int len = TYPE_LENGTH (type);
+ int offset = 0;
+
+ DEBUGTRACE ("xtensa_store_return_value (...)\n");
+
+ regcache_raw_read_unsigned (regcache, WB_REGNUM, &wb);
+ regcache_raw_read_unsigned (regcache, PC_REGNUM, &pc);
+ callsize = extract_call_winsize (pc);
+
+ if (len > (callsize > 8 ? 8 : 16))
+ internal_error (__FILE__, __LINE__,
+ _("unimplemented for this length: %d"),
+ TYPE_LENGTH (type));
+
+ DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
+ callsize, (int) wb);
+
+ if (len < 4 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ offset = 4 - len;
+
+ areg = AREG_NUMBER (A2_REGNUM + callsize, wb);
+
+ for (; len > 0; len -= 4, areg++, valbuf += 4)
+ {
+ if (len < 4)
+ regcache_raw_write_part (regcache, areg, offset, len, valbuf);
+ else
+ regcache_raw_write (regcache, areg, valbuf);
+ }
+}
+
+
+enum return_value_convention
+xtensa_return_value (struct gdbarch *gdbarch,
+ struct type *valtype,
+ struct regcache *regcache,
+ gdb_byte *readbuf,
+ const gdb_byte *writebuf)
+{
+ /* Note: Structures up to 16 bytes are returned in registers. */
+
+ int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
+ || TYPE_CODE (valtype) == TYPE_CODE_UNION
+ || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
+ && TYPE_LENGTH (valtype) > 16);
+
+ if (struct_return)
+ return RETURN_VALUE_STRUCT_CONVENTION;
+
+ DEBUGTRACE ("xtensa_return_value(...)\n");
+
+ if (writebuf != NULL)
+ {
+ xtensa_store_return_value (valtype, regcache, writebuf);
+ }
+
+ if (readbuf != NULL)
+ {
+ gdb_assert (!struct_return);
+ xtensa_extract_return_value (valtype, regcache, readbuf);
+ }
+ return RETURN_VALUE_REGISTER_CONVENTION;
+}
+
+
+/* DUMMY FRAME */
+
+static CORE_ADDR
+xtensa_push_dummy_call (struct gdbarch *gdbarch,
+ struct value *function,
+ struct regcache *regcache,
+ CORE_ADDR bp_addr,
+ int nargs,
+ struct value **args,
+ CORE_ADDR sp,
+ int struct_return,
+ CORE_ADDR struct_addr)
+{
+ int i;
+ int size, onstack_size;
+ char *buf = (char *) alloca (16);
+ CORE_ADDR ra, ps;
+ struct argument_info
+ {
+ const bfd_byte *contents;
+ int length;
+ int onstack; /* onstack == 0 => in reg */
+ int align; /* alignment */
+ union
+ {
+ int offset; /* stack offset if on stack */
+ int regno; /* regno if in register */
+ } u;
+ };
+
+ struct argument_info *arg_info =
+ (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
+
+ CORE_ADDR osp = sp;
+
+ DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
+
+ if (xtensa_debug_level > 3)
+ {
+ int i;
+ DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
+ DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
+ "struct_addr=0x%x\n",
+ (int) sp, (int) struct_return, (int) struct_addr);
+
+ for (i = 0; i < nargs; i++)
+ {
+ struct value *arg = args[i];
+ struct type *arg_type = check_typedef (value_type (arg));
+ fprintf_unfiltered (gdb_stdlog, "%2d: 0x%08x %3d ",
+ i, (int) arg, TYPE_LENGTH (arg_type));
+ switch (TYPE_CODE (arg_type))
+ {
+ case TYPE_CODE_INT:
+ fprintf_unfiltered (gdb_stdlog, "int");
+ break;
+ case TYPE_CODE_STRUCT:
+ fprintf_unfiltered (gdb_stdlog, "struct");
+ break;
+ default:
+ fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
+ break;
+ }
+ fprintf_unfiltered (gdb_stdlog, " 0x%08x\n",
+ (unsigned int) value_contents (arg));
+ }
+ }
+
+ /* First loop: collect information.
+ Cast into type_long. (This shouldn't happen often for C because
+ GDB already does this earlier.) It's possible that GDB could
+ do it all the time but it's harmless to leave this code here. */
+
+ size = 0;
+ onstack_size = 0;
+ i = 0;
+
+ if (struct_return)
+ size = REGISTER_SIZE;
+
+ for (i = 0; i < nargs; i++)
+ {
+ struct argument_info *info = &arg_info[i];
+ struct value *arg = args[i];
+ struct type *arg_type = check_typedef (value_type (arg));
+
+ switch (TYPE_CODE (arg_type))
+ {
+ case TYPE_CODE_INT:
+ case TYPE_CODE_BOOL:
+ case TYPE_CODE_CHAR:
+ case TYPE_CODE_RANGE:
+ case TYPE_CODE_ENUM:
+
+ /* Cast argument to long if necessary as the mask does it too. */
+ if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
+ {
+ arg_type = builtin_type_long;
+ arg = value_cast (arg_type, arg);
+ }
+ info->align = TYPE_LENGTH (builtin_type_long);
+ break;
+
+ case TYPE_CODE_FLT:
+
+ /* Align doubles correctly. */
+ if (TYPE_LENGTH (arg_type) == TYPE_LENGTH (builtin_type_double))
+ info->align = TYPE_LENGTH (builtin_type_double);
+ else
+ info->align = TYPE_LENGTH (builtin_type_long);
+ break;
+
+ case TYPE_CODE_STRUCT:
+ default:
+ info->align = TYPE_LENGTH (builtin_type_long);
+ break;
+ }
+ info->length = TYPE_LENGTH (arg_type);
+ info->contents = value_contents (arg);
+
+ /* Align size and onstack_size. */
+ size = (size + info->align - 1) & ~(info->align - 1);
+ onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
+
+ if (size + info->length > REGISTER_SIZE * ARGS_NUM_REGS)
+ {
+ info->onstack = 1;
+ info->u.offset = onstack_size;
+ onstack_size += info->length;
+ }
+ else
+ {
+ info->onstack = 0;
+ info->u.regno = ARGS_FIRST_REG + size / REGISTER_SIZE;
+ }
+ size += info->length;
+ }
+
+ /* Adjust the stack pointer and align it. */
+ sp = align_down (sp - onstack_size, SP_ALIGNMENT);
+
+ /* Simulate MOVSP. */
+ if (sp != osp)
+ {
+ read_memory (osp - 16, buf, 16);
+ write_memory (sp - 16, buf, 16);
+ }
+
+ /* Second Loop: Load arguments. */
+
+ if (struct_return)
+ {
+ store_unsigned_integer (buf, REGISTER_SIZE, struct_addr);
+ regcache_cooked_write (regcache, ARGS_FIRST_REG, buf);
+ }
+
+ for (i = 0; i < nargs; i++)
+ {
+ struct argument_info *info = &arg_info[i];
+
+ if (info->onstack)
+ {
+ int n = info->length;
+ CORE_ADDR offset = sp + info->u.offset;
+
+ /* Odd-sized structs are aligned to the lower side of a memory
+ word in big-endian mode and require a shift. This only
+ applies for structures smaller than one word. */
+
+ if (n < REGISTER_SIZE && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ offset += (REGISTER_SIZE - n);
+
+ write_memory (offset, info->contents, info->length);
+
+ }
+ else
+ {
+ int n = info->length;
+ const bfd_byte *cp = info->contents;
+ int r = info->u.regno;
+
+ /* Odd-sized structs are aligned to the lower side of registers in
+ big-endian mode and require a shift. The odd-sized leftover will
+ be at the end. Note that this is only true for structures smaller
+ than REGISTER_SIZE; for larger odd-sized structures the excess
+ will be left-aligned in the register on both endiannesses. */
+
+ if (n < REGISTER_SIZE && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ {
+ ULONGEST v = extract_unsigned_integer (cp, REGISTER_SIZE);
+ v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
+
+ store_unsigned_integer (buf, REGISTER_SIZE, v);
+ regcache_cooked_write (regcache, r, buf);
+
+ cp += REGISTER_SIZE;
+ n -= REGISTER_SIZE;
+ r++;
+ }
+ else
+ while (n > 0)
+ {
+ /* ULONGEST v = extract_unsigned_integer (cp, REGISTER_SIZE);*/
+ regcache_cooked_write (regcache, r, cp);
+
+ /* write_register (r, v); */
+ cp += REGISTER_SIZE;
+ n -= REGISTER_SIZE;
+ r++;
+ }
+ }
+ }
+
+
+ /* Set the return address of dummy frame to the dummy address.
+ Note: The return address for the current function (in A0) is
+ saved in the dummy frame, so we can savely overwrite A0 here. */
+
+ ra = (bp_addr & 0x3fffffff) | 0x40000000;
+ regcache_raw_read (regcache, PS_REGNUM, buf);
+ ps = extract_unsigned_integer (buf, 4) & ~0x00030000;
+ regcache_cooked_write_unsigned (regcache, A4_REGNUM, ra);
+ regcache_cooked_write_unsigned (regcache, PS_REGNUM, ps | 0x00010000);
+
+ /* Set new stack pointer and return it. */
+ regcache_cooked_write_unsigned (regcache, A1_REGNUM, sp);
+ /* Make dummy frame ID unique by adding a constant. */
+ return sp + SP_ALIGNMENT;
+}
+
+
+/* Return a breakpoint for the current location of PC. We always use
+ the density version if we have density instructions (regardless of the
+ current instruction at PC), and use regular instructions otherwise. */
+
+#define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
+#define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
+#define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
+#define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
+
+const unsigned char *
+xtensa_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
+{
+ static char big_breakpoint[] = BIG_BREAKPOINT;
+ static char little_breakpoint[] = LITTLE_BREAKPOINT;
+ static char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
+ static char density_little_breakpoint[] = DENSITY_LITTLE_BREAKPOINT;
+
+ DEBUGTRACE ("xtensa_breakpoint_from_pc (pc = 0x%08x)\n", (int) *pcptr);
+
+ if (ISA_USE_DENSITY_INSTRUCTIONS)
+ {
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ {
+ *lenptr = sizeof (density_big_breakpoint);
+ return density_big_breakpoint;
+ }
+ else
+ {
+ *lenptr = sizeof (density_little_breakpoint);
+ return density_little_breakpoint;
+ }
+ }
+ else
+ {
+ if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
+ {
+ *lenptr = sizeof (big_breakpoint);
+ return big_breakpoint;
+ }
+ else
+ {
+ *lenptr = sizeof (little_breakpoint);
+ return little_breakpoint;
+ }
+ }
+}
+
+
+/* Return the pc of the first real instruction. We assume that this
+ machine uses register windows.
+
+ If we have debug info ( line-number info, in particular ) we simply skip
+ the code associated with the first function line effectively skipping
+ the prologue code. It works even in cases like
+
+ int main()
+ { int local_var = 1;
+ ....
+ }
+
+ because, for this source code, both Xtensa compilers will generate two
+ separate entries ( with the same line number ) in dwarf line-number
+ section to make sure there is a boundary between the prologue code and
+ the rest of the function.
+
+ If there is no debug info, we need to analyze the code. */
+
+CORE_ADDR
+xtensa_skip_prologue (CORE_ADDR start_pc)
+{
+ DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
+
+ if (ISA_USE_WINDOWED_REGISTERS)
+ {
+ unsigned char op1;
+ struct symtab_and_line prologue_sal;
+
+ op1 = read_memory_integer (start_pc, 1);
+ if (!XTENSA_IS_ENTRY (op1))
+ return start_pc;
+
+ prologue_sal = find_pc_line (start_pc, 0);
+ if (prologue_sal.line != 0)
+ return prologue_sal.end;
+ else
+ return start_pc + XTENSA_ENTRY_LENGTH;
+ }
+ else
+ {
+ internal_error (__FILE__, __LINE__,
+ _("non-windowed configurations are not supported"));
+ return start_pc;
+ }
+}
+
+
+/* CONFIGURATION CHECK */
+
+/* Verify the current configuration. */
+
+static void
+xtensa_verify_config (struct gdbarch *gdbarch)
+{
+ struct ui_file *log;
+ struct cleanup *cleanups;
+ struct gdbarch_tdep *tdep;
+ long dummy;
+ char *buf;
+
+ tdep = gdbarch_tdep (gdbarch);
+ log = mem_fileopen ();
+ cleanups = make_cleanup_ui_file_delete (log);
+
+ /* Verify that we got a reasonable number of AREGS. */
+ if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
+ fprintf_unfiltered (log, "\n\tnum_aregs: Number of AR registers (%d) "
+ "is not a power of two!", tdep->num_aregs);
+
+ /* Verify that certain registers exist. */
+ if (tdep->pc_regnum == -1)
+ fprintf_unfiltered (log, "\n\tpc_regnum: No PC register");
+ if (tdep->ps_regnum == -1)
+ fprintf_unfiltered (log, "\n\tps_regnum: No PS register");
+ if (tdep->wb_regnum == -1)
+ fprintf_unfiltered (log, "\n\twb_regnum: No WB register");
+ if (tdep->ws_regnum == -1)
+ fprintf_unfiltered (log, "\n\tws_regnum: No WS register");
+ if (tdep->ar_base == -1)
+ fprintf_unfiltered (log, "\n\tar_base: No AR registers");
+ if (tdep->a0_base == -1)
+ fprintf_unfiltered (log, "\n\ta0_base: No Ax registers");
+
+ buf = ui_file_xstrdup (log, &dummy);
+ make_cleanup (xfree, buf);
+ if (strlen (buf) > 0)
+ internal_error (__FILE__, __LINE__,
+ _("the following are invalid: %s"), buf);
+ do_cleanups (cleanups);
+}
+
+
+/* Module "constructor" function. */
+
+static struct gdbarch *
+xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
+{
+ struct gdbarch_tdep *tdep;
+ struct gdbarch *gdbarch;
+ struct xtensa_abi_handler *abi_handler;
+
+ DEBUGTRACE ("gdbarch_init()\n");
+
+ /* We have to set the byte order before we call gdbarch_alloc. */
+ info.byte_order = xtensa_config_byte_order (&info);
+
+ tdep = xtensa_config_tdep (&info);
+ gdbarch = gdbarch_alloc (&info, tdep);
+
+ /* Verify our configuration. */
+ xtensa_verify_config (gdbarch);
+
+ /* Pseudo-Register read/write */
+ set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
+ set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
+
+ /* Set target information. */
+ set_gdbarch_num_regs (gdbarch, tdep->num_regs);
+ set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
+ set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
+ set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
+ set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
+
+ /* Renumber registers for known formats (stab, dwarf, and dwarf2). */
+ set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
+ set_gdbarch_dwarf_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
+ set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
+
+ /* We provide our own function to get register information. */
+ set_gdbarch_register_name (gdbarch, xtensa_register_name);
+ set_gdbarch_register_type (gdbarch, xtensa_register_type);
+
+ /* To call functions from GDB using dummy frame */
+ set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
+
+ set_gdbarch_believe_pcc_promotion (gdbarch, 1);
+
+ set_gdbarch_return_value (gdbarch, xtensa_return_value);
+
+ /* Advance PC across any prologue instructions to reach "real" code. */
+ set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
+
+ /* Stack grows downward. */
+ set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
+
+ /* Set breakpoints. */
+ set_gdbarch_breakpoint_from_pc (gdbarch, xtensa_breakpoint_from_pc);
+
+ /* After breakpoint instruction or illegal instruction, pc still
+ points at break instruction, so don't decrement. */
+ set_gdbarch_decr_pc_after_break (gdbarch, 0);
+
+ /* We don't skip args. */
+ set_gdbarch_frame_args_skip (gdbarch, 0);
+
+ set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
+
+ set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
+
+ set_gdbarch_unwind_dummy_id (gdbarch, xtensa_unwind_dummy_id);
+
+ /* Frame handling. */
+ frame_base_set_default (gdbarch, &xtensa_frame_base);
+ frame_unwind_append_sniffer (gdbarch, xtensa_frame_sniffer);
+
+ set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
+
+ set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
+
+ xtensa_add_reggroups (gdbarch);
+ set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
+
+ set_gdbarch_regset_from_core_section (gdbarch,
+ xtensa_regset_from_core_section);
+
+ return gdbarch;
+}
+
+
+/* Dump xtensa tdep structure. */
+
+static void
+xtensa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
+{
+ error (_("xtensa_dump_tdep(): not implemented"));
+}
+
+
+void
+_initialize_xtensa_tdep (void)
+{
+ struct cmd_list_element *c;
+
+ gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
+ xtensa_init_reggroups ();
+
+ add_setshow_zinteger_cmd ("xtensa",
+ class_maintenance,
+ &xtensa_debug_level, _("\
+Set Xtensa debugging."), _("\
+Show Xtensa debugging."), _("\
+When non-zero, Xtensa-specific debugging is enabled. \
+Can be 1, 2, 3, or 4 indicating the level of debugging."),
+ NULL,
+ NULL,
+ &setdebuglist, &showdebuglist);
+}