summaryrefslogtreecommitdiff
path: root/gdb/findvar.c
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/findvar.c')
-rw-r--r--gdb/findvar.c834
1 files changed, 10 insertions, 824 deletions
diff --git a/gdb/findvar.c b/gdb/findvar.c
index 5571ede4a66..002f3f32843 100644
--- a/gdb/findvar.c
+++ b/gdb/findvar.c
@@ -37,18 +37,6 @@
const struct floatformat floatformat_unknown;
-/* Registers we shouldn't try to store. */
-#if !defined (CANNOT_STORE_REGISTER)
-#define CANNOT_STORE_REGISTER(regno) 0
-#endif
-
-void write_register_gen (int, char *);
-
-static int
-read_relative_register_raw_bytes_for_frame (int regnum,
- char *myaddr,
- struct frame_info *frame);
-
/* Basic byte-swapping routines. GDB has needed these for a long time...
All extract a target-format integer at ADDR which is LEN bytes long. */
@@ -391,200 +379,6 @@ store_floating (void *addr, int len, DOUBLEST val)
error ("Can't deal with a floating point number of %d bytes.", len);
}
}
-
-
-/* Return the address in which frame FRAME's value of register REGNUM
- has been saved in memory. Or return zero if it has not been saved.
- If REGNUM specifies the SP, the value we return is actually
- the SP value, not an address where it was saved. */
-
-CORE_ADDR
-find_saved_register (frame, regnum)
- struct frame_info *frame;
- int regnum;
-{
- register struct frame_info *frame1 = NULL;
- register CORE_ADDR addr = 0;
-
- if (frame == NULL) /* No regs saved if want current frame */
- return 0;
-
-#ifdef HAVE_REGISTER_WINDOWS
- /* We assume that a register in a register window will only be saved
- in one place (since the name changes and/or disappears as you go
- towards inner frames), so we only call get_frame_saved_regs on
- the current frame. This is directly in contradiction to the
- usage below, which assumes that registers used in a frame must be
- saved in a lower (more interior) frame. This change is a result
- of working on a register window machine; get_frame_saved_regs
- always returns the registers saved within a frame, within the
- context (register namespace) of that frame. */
-
- /* However, note that we don't want this to return anything if
- nothing is saved (if there's a frame inside of this one). Also,
- callers to this routine asking for the stack pointer want the
- stack pointer saved for *this* frame; this is returned from the
- next frame. */
-
- if (REGISTER_IN_WINDOW_P (regnum))
- {
- frame1 = get_next_frame (frame);
- if (!frame1)
- return 0; /* Registers of this frame are active. */
-
- /* Get the SP from the next frame in; it will be this
- current frame. */
- if (regnum != SP_REGNUM)
- frame1 = frame;
-
- FRAME_INIT_SAVED_REGS (frame1);
- return frame1->saved_regs[regnum]; /* ... which might be zero */
- }
-#endif /* HAVE_REGISTER_WINDOWS */
-
- /* Note that this next routine assumes that registers used in
- frame x will be saved only in the frame that x calls and
- frames interior to it. This is not true on the sparc, but the
- above macro takes care of it, so we should be all right. */
- while (1)
- {
- QUIT;
- frame1 = get_prev_frame (frame1);
- if (frame1 == 0 || frame1 == frame)
- break;
- FRAME_INIT_SAVED_REGS (frame1);
- if (frame1->saved_regs[regnum])
- addr = frame1->saved_regs[regnum];
- }
-
- return addr;
-}
-
-/* Find register number REGNUM relative to FRAME and put its (raw,
- target format) contents in *RAW_BUFFER. Set *OPTIMIZED if the
- variable was optimized out (and thus can't be fetched). Set *LVAL
- to lval_memory, lval_register, or not_lval, depending on whether
- the value was fetched from memory, from a register, or in a strange
- and non-modifiable way (e.g. a frame pointer which was calculated
- rather than fetched). Set *ADDRP to the address, either in memory
- on as a REGISTER_BYTE offset into the registers array.
-
- Note that this implementation never sets *LVAL to not_lval. But
- it can be replaced by defining GET_SAVED_REGISTER and supplying
- your own.
-
- The argument RAW_BUFFER must point to aligned memory. */
-
-void
-default_get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
- char *raw_buffer;
- int *optimized;
- CORE_ADDR *addrp;
- struct frame_info *frame;
- int regnum;
- enum lval_type *lval;
-{
- CORE_ADDR addr;
-
- if (!target_has_registers)
- error ("No registers.");
-
- /* Normal systems don't optimize out things with register numbers. */
- if (optimized != NULL)
- *optimized = 0;
- addr = find_saved_register (frame, regnum);
- if (addr != 0)
- {
- if (lval != NULL)
- *lval = lval_memory;
- if (regnum == SP_REGNUM)
- {
- if (raw_buffer != NULL)
- {
- /* Put it back in target format. */
- store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
- (LONGEST) addr);
- }
- if (addrp != NULL)
- *addrp = 0;
- return;
- }
- if (raw_buffer != NULL)
- read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
- }
- else
- {
- if (lval != NULL)
- *lval = lval_register;
- addr = REGISTER_BYTE (regnum);
- if (raw_buffer != NULL)
- read_register_gen (regnum, raw_buffer);
- }
- if (addrp != NULL)
- *addrp = addr;
-}
-
-#if !defined (GET_SAVED_REGISTER)
-#define GET_SAVED_REGISTER(raw_buffer, optimized, addrp, frame, regnum, lval) \
- default_get_saved_register(raw_buffer, optimized, addrp, frame, regnum, lval)
-#endif
-void
-get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
- char *raw_buffer;
- int *optimized;
- CORE_ADDR *addrp;
- struct frame_info *frame;
- int regnum;
- enum lval_type *lval;
-{
- GET_SAVED_REGISTER (raw_buffer, optimized, addrp, frame, regnum, lval);
-}
-
-/* Copy the bytes of register REGNUM, relative to the input stack frame,
- into our memory at MYADDR, in target byte order.
- The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
-
- Returns 1 if could not be read, 0 if could. */
-
-static int
-read_relative_register_raw_bytes_for_frame (regnum, myaddr, frame)
- int regnum;
- char *myaddr;
- struct frame_info *frame;
-{
- int optim;
- if (regnum == FP_REGNUM && frame)
- {
- /* Put it back in target format. */
- store_address (myaddr, REGISTER_RAW_SIZE (FP_REGNUM),
- (LONGEST) FRAME_FP (frame));
-
- return 0;
- }
-
- get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, frame,
- regnum, (enum lval_type *) NULL);
-
- if (register_valid[regnum] < 0)
- return 1; /* register value not available */
-
- return optim;
-}
-
-/* Copy the bytes of register REGNUM, relative to the current stack frame,
- into our memory at MYADDR, in target byte order.
- The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
-
- Returns 1 if could not be read, 0 if could. */
-
-int
-read_relative_register_raw_bytes (regnum, myaddr)
- int regnum;
- char *myaddr;
-{
- return read_relative_register_raw_bytes_for_frame (regnum, myaddr,
- selected_frame);
-}
/* Return a `value' with the contents of register REGNUM
in its virtual format, with the type specified by
@@ -594,8 +388,7 @@ read_relative_register_raw_bytes (regnum, myaddr)
Caller will check return value or die! */
value_ptr
-value_of_register (regnum)
- int regnum;
+value_of_register (int regnum)
{
CORE_ADDR addr;
int optim;
@@ -606,7 +399,7 @@ value_of_register (regnum)
get_saved_register (raw_buffer, &optim, &addr,
selected_frame, regnum, &lval);
- if (register_valid[regnum] < 0)
+ if (register_cached (regnum) < 0)
return NULL; /* register value not available */
reg_val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
@@ -633,579 +426,6 @@ value_of_register (regnum)
VALUE_OPTIMIZED_OUT (reg_val) = optim;
return reg_val;
}
-
-/* Low level examining and depositing of registers.
-
- The caller is responsible for making
- sure that the inferior is stopped before calling the fetching routines,
- or it will get garbage. (a change from GDB version 3, in which
- the caller got the value from the last stop). */
-
-/* Contents and state of the registers (in target byte order). */
-
-char *registers;
-
-/* VALID_REGISTER is non-zero if it has been fetched, -1 if the
- register value was not available. */
-
-signed char *register_valid;
-
-/* The thread/process associated with the current set of registers. For now,
- -1 is special, and means `no current process'. */
-int registers_pid = -1;
-
-/* Indicate that registers may have changed, so invalidate the cache. */
-
-void
-registers_changed ()
-{
- int i;
- int numregs = ARCH_NUM_REGS;
-
- registers_pid = -1;
-
- /* Force cleanup of any alloca areas if using C alloca instead of
- a builtin alloca. This particular call is used to clean up
- areas allocated by low level target code which may build up
- during lengthy interactions between gdb and the target before
- gdb gives control to the user (ie watchpoints). */
- alloca (0);
-
- for (i = 0; i < numregs; i++)
- register_valid[i] = 0;
-
- if (registers_changed_hook)
- registers_changed_hook ();
-}
-
-/* Indicate that all registers have been fetched, so mark them all valid. */
-void
-registers_fetched ()
-{
- int i;
- int numregs = ARCH_NUM_REGS;
- for (i = 0; i < numregs; i++)
- register_valid[i] = 1;
-}
-
-/* read_register_bytes and write_register_bytes are generally a *BAD*
- idea. They are inefficient because they need to check for partial
- updates, which can only be done by scanning through all of the
- registers and seeing if the bytes that are being read/written fall
- inside of an invalid register. [The main reason this is necessary
- is that register sizes can vary, so a simple index won't suffice.]
- It is far better to call read_register_gen and write_register_gen
- if you want to get at the raw register contents, as it only takes a
- regno as an argument, and therefore can't do a partial register
- update.
-
- Prior to the recent fixes to check for partial updates, both read
- and write_register_bytes always checked to see if any registers
- were stale, and then called target_fetch_registers (-1) to update
- the whole set. This caused really slowed things down for remote
- targets. */
-
-/* Copy INLEN bytes of consecutive data from registers
- starting with the INREGBYTE'th byte of register data
- into memory at MYADDR. */
-
-void
-read_register_bytes (inregbyte, myaddr, inlen)
- int inregbyte;
- char *myaddr;
- int inlen;
-{
- int inregend = inregbyte + inlen;
- int regno;
-
- if (registers_pid != inferior_pid)
- {
- registers_changed ();
- registers_pid = inferior_pid;
- }
-
- /* See if we are trying to read bytes from out-of-date registers. If so,
- update just those registers. */
-
- for (regno = 0; regno < NUM_REGS; regno++)
- {
- int regstart, regend;
-
- if (register_valid[regno])
- continue;
-
- if (REGISTER_NAME (regno) == NULL || *REGISTER_NAME (regno) == '\0')
- continue;
-
- regstart = REGISTER_BYTE (regno);
- regend = regstart + REGISTER_RAW_SIZE (regno);
-
- if (regend <= inregbyte || inregend <= regstart)
- /* The range the user wants to read doesn't overlap with regno. */
- continue;
-
- /* We've found an invalid register where at least one byte will be read.
- Update it from the target. */
- target_fetch_registers (regno);
-
- if (!register_valid[regno])
- error ("read_register_bytes: Couldn't update register %d.", regno);
- }
-
- if (myaddr != NULL)
- memcpy (myaddr, &registers[inregbyte], inlen);
-}
-
-/* Read register REGNO into memory at MYADDR, which must be large enough
- for REGISTER_RAW_BYTES (REGNO). Target byte-order.
- If the register is known to be the size of a CORE_ADDR or smaller,
- read_register can be used instead. */
-void
-read_register_gen (regno, myaddr)
- int regno;
- char *myaddr;
-{
- if (registers_pid != inferior_pid)
- {
- registers_changed ();
- registers_pid = inferior_pid;
- }
-
- if (!register_valid[regno])
- target_fetch_registers (regno);
- memcpy (myaddr, &registers[REGISTER_BYTE (regno)],
- REGISTER_RAW_SIZE (regno));
-}
-
-/* Write register REGNO at MYADDR to the target. MYADDR points at
- REGISTER_RAW_BYTES(REGNO), which must be in target byte-order. */
-
-void
-write_register_gen (regno, myaddr)
- int regno;
- char *myaddr;
-{
- int size;
-
- /* On the sparc, writing %g0 is a no-op, so we don't even want to change
- the registers array if something writes to this register. */
- if (CANNOT_STORE_REGISTER (regno))
- return;
-
- if (registers_pid != inferior_pid)
- {
- registers_changed ();
- registers_pid = inferior_pid;
- }
-
- size = REGISTER_RAW_SIZE (regno);
-
- /* If we have a valid copy of the register, and new value == old value,
- then don't bother doing the actual store. */
-
- if (register_valid[regno]
- && memcmp (&registers[REGISTER_BYTE (regno)], myaddr, size) == 0)
- return;
-
- target_prepare_to_store ();
-
- memcpy (&registers[REGISTER_BYTE (regno)], myaddr, size);
-
- register_valid[regno] = 1;
-
- target_store_registers (regno);
-}
-
-/* Copy INLEN bytes of consecutive data from memory at MYADDR
- into registers starting with the MYREGSTART'th byte of register data. */
-
-void
-write_register_bytes (myregstart, myaddr, inlen)
- int myregstart;
- char *myaddr;
- int inlen;
-{
- int myregend = myregstart + inlen;
- int regno;
-
- target_prepare_to_store ();
-
- /* Scan through the registers updating any that are covered by the range
- myregstart<=>myregend using write_register_gen, which does nice things
- like handling threads, and avoiding updates when the new and old contents
- are the same. */
-
- for (regno = 0; regno < NUM_REGS; regno++)
- {
- int regstart, regend;
-
- regstart = REGISTER_BYTE (regno);
- regend = regstart + REGISTER_RAW_SIZE (regno);
-
- /* Is this register completely outside the range the user is writing? */
- if (myregend <= regstart || regend <= myregstart)
- /* do nothing */ ;
-
- /* Is this register completely within the range the user is writing? */
- else if (myregstart <= regstart && regend <= myregend)
- write_register_gen (regno, myaddr + (regstart - myregstart));
-
- /* The register partially overlaps the range being written. */
- else
- {
- char regbuf[MAX_REGISTER_RAW_SIZE];
- /* What's the overlap between this register's bytes and
- those the caller wants to write? */
- int overlapstart = max (regstart, myregstart);
- int overlapend = min (regend, myregend);
-
- /* We may be doing a partial update of an invalid register.
- Update it from the target before scribbling on it. */
- read_register_gen (regno, regbuf);
-
- memcpy (registers + overlapstart,
- myaddr + (overlapstart - myregstart),
- overlapend - overlapstart);
-
- target_store_registers (regno);
- }
- }
-}
-
-
-/* Return the raw contents of register REGNO, regarding it as an integer. */
-/* This probably should be returning LONGEST rather than CORE_ADDR. */
-
-CORE_ADDR
-read_register (regno)
- int regno;
-{
- if (registers_pid != inferior_pid)
- {
- registers_changed ();
- registers_pid = inferior_pid;
- }
-
- if (!register_valid[regno])
- target_fetch_registers (regno);
-
- return ((CORE_ADDR)
- extract_unsigned_integer (&registers[REGISTER_BYTE (regno)],
- REGISTER_RAW_SIZE (regno)));
-}
-
-CORE_ADDR
-read_register_pid (regno, pid)
- int regno, pid;
-{
- int save_pid;
- CORE_ADDR retval;
-
- if (pid == inferior_pid)
- return read_register (regno);
-
- save_pid = inferior_pid;
-
- inferior_pid = pid;
-
- retval = read_register (regno);
-
- inferior_pid = save_pid;
-
- return retval;
-}
-
-/* Store VALUE, into the raw contents of register number REGNO.
- This should probably write a LONGEST rather than a CORE_ADDR */
-
-void
-write_register (regno, val)
- int regno;
- LONGEST val;
-{
- PTR buf;
- int size;
-
- /* On the sparc, writing %g0 is a no-op, so we don't even want to change
- the registers array if something writes to this register. */
- if (CANNOT_STORE_REGISTER (regno))
- return;
-
- if (registers_pid != inferior_pid)
- {
- registers_changed ();
- registers_pid = inferior_pid;
- }
-
- size = REGISTER_RAW_SIZE (regno);
- buf = alloca (size);
- store_signed_integer (buf, size, (LONGEST) val);
-
- /* If we have a valid copy of the register, and new value == old value,
- then don't bother doing the actual store. */
-
- if (register_valid[regno]
- && memcmp (&registers[REGISTER_BYTE (regno)], buf, size) == 0)
- return;
-
- target_prepare_to_store ();
-
- memcpy (&registers[REGISTER_BYTE (regno)], buf, size);
-
- register_valid[regno] = 1;
-
- target_store_registers (regno);
-}
-
-void
-write_register_pid (regno, val, pid)
- int regno;
- CORE_ADDR val;
- int pid;
-{
- int save_pid;
-
- if (pid == inferior_pid)
- {
- write_register (regno, val);
- return;
- }
-
- save_pid = inferior_pid;
-
- inferior_pid = pid;
-
- write_register (regno, val);
-
- inferior_pid = save_pid;
-}
-
-/* Record that register REGNO contains VAL.
- This is used when the value is obtained from the inferior or core dump,
- so there is no need to store the value there.
-
- If VAL is a NULL pointer, then it's probably an unsupported register. We
- just set it's value to all zeros. We might want to record this fact, and
- report it to the users of read_register and friends.
- */
-
-void
-supply_register (regno, val)
- int regno;
- char *val;
-{
-#if 1
- if (registers_pid != inferior_pid)
- {
- registers_changed ();
- registers_pid = inferior_pid;
- }
-#endif
-
- register_valid[regno] = 1;
- if (val)
- memcpy (&registers[REGISTER_BYTE (regno)], val, REGISTER_RAW_SIZE (regno));
- else
- memset (&registers[REGISTER_BYTE (regno)], '\000', REGISTER_RAW_SIZE (regno));
-
- /* On some architectures, e.g. HPPA, there are a few stray bits in some
- registers, that the rest of the code would like to ignore. */
-#ifdef CLEAN_UP_REGISTER_VALUE
- CLEAN_UP_REGISTER_VALUE (regno, &registers[REGISTER_BYTE (regno)]);
-#endif
-}
-
-
-/* This routine is getting awfully cluttered with #if's. It's probably
- time to turn this into READ_PC and define it in the tm.h file.
- Ditto for write_pc.
-
- 1999-06-08: The following were re-written so that it assumes the
- existance of a TARGET_READ_PC et.al. macro. A default generic
- version of that macro is made available where needed.
-
- Since the ``TARGET_READ_PC'' et.al. macro is going to be controlled
- by the multi-arch framework, it will eventually be possible to
- eliminate the intermediate read_pc_pid(). The client would call
- TARGET_READ_PC directly. (cagney). */
-
-#ifndef TARGET_READ_PC
-#define TARGET_READ_PC generic_target_read_pc
-#endif
-
-CORE_ADDR
-generic_target_read_pc (int pid)
-{
-#ifdef PC_REGNUM
- if (PC_REGNUM >= 0)
- {
- CORE_ADDR pc_val = ADDR_BITS_REMOVE ((CORE_ADDR) read_register_pid (PC_REGNUM, pid));
- return pc_val;
- }
-#endif
- internal_error ("generic_target_read_pc");
- return 0;
-}
-
-CORE_ADDR
-read_pc_pid (pid)
- int pid;
-{
- int saved_inferior_pid;
- CORE_ADDR pc_val;
-
- /* In case pid != inferior_pid. */
- saved_inferior_pid = inferior_pid;
- inferior_pid = pid;
-
- pc_val = TARGET_READ_PC (pid);
-
- inferior_pid = saved_inferior_pid;
- return pc_val;
-}
-
-CORE_ADDR
-read_pc ()
-{
- return read_pc_pid (inferior_pid);
-}
-
-#ifndef TARGET_WRITE_PC
-#define TARGET_WRITE_PC generic_target_write_pc
-#endif
-
-void
-generic_target_write_pc (pc, pid)
- CORE_ADDR pc;
- int pid;
-{
-#ifdef PC_REGNUM
- if (PC_REGNUM >= 0)
- write_register_pid (PC_REGNUM, pc, pid);
- if (NPC_REGNUM >= 0)
- write_register_pid (NPC_REGNUM, pc + 4, pid);
- if (NNPC_REGNUM >= 0)
- write_register_pid (NNPC_REGNUM, pc + 8, pid);
-#else
- internal_error ("generic_target_write_pc");
-#endif
-}
-
-void
-write_pc_pid (pc, pid)
- CORE_ADDR pc;
- int pid;
-{
- int saved_inferior_pid;
-
- /* In case pid != inferior_pid. */
- saved_inferior_pid = inferior_pid;
- inferior_pid = pid;
-
- TARGET_WRITE_PC (pc, pid);
-
- inferior_pid = saved_inferior_pid;
-}
-
-void
-write_pc (pc)
- CORE_ADDR pc;
-{
- write_pc_pid (pc, inferior_pid);
-}
-
-/* Cope with strage ways of getting to the stack and frame pointers */
-
-#ifndef TARGET_READ_SP
-#define TARGET_READ_SP generic_target_read_sp
-#endif
-
-CORE_ADDR
-generic_target_read_sp ()
-{
-#ifdef SP_REGNUM
- if (SP_REGNUM >= 0)
- return read_register (SP_REGNUM);
-#endif
- internal_error ("generic_target_read_sp");
-}
-
-CORE_ADDR
-read_sp ()
-{
- return TARGET_READ_SP ();
-}
-
-#ifndef TARGET_WRITE_SP
-#define TARGET_WRITE_SP generic_target_write_sp
-#endif
-
-void
-generic_target_write_sp (val)
- CORE_ADDR val;
-{
-#ifdef SP_REGNUM
- if (SP_REGNUM >= 0)
- {
- write_register (SP_REGNUM, val);
- return;
- }
-#endif
- internal_error ("generic_target_write_sp");
-}
-
-void
-write_sp (val)
- CORE_ADDR val;
-{
- TARGET_WRITE_SP (val);
-}
-
-#ifndef TARGET_READ_FP
-#define TARGET_READ_FP generic_target_read_fp
-#endif
-
-CORE_ADDR
-generic_target_read_fp ()
-{
-#ifdef FP_REGNUM
- if (FP_REGNUM >= 0)
- return read_register (FP_REGNUM);
-#endif
- internal_error ("generic_target_read_fp");
-}
-
-CORE_ADDR
-read_fp ()
-{
- return TARGET_READ_FP ();
-}
-
-#ifndef TARGET_WRITE_FP
-#define TARGET_WRITE_FP generic_target_write_fp
-#endif
-
-void
-generic_target_write_fp (val)
- CORE_ADDR val;
-{
-#ifdef FP_REGNUM
- if (FP_REGNUM >= 0)
- {
- write_register (FP_REGNUM, val);
- return;
- }
-#endif
- internal_error ("generic_target_write_fp");
-}
-
-void
-write_fp (val)
- CORE_ADDR val;
-{
- TARGET_WRITE_FP (val);
-}
-
/* Given a pointer of type TYPE in target form in BUF, return the
address it represents. */
@@ -1239,8 +459,7 @@ address_to_signed_pointer (struct type *type, void *buf, CORE_ADDR addr)
up caring what frame it is being evaluated relative to? SYM must
be non-NULL. */
int
-symbol_read_needs_frame (sym)
- struct symbol *sym;
+symbol_read_needs_frame (struct symbol *sym)
{
switch (SYMBOL_CLASS (sym))
{
@@ -1285,9 +504,7 @@ symbol_read_needs_frame (sym)
If FRAME is NULL, use the selected_frame. */
value_ptr
-read_var_value (var, frame)
- register struct symbol *var;
- struct frame_info *frame;
+read_var_value (register struct symbol *var, struct frame_info *frame)
{
register value_ptr v;
struct type *type = SYMBOL_TYPE (var);
@@ -1492,10 +709,7 @@ addresses have not been bound by the dynamic loader. Try again when executable i
Caller will check return value or die! */
value_ptr
-value_from_register (type, regnum, frame)
- struct type *type;
- int regnum;
- struct frame_info *frame;
+value_from_register (struct type *type, int regnum, struct frame_info *frame)
{
char raw_buffer[MAX_REGISTER_RAW_SIZE];
CORE_ADDR addr;
@@ -1578,7 +792,7 @@ value_from_register (type, regnum, frame)
page_regnum,
&lval);
- if (register_valid[page_regnum] == -1)
+ if (register_cached (page_regnum) == -1)
return NULL; /* register value not available */
if (lval == lval_register)
@@ -1595,7 +809,7 @@ value_from_register (type, regnum, frame)
regnum,
&lval);
- if (register_valid[regnum] == -1)
+ if (register_cached (regnum) == -1)
return NULL; /* register value not available */
if (lval == lval_register)
@@ -1621,7 +835,7 @@ value_from_register (type, regnum, frame)
local_regnum,
&lval);
- if (register_valid[local_regnum] == -1)
+ if (register_cached (local_regnum) == -1)
return NULL; /* register value not available */
if (regnum == local_regnum)
@@ -1686,7 +900,7 @@ value_from_register (type, regnum, frame)
get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval);
- if (register_valid[regnum] == -1)
+ if (register_cached (regnum) == -1)
return NULL; /* register value not available */
VALUE_OPTIMIZED_OUT (v) = optim;
@@ -1740,9 +954,7 @@ value_from_register (type, regnum, frame)
address. */
value_ptr
-locate_var_value (var, frame)
- register struct symbol *var;
- struct frame_info *frame;
+locate_var_value (register struct symbol *var, struct frame_info *frame)
{
CORE_ADDR addr = 0;
struct type *type = SYMBOL_TYPE (var);
@@ -1782,29 +994,3 @@ locate_var_value (var, frame)
}
return 0; /* For lint -- never reached */
}
-
-
-static void build_findvar (void);
-static void
-build_findvar ()
-{
- /* We allocate some extra slop since we do a lot of memcpy's around
- `registers', and failing-soft is better than failing hard. */
- int sizeof_registers = REGISTER_BYTES + /* SLOP */ 256;
- int sizeof_register_valid = NUM_REGS * sizeof (*register_valid);
- registers = xmalloc (sizeof_registers);
- memset (registers, 0, sizeof_registers);
- register_valid = xmalloc (sizeof_register_valid);
- memset (register_valid, 0, sizeof_register_valid);
-}
-
-void _initialize_findvar (void);
-void
-_initialize_findvar ()
-{
- build_findvar ();
-
- register_gdbarch_swap (&registers, sizeof (registers), NULL);
- register_gdbarch_swap (&register_valid, sizeof (register_valid), NULL);
- register_gdbarch_swap (NULL, 0, build_findvar);
-}