summaryrefslogtreecommitdiff
path: root/gdb/doc/gdb.texinfo
diff options
context:
space:
mode:
Diffstat (limited to 'gdb/doc/gdb.texinfo')
-rw-r--r--gdb/doc/gdb.texinfo2976
1 files changed, 2679 insertions, 297 deletions
diff --git a/gdb/doc/gdb.texinfo b/gdb/doc/gdb.texinfo
index 7d77765dd96..bfa9cc4b135 100644
--- a/gdb/doc/gdb.texinfo
+++ b/gdb/doc/gdb.texinfo
@@ -142,6 +142,7 @@ Copyright (C) 1988-1999 Free Software Foundation, Inc.
* Altering:: Altering execution
* GDB Files:: @value{GDBN} files
* Targets:: Specifying a debugging target
+* Configurations:: Configuration-specific information
* Controlling GDB:: Controlling @value{GDBN}
* Sequences:: Canned sequences of commands
* Emacs:: Using @value{GDBN} under @sc{gnu} Emacs
@@ -1299,7 +1300,6 @@ kill a child process.
* Input/Output:: Your program's input and output
* Attach:: Debugging an already-running process
* Kill Process:: Killing the child process
-* Process Information:: Additional process information
* Threads:: Debugging programs with multiple threads
* Processes:: Debugging programs with multiple processes
@@ -1691,51 +1691,6 @@ next type @code{run}, @value{GDBN} notices that the file has changed, and
reads the symbol table again (while trying to preserve your current
breakpoint settings).
-@node Process Information
-@section Additional process information
-
-@kindex /proc
-@cindex process image
-
-Some operating systems provide a facility called @samp{/proc} that can
-be used to examine the image of a running process using file-system
-subroutines. If @value{GDBN} is configured for an operating system with this
-facility, the command @code{info proc} is available to report on several
-kinds of information about the process running your program.
-@code{info proc} works only on SVR4 systems that support @code{procfs}.
-This includes OSF/1 (Digital Unix), Solaris, Irix, and Unixware,
-but not HP-UX or Linux, for example.
-
-@table @code
-@kindex info proc
-@item info proc
-Summarize available information about the process.
-
-@kindex info proc mappings
-@item info proc mappings
-Report on the address ranges accessible in the program, with information
-on whether your program may read, write, or execute each range.
-
-@kindex info proc times
-@item info proc times
-Starting time, user CPU time, and system CPU time for your program and
-its children.
-
-@kindex info proc id
-@item info proc id
-Report on the process IDs related to your program: its own process ID,
-the ID of its parent, the process group ID, and the session ID.
-
-@kindex info proc status
-@item info proc status
-General information on the state of the process. If the process is
-stopped, this report includes the reason for stopping, and any signal
-received.
-
-@item info proc all
-Show all the above information about the process.
-@end table
-
@node Threads
@section Debugging programs with multiple threads
@@ -3392,7 +3347,6 @@ currently executing frame and describes it briefly, similar to the
* Backtrace:: Backtraces
* Selection:: Selecting a frame
* Frame Info:: Information on a frame
-* Alpha/MIPS Stack:: Alpha and MIPS machines and the function stack
@end menu
@@ -3684,40 +3638,6 @@ exception handlers, visit the associated frame (using the @code{up},
@end table
-@node Alpha/MIPS Stack
-@section MIPS/Alpha machines and the function stack
-
-@cindex stack on Alpha
-@cindex stack on MIPS
-@cindex Alpha stack
-@cindex MIPS stack
-Alpha- and MIPS-based computers use an unusual stack frame, which
-sometimes requires @value{GDBN} to search backward in the object code to
-find the beginning of a function.
-
-@cindex response time, MIPS debugging
-To improve response time (especially for embedded applications, where
-@value{GDBN} may be restricted to a slow serial line for this search)
-you may want to limit the size of this search, using one of these
-commands:
-
-@table @code
-@cindex @code{heuristic-fence-post} (Alpha,MIPS)
-@item set heuristic-fence-post @var{limit}
-Restrict @value{GDBN} to examining at most @var{limit} bytes in its search
-for the beginning of a function. A value of @var{0} (the default)
-means there is no limit. However, except for @var{0}, the larger the
-limit the more bytes @code{heuristic-fence-post} must search and
-therefore the longer it takes to run.
-
-@item show heuristic-fence-post
-Display the current limit.
-@end table
-
-@noindent
-These commands are available @emph{only} when @value{GDBN} is configured
-for debugging programs on Alpha or MIPS processors.
-
@node Source
@chapter Examining Source Files
@@ -5226,27 +5146,6 @@ code generated by your compiler. If some registers are not saved, or if
@value{GDBN} is unable to locate the saved registers, the selected stack
frame makes no difference.
-@table @code
-@kindex set rstack_high_address
-@cindex AMD 29K register stack
-@cindex register stack, AMD29K
-@item set rstack_high_address @var{address}
-On AMD 29000 family processors, registers are saved in a separate
-``register stack''. There is no way for @value{GDBN} to determine the extent
-of this stack. Normally, @value{GDBN} just assumes that the stack is ``large
-enough''. This may result in @value{GDBN} referencing memory locations that
-do not exist. If necessary, you can get around this problem by
-specifying the ending address of the register stack with the @code{set
-rstack_high_address} command. The argument should be an address, which
-you probably want to precede with @samp{0x} to specify in
-hexadecimal.
-
-@kindex show rstack_high_address
-@item show rstack_high_address
-Display the current limit of the register stack, on AMD 29000 family
-processors.
-@end table
-
@node Floating Point Hardware
@section Floating point hardware
@cindex floating point
@@ -5639,7 +5538,7 @@ language reference or tutorial.
@menu
* C:: C and C++
* Modula-2:: Modula-2
-* Chill:: Chill
+* Chill:: Chill
@end menu
@node C
@@ -6607,8 +6506,8 @@ This section covers the following Chill related topics and the features
of @value{GDBN} which support these topics.
@menu
-* How modes are displayed:: How modes are displayed
-* Locations:: Locations and their accesses
+* How modes are displayed:: How modes are displayed
+* Locations:: Locations and their accesses
* Values and their Operations:: Values and their Operations
* Chill type and range checks::
* Chill defaults::
@@ -8074,176 +7973,29 @@ it somewhere in memory where it won't get clobbered by the download.
@kindex target sim
@item target sim
-CPU simulator. @xref{Simulator,,Simulated CPU Target}.
+Builtin CPU simulator. GDB includes simulators for most architectures.
+In general,
+@example
+ target sim
+ load
+ run
+@end example
+works; however, you cannot assume that a specific memory map, device
+drivers, or even basic I/O is available, although some simulator do
+provide these. For info about any processor-specific simulator details,
+see the appropriate section in @ref{Embedded Processors, ,Embedded
+Processors}.
+
@end table
-The following targets are all CPU-specific, and only available for
-specific configurations.
-@c should organize by CPU
+Some configurations may include these targets as well:
@table @code
-@kindex target abug
-@item target abug @var{dev}
-ABug ROM monitor for M68K.
-
-@kindex target adapt
-@item target adapt @var{dev}
-Adapt monitor for A29K.
-
-@kindex target amd-eb
-@item target amd-eb @var{dev} @var{speed} @var{PROG}
-@cindex AMD EB29K
-Remote PC-resident AMD EB29K board, attached over serial lines.
-@var{dev} is the serial device, as for @code{target remote};
-@var{speed} allows you to specify the linespeed; and @var{PROG} is the
-name of the program to be debugged, as it appears to DOS on the PC.
-@xref{EB29K Remote, ,The EBMON protocol for AMD29K}.
-
-@kindex target array
-@item target array @var{dev}
-Array Tech LSI33K RAID controller board.
-
-@kindex target bug
-@item target bug @var{dev}
-BUG monitor, running on a MVME187 (m88k) board.
-
-@kindex target cpu32bug
-@item target cpu32bug @var{dev}
-CPU32BUG monitor, running on a CPU32 (M68K) board.
-
-@kindex target dbug
-@item target dbug @var{dev}
-dBUG ROM monitor for Motorola ColdFire.
-
-@kindex target ddb
-@item target ddb @var{dev}
-NEC's DDB monitor for Mips Vr4300.
-
-@kindex target dink32
-@item target dink32 @var{dev}
-DINK32 ROM monitor for PowerPC.
-
-@kindex target e7000
-@item target e7000 @var{dev}
-E7000 emulator for Hitachi H8 and SH.
-
-@kindex target es1800
-@item target es1800 @var{dev}
-ES-1800 emulator for M68K.
-
-@kindex target est
-@item target est @var{dev}
-EST-300 ICE monitor, running on a CPU32 (M68K) board.
-
-@kindex target hms
-@item target hms @var{dev}
-A Hitachi SH, H8/300, or H8/500 board, attached via serial line to your host.
-Use special commands @code{device} and @code{speed} to control the serial
-line and the communications speed used.
-@xref{Hitachi Remote,,@value{GDBN} and Hitachi Microprocessors}.
-
-@kindex target lsi
-@item target lsi @var{dev}
-LSI ROM monitor for Mips.
-
-@kindex target m32r
-@item target m32r @var{dev}
-Mitsubishi M32R/D ROM monitor.
-
-@kindex target mips
-@item target mips @var{dev}
-IDT/SIM ROM monitor for Mips.
-
-@kindex target mon960
-@item target mon960 @var{dev}
-MON960 monitor for Intel i960.
-
-@kindex target nindy
-@item target nindy @var{devicename}
-An Intel 960 board controlled by a Nindy Monitor. @var{devicename} is
-the name of the serial device to use for the connection, e.g.
-@file{/dev/ttya}. @xref{i960-Nindy Remote, ,@value{GDBN} with a remote i960 (Nindy)}.
-
@kindex target nrom
@item target nrom @var{dev}
NetROM ROM emulator. This target only supports downloading.
-@kindex target op50n
-@item target op50n @var{dev}
-OP50N monitor, running on an OKI HPPA board.
-
-@kindex target pmon
-@item target pmon @var{dev}
-PMON ROM monitor for Mips.
-
-@kindex target ppcbug
-@item target ppcbug @var{dev}
-@kindex target ppcbug1
-@item target ppcbug1 @var{dev}
-PPCBUG ROM monitor for PowerPC.
-
-@kindex target r3900
-@item target r3900 @var{dev}
-Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
-
-@kindex target rdi
-@item target rdi @var{dev}
-ARM Angel monitor, via RDI library interface.
-
-@kindex target rdp
-@item target rdp @var{dev}
-ARM Demon monitor.
-
-@kindex target rom68k
-@item target rom68k @var{dev}
-ROM 68K monitor, running on an M68K IDP board.
-
-@kindex target rombug
-@item target rombug @var{dev}
-ROMBUG ROM monitor for OS/9000.
-
-@kindex target sds
-@item target sds @var{dev}
-SDS monitor, running on a PowerPC board (such as Motorola's ADS).
-
-@kindex target sparclite
-@item target sparclite @var{dev}
-Fujitsu sparclite boards, used only for the purpose of loading.
-You must use an additional command to debug the program.
-For example: target remote @var{dev} using @value{GDBN} standard
-remote protocol.
-
-@kindex target sh3
-@kindex target sh3e
-@item target sh3 @var{dev}
-@item target sh3e @var{dev}
-Hitachi SH-3 and SH-3E target systems.
-
-@kindex target st2000
-@item target st2000 @var{dev} @var{speed}
-A Tandem ST2000 phone switch, running Tandem's STDBUG protocol. @var{dev}
-is the name of the device attached to the ST2000 serial line;
-@var{speed} is the communication line speed. The arguments are not used
-if @value{GDBN} is configured to connect to the ST2000 using TCP or Telnet.
-@xref{ST2000 Remote,,@value{GDBN} with a Tandem ST2000}.
-
-@kindex target udi
-@item target udi @var{keyword}
-Remote AMD29K target, using the AMD UDI protocol. The @var{keyword}
-argument specifies which 29K board or simulator to use. @xref{UDI29K
-Remote,,The UDI protocol for AMD29K}.
-
-@kindex target vxworks
-@item target vxworks @var{machinename}
-A VxWorks system, attached via TCP/IP. The argument @var{machinename}
-is the target system's machine name or IP address.
-@xref{VxWorks Remote, ,@value{GDBN} and VxWorks}.
-
-@kindex target w89k
-@item target w89k @var{dev}
-W89K monitor, running on a Winbond HPPA board.
-
@end table
Different targets are available on different configurations of @value{GDBN};
@@ -8273,24 +8025,6 @@ link the program; for other formats, like a.out, the object file format
specifies a fixed address.
@c FIXME! This would be a good place for an xref to the GNU linker doc.
-On VxWorks, @code{load} links @var{filename} dynamically on the
-current target system as well as adding its symbols in @value{GDBN}.
-
-@cindex download to Nindy-960
-With the Nindy interface to an Intel 960 board, @code{load}
-downloads @var{filename} to the 960 as well as adding its symbols in
-@value{GDBN}.
-
-@cindex download to H8/300 or H8/500
-@cindex H8/300 or H8/500 download
-@cindex download to Hitachi SH
-@cindex Hitachi SH download
-When you select remote debugging to a Hitachi SH, H8/300, or H8/500 board
-(@pxref{Hitachi Remote,,@value{GDBN} and Hitachi Microprocessors}),
-the @code{load} command downloads your program to the Hitachi board and also
-opens it as the current executable target for @value{GDBN} on your host
-(like the @code{file} command).
-
@code{load} does not repeat if you press @key{RET} again after using it.
@end table
@@ -8354,27 +8088,1173 @@ communicate with @value{GDBN}.
Other remote targets may be available in your
configuration of @value{GDBN}; use @code{help target} to list them.
-@c Text on starting up GDB in various specific cases; it goes up front
-@c in manuals configured for any of those particular situations, here
-@c otherwise.
@menu
* Remote Serial:: @value{GDBN} remote serial protocol
-* i960-Nindy Remote:: @value{GDBN} with a remote i960 (Nindy)
-* UDI29K Remote:: The UDI protocol for AMD29K
-* EB29K Remote:: The EBMON protocol for AMD29K
-* VxWorks Remote:: @value{GDBN} and VxWorks
-* ST2000 Remote:: @value{GDBN} with a Tandem ST2000
-* Hitachi Remote:: @value{GDBN} and Hitachi Microprocessors
-* MIPS Remote:: @value{GDBN} and MIPS boards
-* Sparclet Remote:: @value{GDBN} and Sparclet boards
-* Simulator:: Simulated CPU target
@end menu
-@include remote.texi
+@node Remote Serial
+@subsection The @value{GDBN} remote serial protocol
+
+@cindex remote serial debugging, overview
+To debug a program running on another machine (the debugging
+@dfn{target} machine), you must first arrange for all the usual
+prerequisites for the program to run by itself. For example, for a C
+program, you need:
+
+@enumerate
+@item
+A startup routine to set up the C runtime environment; these usually
+have a name like @file{crt0}. The startup routine may be supplied by
+your hardware supplier, or you may have to write your own.
+
+@item
+You probably need a C subroutine library to support your program's
+subroutine calls, notably managing input and output.
+
+@item
+A way of getting your program to the other machine---for example, a
+download program. These are often supplied by the hardware
+manufacturer, but you may have to write your own from hardware
+documentation.
+@end enumerate
+
+The next step is to arrange for your program to use a serial port to
+communicate with the machine where @value{GDBN} is running (the @dfn{host}
+machine). In general terms, the scheme looks like this:
+
+@table @emph
+@item On the host,
+@value{GDBN} already understands how to use this protocol; when everything
+else is set up, you can simply use the @samp{target remote} command
+(@pxref{Targets,,Specifying a Debugging Target}).
+
+@item On the target,
+you must link with your program a few special-purpose subroutines that
+implement the @value{GDBN} remote serial protocol. The file containing these
+subroutines is called a @dfn{debugging stub}.
+
+On certain remote targets, you can use an auxiliary program
+@code{gdbserver} instead of linking a stub into your program.
+@xref{Server,,Using the @code{gdbserver} program}, for details.
+@end table
+
+The debugging stub is specific to the architecture of the remote
+machine; for example, use @file{sparc-stub.c} to debug programs on
+@sc{sparc} boards.
+
+@cindex remote serial stub list
+These working remote stubs are distributed with @value{GDBN}:
+
+@table @code
+
+@item i386-stub.c
+@kindex i386-stub.c
+@cindex Intel
+@cindex i386
+For Intel 386 and compatible architectures.
+
+@item m68k-stub.c
+@kindex m68k-stub.c
+@cindex Motorola 680x0
+@cindex m680x0
+For Motorola 680x0 architectures.
+
+@item sh-stub.c
+@kindex sh-stub.c
+@cindex Hitachi
+@cindex SH
+For Hitachi SH architectures.
+
+@item sparc-stub.c
+@kindex sparc-stub.c
+@cindex Sparc
+For @sc{sparc} architectures.
+
+@item sparcl-stub.c
+@kindex sparcl-stub.c
+@cindex Fujitsu
+@cindex SparcLite
+For Fujitsu @sc{sparclite} architectures.
+
+@end table
+
+The @file{README} file in the @value{GDBN} distribution may list other
+recently added stubs.
+
+@menu
+* Stub Contents:: What the stub can do for you
+* Bootstrapping:: What you must do for the stub
+* Debug Session:: Putting it all together
+* Protocol:: Definition of the communication protocol
+* Server:: Using the `gdbserver' program
+* NetWare:: Using the `gdbserve.nlm' program
+@end menu
+
+@node Stub Contents
+@subsubsection What the stub can do for you
+
+@cindex remote serial stub
+The debugging stub for your architecture supplies these three
+subroutines:
+
+@table @code
+@item set_debug_traps
+@kindex set_debug_traps
+@cindex remote serial stub, initialization
+This routine arranges for @code{handle_exception} to run when your
+program stops. You must call this subroutine explicitly near the
+beginning of your program.
+
+@item handle_exception
+@kindex handle_exception
+@cindex remote serial stub, main routine
+This is the central workhorse, but your program never calls it
+explicitly---the setup code arranges for @code{handle_exception} to
+run when a trap is triggered.
+
+@code{handle_exception} takes control when your program stops during
+execution (for example, on a breakpoint), and mediates communications
+with @value{GDBN} on the host machine. This is where the communications
+protocol is implemented; @code{handle_exception} acts as the @value{GDBN}
+representative on the target machine; it begins by sending summary
+information on the state of your program, then continues to execute,
+retrieving and transmitting any information @value{GDBN} needs, until you
+execute a @value{GDBN} command that makes your program resume; at that point,
+@code{handle_exception} returns control to your own code on the target
+machine.
+
+@item breakpoint
+@cindex @code{breakpoint} subroutine, remote
+Use this auxiliary subroutine to make your program contain a
+breakpoint. Depending on the particular situation, this may be the only
+way for @value{GDBN} to get control. For instance, if your target
+machine has some sort of interrupt button, you won't need to call this;
+pressing the interrupt button transfers control to
+@code{handle_exception}---in effect, to @value{GDBN}. On some machines,
+simply receiving characters on the serial port may also trigger a trap;
+again, in that situation, you don't need to call @code{breakpoint} from
+your own program---simply running @samp{target remote} from the host
+@value{GDBN} session gets control.
+
+Call @code{breakpoint} if none of these is true, or if you simply want
+to make certain your program stops at a predetermined point for the
+start of your debugging session.
+@end table
+
+@node Bootstrapping
+@subsubsection What you must do for the stub
+
+@cindex remote stub, support routines
+The debugging stubs that come with @value{GDBN} are set up for a particular
+chip architecture, but they have no information about the rest of your
+debugging target machine.
+
+First of all you need to tell the stub how to communicate with the
+serial port.
+
+@table @code
+@item int getDebugChar()
+@kindex getDebugChar
+Write this subroutine to read a single character from the serial port.
+It may be identical to @code{getchar} for your target system; a
+different name is used to allow you to distinguish the two if you wish.
+
+@item void putDebugChar(int)
+@kindex putDebugChar
+Write this subroutine to write a single character to the serial port.
+It may be identical to @code{putchar} for your target system; a
+different name is used to allow you to distinguish the two if you wish.
+@end table
+
+@cindex control C, and remote debugging
+@cindex interrupting remote targets
+If you want @value{GDBN} to be able to stop your program while it is
+running, you need to use an interrupt-driven serial driver, and arrange
+for it to stop when it receives a @code{^C} (@samp{\003}, the control-C
+character). That is the character which @value{GDBN} uses to tell the
+remote system to stop.
+
+Getting the debugging target to return the proper status to @value{GDBN}
+probably requires changes to the standard stub; one quick and dirty way
+is to just execute a breakpoint instruction (the ``dirty'' part is that
+@value{GDBN} reports a @code{SIGTRAP} instead of a @code{SIGINT}).
+
+Other routines you need to supply are:
+
+@table @code
+@item void exceptionHandler (int @var{exception_number}, void *@var{exception_address})
+@kindex exceptionHandler
+Write this function to install @var{exception_address} in the exception
+handling tables. You need to do this because the stub does not have any
+way of knowing what the exception handling tables on your target system
+are like (for example, the processor's table might be in @sc{rom},
+containing entries which point to a table in @sc{ram}).
+@var{exception_number} is the exception number which should be changed;
+its meaning is architecture-dependent (for example, different numbers
+might represent divide by zero, misaligned access, etc). When this
+exception occurs, control should be transferred directly to
+@var{exception_address}, and the processor state (stack, registers,
+and so on) should be just as it is when a processor exception occurs. So if
+you want to use a jump instruction to reach @var{exception_address}, it
+should be a simple jump, not a jump to subroutine.
+
+For the 386, @var{exception_address} should be installed as an interrupt
+gate so that interrupts are masked while the handler runs. The gate
+should be at privilege level 0 (the most privileged level). The
+@sc{sparc} and 68k stubs are able to mask interrupts themselves without
+help from @code{exceptionHandler}.
+
+@item void flush_i_cache()
+@kindex flush_i_cache
+(sparc and sparclite only) Write this subroutine to flush the
+instruction cache, if any, on your target machine. If there is no
+instruction cache, this subroutine may be a no-op.
+
+On target machines that have instruction caches, @value{GDBN} requires this
+function to make certain that the state of your program is stable.
+@end table
+
+@noindent
+You must also make sure this library routine is available:
+
+@table @code
+@item void *memset(void *, int, int)
+@kindex memset
+This is the standard library function @code{memset} that sets an area of
+memory to a known value. If you have one of the free versions of
+@code{libc.a}, @code{memset} can be found there; otherwise, you must
+either obtain it from your hardware manufacturer, or write your own.
+@end table
+
+If you do not use the GNU C compiler, you may need other standard
+library subroutines as well; this varies from one stub to another,
+but in general the stubs are likely to use any of the common library
+subroutines which @code{gcc} generates as inline code.
+
+
+@node Debug Session
+@subsubsection Putting it all together
+
+@cindex remote serial debugging summary
+In summary, when your program is ready to debug, you must follow these
+steps.
+
+@enumerate
+@item
+Make sure you have the supporting low-level routines
+(@pxref{Bootstrapping,,What you must do for the stub}):
+@display
+@code{getDebugChar}, @code{putDebugChar},
+@code{flush_i_cache}, @code{memset}, @code{exceptionHandler}.
+@end display
+
+@item
+Insert these lines near the top of your program:
+
+@example
+set_debug_traps();
+breakpoint();
+@end example
+
+@item
+For the 680x0 stub only, you need to provide a variable called
+@code{exceptionHook}. Normally you just use:
+
+@example
+void (*exceptionHook)() = 0;
+@end example
+
+but if before calling @code{set_debug_traps}, you set it to point to a
+function in your program, that function is called when
+@code{@value{GDBN}} continues after stopping on a trap (for example, bus
+error). The function indicated by @code{exceptionHook} is called with
+one parameter: an @code{int} which is the exception number.
+
+@item
+Compile and link together: your program, the @value{GDBN} debugging stub for
+your target architecture, and the supporting subroutines.
+
+@item
+Make sure you have a serial connection between your target machine and
+the @value{GDBN} host, and identify the serial port on the host.
+
+@item
+@c The "remote" target now provides a `load' command, so we should
+@c document that. FIXME.
+Download your program to your target machine (or get it there by
+whatever means the manufacturer provides), and start it.
+
+@item
+To start remote debugging, run @value{GDBN} on the host machine, and specify
+as an executable file the program that is running in the remote machine.
+This tells @value{GDBN} how to find your program's symbols and the contents
+of its pure text.
+
+@cindex serial line, @code{target remote}
+Then establish communication using the @code{target remote} command.
+Its argument specifies how to communicate with the target
+machine---either via a devicename attached to a direct serial line, or a
+TCP port (usually to a terminal server which in turn has a serial line
+to the target). For example, to use a serial line connected to the
+device named @file{/dev/ttyb}:
+
+@example
+target remote /dev/ttyb
+@end example
+
+@cindex TCP port, @code{target remote}
+To use a TCP connection, use an argument of the form
+@code{@var{host}:port}. For example, to connect to port 2828 on a
+terminal server named @code{manyfarms}:
+
+@example
+target remote manyfarms:2828
+@end example
+@end enumerate
+
+Now you can use all the usual commands to examine and change data and to
+step and continue the remote program.
+
+To resume the remote program and stop debugging it, use the @code{detach}
+command.
+
+@cindex interrupting remote programs
+@cindex remote programs, interrupting
+Whenever @value{GDBN} is waiting for the remote program, if you type the
+interrupt character (often @key{C-C}), @value{GDBN} attempts to stop the
+program. This may or may not succeed, depending in part on the hardware
+and the serial drivers the remote system uses. If you type the
+interrupt character once again, @value{GDBN} displays this prompt:
+
+@example
+Interrupted while waiting for the program.
+Give up (and stop debugging it)? (y or n)
+@end example
+
+If you type @kbd{y}, @value{GDBN} abandons the remote debugging session.
+(If you decide you want to try again later, you can use @samp{target
+remote} again to connect once more.) If you type @kbd{n}, @value{GDBN}
+goes back to waiting.
+
+@node Protocol
+@subsubsection Communication protocol
+
+@cindex debugging stub, example
+@cindex remote stub, example
+@cindex stub example, remote debugging
+The stub files provided with @value{GDBN} implement the target side of the
+communication protocol, and the @value{GDBN} side is implemented in the
+@value{GDBN} source file @file{remote.c}. Normally, you can simply allow
+these subroutines to communicate, and ignore the details. (If you're
+implementing your own stub file, you can still ignore the details: start
+with one of the existing stub files. @file{sparc-stub.c} is the best
+organized, and therefore the easiest to read.)
+
+However, there may be occasions when you need to know something about
+the protocol---for example, if there is only one serial port to your
+target machine, you might want your program to do something special if
+it recognizes a packet meant for @value{GDBN}.
+
+In the examples below, @samp{<-} and @samp{->} are used to indicate
+transmitted and received data respectfully.
+
+@cindex protocol, @value{GDBN} remote serial
+@cindex serial protocol, @value{GDBN} remote
+@cindex remote serial protocol
+All @value{GDBN} commands and responses (other than acknowledgments)
+are sent as a @var{packet}. A @var{packet} is introduced with the
+character @samp{$}, this is followed by an optional two-digit
+@var{sequence-id} and the character @samp{:}, the actual
+@var{packet-data}, and the terminating character @samp{#} followed by a
+two-digit @var{checksum}:
+
+@example
+@code{$}@var{packet-data}@code{#}@var{checksum}
+@end example
+@noindent
+or, with the optional @var{sequence-id}:
+@example
+@code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
+@end example
+
+@cindex checksum, for @value{GDBN} remote
+@noindent
+The two-digit @var{checksum} is computed as the modulo 256 sum of all
+characters between the leading @samp{$} and the trailing @samp{#} (that
+consisting of both the optional @var{sequence-id}@code{:} and the actual
+@var{packet-data}).
+
+@cindex sequence-id, for @value{GDBN} remote
+@noindent
+The two-digit @var{sequence-id}, when present, is returned with the
+acknowledgment. Beyond that its meaning is poorly defined.
+@value{GDBN} is not known to output @var{sequence-id}s.
+
+When either the host or the target machine receives a packet, the first
+response expected is an acknowledgment: either @samp{+} (to indicate
+the package was received correctly) or @samp{-} (to request
+retransmission):
+
+@example
+<- @code{$}@var{packet-data}@code{#}@var{checksum}
+-> @code{+}
+@end example
+@noindent
+If the received packet included a @var{sequence-id} than that is
+appended to a positive acknowledgment:
+
+@example
+<- @code{$}@var{sequence-id}@code{:}@var{packet-data}@code{#}@var{checksum}
+-> @code{+}@var{sequence-id}
+@end example
+
+The host (@value{GDBN}) sends @var{command}s, and the target (the
+debugging stub incorporated in your program) sends a @var{response}. In
+the case of step and continue @var{command}s, the response is only sent
+when the operation has completed (the target has again stopped).
+
+@var{packet-data} consists of a sequence of characters with the
+exception of @samp{#} and @samp{$} (see @samp{X} packet for an
+exception). @samp{:} can not appear as the third character in a packet.
+Fields within the packet should be separated using @samp{,} and @samp{;}
+(unfortunately some packets chose to use @samp{:}). Except where
+otherwise noted all numbers are represented in HEX with leading zeros
+suppressed.
+
+Response @var{data} can be run-length encoded to save space. A @samp{*}
+means that the next character is an ASCII encoding giving a repeat count
+which stands for that many repetitions of the character preceding the
+@samp{*}. The encoding is @code{n+29}, yielding a printable character
+where @code{n >=3} (which is where rle starts to win). Don't use an
+@code{n > 126}.
+
+So:
+@example
+"@code{0* }"
+@end example
+@noindent
+means the same as "0000".
+
+The error response, returned for some packets includes a two character
+error number. That number is not well defined.
+
+For any @var{command} not supported by the stub, an empty response
+(@samp{$#00}) should be returned. That way it is possible to extend the
+protocol. A newer @value{GDBN} can tell if a packet is supported based
+on the response.
+
+Below is a complete list of all currently defined @var{command}s and
+their corresponding response @var{data}:
+
+@multitable @columnfractions .30 .30 .40
+@item Packet
+@tab Request
+@tab Description
+
+@item extended ops @emph{(optional)}
+@tab @code{!}
+@tab
+Use the extended remote protocol. Sticky -- only needs to be set once.
+The extended remote protocol support the @samp{R} packet.
+@item
+@tab reply @samp{}
+@tab
+Stubs that support the extended remote protocol return @samp{} which,
+unfortunately, is identical to the response returned by stubs that do not
+support protocol extensions.
+
+@item last signal
+@tab @code{?}
+@tab
+Reply the current reason for stopping. This is the same reply as is
+generated for step or cont : @code{S}@var{AA} where @var{AA} is the
+signal number.
+
+@item reserved
+@tab @code{a}
+@tab Reserved for future use
+
+@item set program arguments @strong{(reserved)} @emph{(optional)}
+@tab @code{A}@var{arglen}@code{,}@var{argnum}@code{,}@var{arg}@code{,...}
+@tab
+Initialized @samp{argv[]} array passed into program. @var{arglen}
+specifies the number of bytes in the hex encoded byte stream @var{arg}.
+@item
+@tab reply @code{OK}
+@item
+@tab reply @code{E}@var{NN}
+
+@item set baud @strong{(deprecated)}
+@tab @code{b}@var{baud}
+@tab
+Change the serial line speed to @var{baud}. JTC: @emph{When does the
+transport layer state change? When it's received, or after the ACK is
+transmitted. In either case, there are problems if the command or the
+acknowledgment packet is dropped.} Stan: @emph{If people really wanted
+to add something like this, and get it working for the first time, they
+ought to modify ser-unix.c to send some kind of out-of-band message to a
+specially-setup stub and have the switch happen "in between" packets, so
+that from remote protocol's point of view, nothing actually
+happened.}
+
+@item set breakpoint @strong{(deprecated)}
+@tab @code{B}@var{addr},@var{mode}
+@tab
+Set (@var{mode} is @samp{S}) or clear (@var{mode} is @samp{C}) a
+breakpoint at @var{addr}. @emph{This has been replaced by the @samp{Z} and
+@samp{z} packets.}
+
+@item continue
+@tab @code{c}@var{addr}
+@tab
+@var{addr} is address to resume. If @var{addr} is omitted, resume at
+current address.
+@item
+@tab reply
+@tab see below
+
+@item continue with signal @emph{(optional)}
+@tab @code{C}@var{sig}@code{;}@var{addr}
+@tab
+Continue with signal @var{sig} (hex signal number). If
+@code{;}@var{addr} is omitted, resume at same address.
+@item
+@tab reply
+@tab see below
+
+@item toggle debug @emph{(optional)}
+@tab @code{d}
+@tab
+toggle debug flag (see 386 & 68k stubs)
+
+@item detach @emph{(optional)}
+@tab @code{D}
+@tab Reply OK.
+
+@item reserved
+@tab @code{e}
+@tab Reserved for future use
+
+@item reserved
+@tab @code{E}
+@tab Reserved for future use
+
+@item reserved
+@tab @code{f}
+@tab Reserved for future use
+
+@item reserved
+@tab @code{F}
+@tab Reserved for future use
+
+@item read registers
+@tab @code{g}
+@tab Read general registers.
+@item
+@tab reply @var{XX...}
+@tab
+Each byte of register data is described by two hex digits. The bytes
+with the register are transmitted in target byte order. The size of
+each register and their position within the @samp{g} @var{packet} is
+determined by the @var{REGISTER_RAW_SIZE} and @var{REGISTER_NAME}
+macros.
+@item
+@tab @code{E}@var{NN}
+@tab for an error.
+
+@item write regs
+@tab @code{G}@var{XX...}
+@tab
+See @samp{g} for a description of the @var{XX...} data.
+@item
+@tab reply @code{OK}
+@tab for success
+@item
+@tab reply @code{E}@var{NN}
+@tab for an error
+
+@item reserved
+@tab @code{h}
+@tab Reserved for future use
+
+@item set thread @emph{(optional)}
+@tab @code{H}@var{c}@var{t...}
+@tab
+Set thread for subsequent operations. @var{c} = @samp{c} for thread
+used in step and continue; @var{t...} can be -1 for all threads.
+@var{c} = @samp{g} for thread used in other operations. If zero, pick a
+thread, any thread.
+@item
+@tab reply @code{OK}
+@tab for success
+@item
+@tab reply @code{E}@var{NN}
+@tab for an error
+
+@item cycle step @strong{(draft)} @emph{(optional)}
+@tab @code{i}@var{addr}@code{,}@var{nnn}
+@tab
+Step the remote target by a single clock cycle. If @code{,}@var{nnn} is
+present, cycle step @var{nnn} cycles. If @var{addr} is present, cycle
+step starting at that address.
+
+@item signal then cycle step @strong{(reserved)} @emph{(optional)}
+@tab @code{I}
+@tab
+See @samp{i} and @samp{S} for likely syntax and semantics.
+
+@item reserved
+@tab @code{j}
+@tab Reserved for future use
+
+@item reserved
+@tab @code{J}
+@tab Reserved for future use
+
+@item kill request @emph{(optional)}
+@tab @code{k}
+@tab
+
+@item reserved
+@tab @code{l}
+@tab Reserved for future use
+
+@item reserved
+@tab @code{L}
+@tab Reserved for future use
+
+@item read memory
+@tab @code{m}@var{addr}@code{,}@var{length}
+@tab
+Read @var{length} bytes of memory starting at address @var{addr}.
+@item
+@tab reply @var{XX...}
+@tab
+@var{XX...} is mem contents. Can be fewer bytes than requested if able to
+read only part of the data.
+@item
+@tab reply @code{E}@var{NN}
+@tab @var{NN} is errno
+
+@item write mem
+@tab @code{M}@var{addr},@var{length}@code{:}@var{XX...}
+@tab
+Write @var{length} bytes of memory starting at address @var{addr}.
+@var{XX...} is the data.
+@item
+@tab reply @code{OK}
+@tab for success
+@item
+@tab reply @code{E}@var{NN}
+@tab
+for an error (this includes the case where only part of the data was
+written).
+
+@item reserved
+@tab @code{n}
+@tab Reserved for future use
+
+@item reserved
+@tab @code{N}
+@tab Reserved for future use
+
+@item reserved
+@tab @code{o}
+@tab Reserved for future use
+
+@item reserved
+@tab @code{O}
+@tab Reserved for future use
+
+@item read reg @strong{(reserved)}
+@tab @code{p}@var{n...}
+@tab
+See write register.
+@item
+@tab return @var{r....}
+@tab The hex encoded value of the register in target byte order.
+
+@item write reg @emph{(optional)}
+@tab @code{P}@var{n...}@code{=}@var{r...}
+@tab
+Write register @var{n...} with value @var{r...}, which contains two hex
+digits for each byte in the register (target byte order).
+@item
+@tab reply @code{OK}
+@tab for success
+@item
+@tab reply @code{E}@var{NN}
+@tab for an error
+
+@item general query @emph{(optional)}
+@tab @code{q}@var{query}
+@tab
+Request info about @var{query}. In general @value{GDBN} @var{query}'s
+have a leading upper case letter. Custom vendor queries should use a
+leading lower case letter and a company prefix, ex: @samp{qfsf.var}.
+@var{query} may optionally be followed by a @samp{,} or @samp{;}
+separated list. Stubs should ensure that they fully match any
+@var{query} name.
+@item
+@tab reply @code{XX...}
+@tab Hex encoded data from query. The reply can not be empty.
+@item
+@tab reply @code{E}@var{NN}
+@tab error reply
+@item
+@tab reply @samp{}
+@tab Indicating an unrecognized @var{query}.
+
+@item current thread
+@tab @code{q}@code{C}
+@tab Return the current thread id.
+@item
+@tab reply @code{QC}@var{pid}
+@tab
+Where @var{pid} is a HEX encoded 16 bit process id.
+@item
+@tab reply *
+@tab Any other reply implies the old pid.
+
+@item compute CRC of memory block
+@tab @code{q}@code{CRC:}@var{addr}@code{,}@var{length}
+@tab
+@item
+@tab reply @code{E}@var{NN}
+@tab An error (such as memory fault)
+@item
+@tab reply @code{C}@var{CRC32}
+@tab A 32 bit cyclic redundancy check of the specified memory region.
+
+@item query @var{LIST} or @var{threadLIST}
+@tab @code{q}@code{L}@var{startflag}@var{threadcount}@var{nextthread}
+@tab
+Obtain thread information from RTOS. @var{startflag} is one hex digit;
+@var{threadcount} is two hex digits; and @var{nextthread} is 16 hex
+digits.
+@item
+@tab reply *
+@tab
+See @code{remote.c:parse_threadlist_response()}.
+
+@item query sect offs
+@tab @code{q}@code{Offsets}
+@tab Get section offsets.
+@item
+@tab reply @code{Text=}@var{xxx}@code{;Data=}@var{yyy}@code{;Bss=}@var{zzz}
+
+@item thread info request
+@tab @code{q}@code{P}@var{mode}@var{threadid}
+@tab
+Returns information on @var{threadid}. Where: @var{mode} is a hex
+encoded 32 bit mode; @var{threadid} is a hex encoded 64 bit thread ID.
+@item
+@tab reply *
+@tab
+See @code{remote.c:remote_unpack_thread_info_response()}.
+
+@item remote command
+@tab @code{q}@code{Rcmd,}@var{COMMAND}
+@tab
+@var{COMMAND} (hex encoded) is passed to the local interpreter for
+execution. Invalid commands should be reported using the output string.
+Before the final result packet, the target may also respond with a
+number of intermediate @code{O}@var{OUTPUT} console output
+packets. @emph{Implementors should note that providing access to a
+stubs's interpreter may have security implications}.
+@item
+@tab reply @code{OK}
+@tab
+A command response with no output.
+@item
+@tab reply @var{OUTPUT}
+@tab
+A command response with the hex encoded output string @var{OUTPUT}.
+@item
+@tab reply @code{E}@var{NN}
+@tab
+Indicate a badly formed request.
+
+@item
+@tab reply @samp{}
+@tab
+When @samp{q}@samp{Rcmd} is not recognized.
+
+@item general set @emph{(optional)}
+@tab @code{Q}@var{var}@code{=}@var{val}
+@tab
+Set value of @var{var} to @var{val}. See @samp{q} for a discussing of
+naming conventions.
+
+@item reset @emph{(optional)}
+@tab r
+@tab reset -- see sparc stub.
+
+@item remote restart @emph{(optional)}
+@tab @code{R}@var{XX}
+@tab
+Restart the remote server. @var{XX} while needed has no clear
+definition.
+
+@item step @emph{(optional)}
+@tab @code{s}@var{addr}
+@tab
+@var{addr} is address to resume. If @var{addr} is omitted, resume at
+same address.
+@item
+@tab reply
+@tab see below
+
+@item step with signal @emph{(optional)}
+@tab @code{S}@var{sig}@code{;}@var{addr}
+@tab
+Like @samp{C} but step not continue.
+@item
+@tab reply
+@tab see below
+
+@item search @emph{(optional)}
+@tab @code{t}@var{addr}@code{:}@var{PP}@code{,}@var{MM}
+@tab
+Search backwards starting at address @var{addr} for a match with pattern
+@var{PP} and mask @var{MM}. @var{PP} and @var{MM} are 4
+bytes. @var{addr} must be at least 3 digits.
+
+@item thread alive @emph{(optional)}
+@tab @code{T}@var{XX}
+@tab Find out if the thread XX is alive.
+@item
+@tab reply @code{OK}
+@tab thread is still alive
+@item
+@tab reply @code{E}@var{NN}
+@tab thread is dead
+
+@item reserved
+@tab @code{u}
+@tab Reserved for future use
+
+@item reserved
+@tab @code{U}
+@tab Reserved for future use
+
+@item reserved
+@tab @code{v}
+@tab Reserved for future use
+
+@item reserved
+@tab @code{V}
+@tab Reserved for future use
+
+@item reserved
+@tab @code{w}
+@tab Reserved for future use
+
+@item reserved
+@tab @code{W}
+@tab Reserved for future use
+
+@item reserved
+@tab @code{x}
+@tab Reserved for future use
+
+@item write mem (binary) @emph{(optional)}
+@tab @code{X}@var{addr}@code{,}@var{length}@var{:}@var{XX...}
+@tab
+@var{addr} is address, @var{length} is number of bytes, @var{XX...} is
+binary data.
+@item
+@tab reply @code{OK}
+@tab for success
+@item
+@tab reply @code{E}@var{NN}
+@tab for an error
+
+@item reserved
+@tab @code{y}
+@tab Reserved for future use
+
+@item reserved
+@tab @code{Y}
+@tab Reserved for future use
+
+@item remove break or watchpoint @strong{(draft)} @emph{(optional)}
+@tab @code{z}@var{t}@code{,}@var{addr}@code{,}@var{length}
+@tab
+See @samp{Z}.
+
+@item insert break or watchpoint @strong{(draft)} @emph{(optional)}
+@tab @code{Z}@var{t}@code{,}@var{addr}@code{,}@var{length}
+@tab
+@var{t} is type: @samp{0} - software breakpoint, @samp{1} - hardware
+breakpoint, @samp{2} - write watchpoint, @samp{3} - read watchpoint,
+@samp{4} - access watchpoint; @var{addr} is address; @var{length} is in
+bytes. For a software breakpoint, @var{length} specifies the size of
+the instruction to be patched. For hardware breakpoints and watchpoints
+@var{length} specifies the memory region to be monitored.
+@item
+@tab reply @code{E}@var{NN}
+@tab for an error
+@item
+@tab reply @code{OK}
+@tab for success
+@item
+@tab @samp{}
+@tab If not supported.
+
+@item reserved
+@tab <other>
+@tab Reserved for future use
+
+@end multitable
+
+In the case of the @samp{C}, @samp{c}, @samp{S} and @samp{s} packets,
+there is no immediate response. The reply, described below, comes when
+the machine stops:
+
+@multitable @columnfractions .4 .6
+
+@item @code{S}@var{AA}
+@tab @var{AA} is the signal number
+
+@item @code{T}@var{AA}@var{n...}@code{:}@var{r...}@code{;}@var{n...}@code{:}@var{r...}@code{;}@var{n...}@code{:}@var{r...}@code{;}
+@tab
+@var{AA} = two hex digit signal number; @var{n...} = register number
+(hex), @var{r...} = target byte ordered register contents, size defined
+by @code{REGISTER_RAW_SIZE}; @var{n...} = @samp{thread}, @var{r...} =
+thread process ID, this is a hex integer; @var{n...} = other string not
+starting with valid hex digit. @value{GDBN} should ignore this
+@var{n...}, @var{r...} pair and go on to the next. This way we can
+extend the protocol.
+
+@item @code{W}@var{AA}
+@tab
+The process exited, and @var{AA} is the exit status. This is only
+applicable for certains sorts of targets.
+
+@item @code{X}@var{AA}
+@tab
+The process terminated with signal @var{AA}.
+
+@item @code{N}@var{AA}@code{;}@var{tttttttt}@code{;}@var{dddddddd}@code{;}@var{bbbbbbbb} @strong{(obsolete)}
+@tab
+@var{AA} = signal number; @var{tttttttt} = address of symbol "_start";
+@var{dddddddd} = base of data section; @var{bbbbbbbb} = base of bss
+section. @emph{Note: only used by Cisco Systems targets. The difference
+between this reply and the "qOffsets" query is that the 'N' packet may
+arrive spontaneously whereas the 'qOffsets' is a query initiated by the
+host debugger.}
+
+@item @code{O}@var{XX...}
+@tab
+@var{XX...} is hex encoding of ASCII data. This can happen at any time
+while the program is running and the debugger should continue to wait
+for 'W', 'T', etc.
+
+@end multitable
+
+Example sequence of a target being re-started. Notice how the restart
+does not get any direct output:
+
+@example
+<- @code{R00}
+-> @code{+}
+@emph{target restarts}
+<- @code{?}
+-> @code{+}
+-> @code{T001:1234123412341234}
+<- @code{+}
+@end example
+
+Example sequence of a target being stepped by a single instruction:
+
+@example
+<- @code{G1445...}
+-> @code{+}
+<- @code{s}
+-> @code{+}
+@emph{time passes}
+-> @code{T001:1234123412341234}
+<- @code{+}
+<- @code{g}
+-> @code{+}
+-> @code{1455...}
+<- @code{+}
+@end example
+
+@kindex set remotedebug
+@kindex show remotedebug
+@cindex packets, reporting on stdout
+@cindex serial connections, debugging
+If you have trouble with the serial connection, you can use the command
+@code{set remotedebug}. This makes @value{GDBN} report on all packets sent
+back and forth across the serial line to the remote machine. The
+packet-debugging information is printed on the @value{GDBN} standard output
+stream. @code{set remotedebug off} turns it off, and @code{show
+remotedebug} shows you its current state.
+
+@node Server
+@subsubsection Using the @code{gdbserver} program
+
+@kindex gdbserver
+@cindex remote connection without stubs
+@code{gdbserver} is a control program for Unix-like systems, which
+allows you to connect your program with a remote @value{GDBN} via
+@code{target remote}---but without linking in the usual debugging stub.
+
+@code{gdbserver} is not a complete replacement for the debugging stubs,
+because it requires essentially the same operating-system facilities
+that @value{GDBN} itself does. In fact, a system that can run
+@code{gdbserver} to connect to a remote @value{GDBN} could also run
+@value{GDBN} locally! @code{gdbserver} is sometimes useful nevertheless,
+because it is a much smaller program than @value{GDBN} itself. It is
+also easier to port than all of @value{GDBN}, so you may be able to get
+started more quickly on a new system by using @code{gdbserver}.
+Finally, if you develop code for real-time systems, you may find that
+the tradeoffs involved in real-time operation make it more convenient to
+do as much development work as possible on another system, for example
+by cross-compiling. You can use @code{gdbserver} to make a similar
+choice for debugging.
+
+@value{GDBN} and @code{gdbserver} communicate via either a serial line
+or a TCP connection, using the standard @value{GDBN} remote serial
+protocol.
+
+@table @emph
+@item On the target machine,
+you need to have a copy of the program you want to debug.
+@code{gdbserver} does not need your program's symbol table, so you can
+strip the program if necessary to save space. @value{GDBN} on the host
+system does all the symbol handling.
+
+To use the server, you must tell it how to communicate with @value{GDBN};
+the name of your program; and the arguments for your program. The
+syntax is:
+
+@smallexample
+target> gdbserver @var{comm} @var{program} [ @var{args} @dots{} ]
+@end smallexample
+
+@var{comm} is either a device name (to use a serial line) or a TCP
+hostname and portnumber. For example, to debug Emacs with the argument
+@samp{foo.txt} and communicate with @value{GDBN} over the serial port
+@file{/dev/com1}:
+
+@smallexample
+target> gdbserver /dev/com1 emacs foo.txt
+@end smallexample
+
+@code{gdbserver} waits passively for the host @value{GDBN} to communicate
+with it.
+To use a TCP connection instead of a serial line:
+
+@smallexample
+target> gdbserver host:2345 emacs foo.txt
+@end smallexample
+
+The only difference from the previous example is the first argument,
+specifying that you are communicating with the host @value{GDBN} via
+TCP. The @samp{host:2345} argument means that @code{gdbserver} is to
+expect a TCP connection from machine @samp{host} to local TCP port 2345.
+(Currently, the @samp{host} part is ignored.) You can choose any number
+you want for the port number as long as it does not conflict with any
+TCP ports already in use on the target system (for example, @code{23} is
+reserved for @code{telnet}).@footnote{If you choose a port number that
+conflicts with another service, @code{gdbserver} prints an error message
+and exits.} You must use the same port number with the host @value{GDBN}
+@code{target remote} command.
+
+@item On the @value{GDBN} host machine,
+you need an unstripped copy of your program, since @value{GDBN} needs
+symbols and debugging information. Start up @value{GDBN} as usual,
+using the name of the local copy of your program as the first argument.
+(You may also need the @w{@samp{--baud}} option if the serial line is
+running at anything other than 9600 bps.) After that, use @code{target
+remote} to establish communications with @code{gdbserver}. Its argument
+is either a device name (usually a serial device, like
+@file{/dev/ttyb}), or a TCP port descriptor in the form
+@code{@var{host}:@var{PORT}}. For example:
+
+@smallexample
+(@value{GDBP}) target remote /dev/ttyb
+@end smallexample
+
+@noindent
+communicates with the server via serial line @file{/dev/ttyb}, and
+
+@smallexample
+(@value{GDBP}) target remote the-target:2345
+@end smallexample
+
+@noindent
+communicates via a TCP connection to port 2345 on host @w{@file{the-target}}.
+For TCP connections, you must start up @code{gdbserver} prior to using
+the @code{target remote} command. Otherwise you may get an error whose
+text depends on the host system, but which usually looks something like
+@samp{Connection refused}.
+@end table
+
+@node NetWare
+@subsubsection Using the @code{gdbserve.nlm} program
+
+@kindex gdbserve.nlm
+@code{gdbserve.nlm} is a control program for NetWare systems, which
+allows you to connect your program with a remote @value{GDBN} via
+@code{target remote}.
+
+@value{GDBN} and @code{gdbserve.nlm} communicate via a serial line,
+using the standard @value{GDBN} remote serial protocol.
+
+@table @emph
+@item On the target machine,
+you need to have a copy of the program you want to debug.
+@code{gdbserve.nlm} does not need your program's symbol table, so you
+can strip the program if necessary to save space. @value{GDBN} on the
+host system does all the symbol handling.
+
+To use the server, you must tell it how to communicate with
+@value{GDBN}; the name of your program; and the arguments for your
+program. The syntax is:
+
+@smallexample
+load gdbserve [ BOARD=@var{board} ] [ PORT=@var{port} ]
+ [ BAUD=@var{baud} ] @var{program} [ @var{args} @dots{} ]
+@end smallexample
+
+@var{board} and @var{port} specify the serial line; @var{baud} specifies
+the baud rate used by the connection. @var{port} and @var{node} default
+to 0, @var{baud} defaults to 9600 bps.
+
+For example, to debug Emacs with the argument @samp{foo.txt}and
+communicate with @value{GDBN} over serial port number 2 or board 1
+using a 19200 bps connection:
+
+@smallexample
+load gdbserve BOARD=1 PORT=2 BAUD=19200 emacs foo.txt
+@end smallexample
+
+@item On the @value{GDBN} host machine,
+you need an unstripped copy of your program, since @value{GDBN} needs
+symbols and debugging information. Start up @value{GDBN} as usual,
+using the name of the local copy of your program as the first argument.
+(You may also need the @w{@samp{--baud}} option if the serial line is
+running at anything other than 9600 bps. After that, use @code{target
+remote} to establish communications with @code{gdbserve.nlm}. Its
+argument is a device name (usually a serial device, like
+@file{/dev/ttyb}). For example:
+
+@smallexample
+(@value{GDBP}) target remote /dev/ttyb
+@end smallexample
+
+@noindent
+communications with the server via serial line @file{/dev/ttyb}.
+@end table
@node KOD
@section Kernel Object Display
+
@cindex kernel object display
@cindex kernel object
@cindex KOD
@@ -8411,6 +9291,1508 @@ There is currently no way to determine whether a given operating system
is supported other than to try it.
+@node Configurations
+@chapter Configuration-Specific Information
+
+While nearly all @value{GDBN} commands are available for all native and
+cross versions of the debugger, there are some exceptions. This chapter
+describes things that are only available in certain configurations.
+
+There are three major categories of configurations: native
+configurations, where the host and target are the same, embedded
+operating system configurations, which are usually the same for several
+different processor architectures, and bare embedded processors, which
+are quite different from each other.
+
+@menu
+* Native::
+* Embedded OS::
+* Embedded Processors::
+* Architectures::
+@end menu
+
+@node Native
+@section Native
+
+This section describes details specific to particular native
+configurations.
+
+@menu
+* HP-UX:: HP-UX
+* SVR4 Process Information:: SVR4 process information
+@end menu
+
+@node HP-UX
+@subsection HP-UX
+
+On HP-UX systems, if you refer to a function or variable name that
+begins with a dollar sign, @value{GDBN} searches for a user or system
+name first, before it searches for a convenience variable.
+
+@node SVR4 Process Information
+@subsection SVR4 process information
+
+@kindex /proc
+@cindex process image
+
+Many versions of SVR4 provide a facility called @samp{/proc} that can be
+used to examine the image of a running process using file-system
+subroutines. If @value{GDBN} is configured for an operating system with
+this facility, the command @code{info proc} is available to report on
+several kinds of information about the process running your program.
+@code{info proc} works only on SVR4 systems that include the
+@code{procfs} code. This includes OSF/1 (Digital Unix), Solaris, Irix,
+and Unixware, but not HP-UX or Linux, for example.
+
+@table @code
+@kindex info proc
+@item info proc
+Summarize available information about the process.
+
+@kindex info proc mappings
+@item info proc mappings
+Report on the address ranges accessible in the program, with information
+on whether your program may read, write, or execute each range.
+
+@kindex info proc times
+@item info proc times
+Starting time, user CPU time, and system CPU time for your program and
+its children.
+
+@kindex info proc id
+@item info proc id
+Report on the process IDs related to your program: its own process ID,
+the ID of its parent, the process group ID, and the session ID.
+
+@kindex info proc status
+@item info proc status
+General information on the state of the process. If the process is
+stopped, this report includes the reason for stopping, and any signal
+received.
+
+@item info proc all
+Show all the above information about the process.
+@end table
+
+@node Embedded OS
+@section Embedded Operating Systems
+
+This section describes configurations involving the debugging of
+embedded operating systems that are available for several different
+architectures.
+
+@menu
+* VxWorks:: Using @value{GDBN} with VxWorks
+@end menu
+
+@value{GDBN} includes the ability to debug programs running on
+various real-time operating systems.
+
+@node VxWorks
+@subsection Using @value{GDBN} with VxWorks
+
+@cindex VxWorks
+
+@table @code
+
+@kindex target vxworks
+@item target vxworks @var{machinename}
+A VxWorks system, attached via TCP/IP. The argument @var{machinename}
+is the target system's machine name or IP address.
+
+@end table
+
+On VxWorks, @code{load} links @var{filename} dynamically on the
+current target system as well as adding its symbols in @value{GDBN}.
+
+@value{GDBN} enables developers to spawn and debug tasks running on networked
+VxWorks targets from a Unix host. Already-running tasks spawned from
+the VxWorks shell can also be debugged. @value{GDBN} uses code that runs on
+both the Unix host and on the VxWorks target. The program
+@code{gdb} is installed and executed on the Unix host. (It may be
+installed with the name @code{vxgdb}, to distinguish it from a
+@value{GDBN} for debugging programs on the host itself.)
+
+@table @code
+@item VxWorks-timeout @var{args}
+@kindex vxworks-timeout
+All VxWorks-based targets now support the option @code{vxworks-timeout}.
+This option is set by the user, and @var{args} represents the number of
+seconds @value{GDBN} waits for responses to rpc's. You might use this if
+your VxWorks target is a slow software simulator or is on the far side
+of a thin network line.
+@end table
+
+The following information on connecting to VxWorks was current when
+this manual was produced; newer releases of VxWorks may use revised
+procedures.
+
+@kindex INCLUDE_RDB
+To use @value{GDBN} with VxWorks, you must rebuild your VxWorks kernel
+to include the remote debugging interface routines in the VxWorks
+library @file{rdb.a}. To do this, define @code{INCLUDE_RDB} in the
+VxWorks configuration file @file{configAll.h} and rebuild your VxWorks
+kernel. The resulting kernel contains @file{rdb.a}, and spawns the
+source debugging task @code{tRdbTask} when VxWorks is booted. For more
+information on configuring and remaking VxWorks, see the manufacturer's
+manual.
+@c VxWorks, see the @cite{VxWorks Programmer's Guide}.
+
+Once you have included @file{rdb.a} in your VxWorks system image and set
+your Unix execution search path to find @value{GDBN}, you are ready to
+run @value{GDBN}. From your Unix host, run @code{gdb} (or @code{vxgdb},
+depending on your installation).
+
+@value{GDBN} comes up showing the prompt:
+
+@example
+(vxgdb)
+@end example
+
+@menu
+* VxWorks Connection:: Connecting to VxWorks
+* VxWorks Download:: VxWorks download
+* VxWorks Attach:: Running tasks
+@end menu
+
+@node VxWorks Connection
+@subsubsection Connecting to VxWorks
+
+The @value{GDBN} command @code{target} lets you connect to a VxWorks target on the
+network. To connect to a target whose host name is ``@code{tt}'', type:
+
+@example
+(vxgdb) target vxworks tt
+@end example
+
+@need 750
+@value{GDBN} displays messages like these:
+
+@smallexample
+Attaching remote machine across net...
+Connected to tt.
+@end smallexample
+
+@need 1000
+@value{GDBN} then attempts to read the symbol tables of any object modules
+loaded into the VxWorks target since it was last booted. @value{GDBN} locates
+these files by searching the directories listed in the command search
+path (@pxref{Environment, ,Your program's environment}); if it fails
+to find an object file, it displays a message such as:
+
+@example
+prog.o: No such file or directory.
+@end example
+
+When this happens, add the appropriate directory to the search path with
+the @value{GDBN} command @code{path}, and execute the @code{target}
+command again.
+
+@node VxWorks Download
+@subsubsection VxWorks download
+
+@cindex download to VxWorks
+If you have connected to the VxWorks target and you want to debug an
+object that has not yet been loaded, you can use the @value{GDBN}
+@code{load} command to download a file from Unix to VxWorks
+incrementally. The object file given as an argument to the @code{load}
+command is actually opened twice: first by the VxWorks target in order
+to download the code, then by @value{GDBN} in order to read the symbol
+table. This can lead to problems if the current working directories on
+the two systems differ. If both systems have NFS mounted the same
+filesystems, you can avoid these problems by using absolute paths.
+Otherwise, it is simplest to set the working directory on both systems
+to the directory in which the object file resides, and then to reference
+the file by its name, without any path. For instance, a program
+@file{prog.o} may reside in @file{@var{vxpath}/vw/demo/rdb} in VxWorks
+and in @file{@var{hostpath}/vw/demo/rdb} on the host. To load this
+program, type this on VxWorks:
+
+@example
+-> cd "@var{vxpath}/vw/demo/rdb"
+@end example
+v
+Then, in @value{GDBN}, type:
+
+@example
+(vxgdb) cd @var{hostpath}/vw/demo/rdb
+(vxgdb) load prog.o
+@end example
+
+@value{GDBN} displays a response similar to this:
+
+@smallexample
+Reading symbol data from wherever/vw/demo/rdb/prog.o... done.
+@end smallexample
+
+You can also use the @code{load} command to reload an object module
+after editing and recompiling the corresponding source file. Note that
+this makes @value{GDBN} delete all currently-defined breakpoints,
+auto-displays, and convenience variables, and to clear the value
+history. (This is necessary in order to preserve the integrity of
+debugger data structures that reference the target system's symbol
+table.)
+
+@node VxWorks Attach
+@subsubsection Running tasks
+
+@cindex running VxWorks tasks
+You can also attach to an existing task using the @code{attach} command as
+follows:
+
+@example
+(vxgdb) attach @var{task}
+@end example
+
+@noindent
+where @var{task} is the VxWorks hexadecimal task ID. The task can be running
+or suspended when you attach to it. Running tasks are suspended at
+the time of attachment.
+
+@node Embedded Processors
+@section Embedded Processors
+
+This section goes into details specific to particular embedded
+configurations.
+
+@menu
+* A29K Embedded:: AMD A29K Embedded
+* ARM:: ARM
+* H8/300:: Hitachi H8/300
+* H8/500:: Hitachi H8/500
+* i960:: Intel i960
+* M32R/D:: Mitsubishi M32R/D
+* M68K:: Motorola M68K
+* M88K:: Motorola M88K
+* MIPS Embedded:: MIPS Embedded
+* PA:: HP PA Embedded
+* PowerPC: PowerPC
+* SH:: Hitachi SH
+* Sparclet:: Tsqware Sparclet
+* Sparclite:: Fujitsu Sparclite
+* ST2000:: Tandem ST2000
+* Z8000:: Zilog Z8000
+@end menu
+
+@node A29K Embedded
+@subsection AMD A29K Embedded
+
+@menu
+* A29K UDI::
+* A29K EB29K::
+* Comms (EB29K):: Communications setup
+* gdb-EB29K:: EB29K cross-debugging
+* Remote Log:: Remote log
+@end menu
+
+@table @code
+
+@kindex target adapt
+@item target adapt @var{dev}
+Adapt monitor for A29K.
+
+@kindex target amd-eb
+@item target amd-eb @var{dev} @var{speed} @var{PROG}
+@cindex AMD EB29K
+Remote PC-resident AMD EB29K board, attached over serial lines.
+@var{dev} is the serial device, as for @code{target remote};
+@var{speed} allows you to specify the linespeed; and @var{PROG} is the
+name of the program to be debugged, as it appears to DOS on the PC.
+@xref{A29K EB29K, ,EBMON protocol for AMD29K}.
+
+@end table
+
+@node A29K UDI
+@subsubsection A29K UDI
+
+@cindex UDI
+@cindex AMD29K via UDI
+
+@value{GDBN} supports AMD's UDI (``Universal Debugger Interface'')
+protocol for debugging the a29k processor family. To use this
+configuration with AMD targets running the MiniMON monitor, you need the
+program @code{MONTIP}, available from AMD at no charge. You can also
+use @value{GDBN} with the UDI-conformant a29k simulator program
+@code{ISSTIP}, also available from AMD.
+
+@table @code
+@item target udi @var{keyword}
+@kindex udi
+Select the UDI interface to a remote a29k board or simulator, where
+@var{keyword} is an entry in the AMD configuration file @file{udi_soc}.
+This file contains keyword entries which specify parameters used to
+connect to a29k targets. If the @file{udi_soc} file is not in your
+working directory, you must set the environment variable @samp{UDICONF}
+to its pathname.
+@end table
+
+@node A29K EB29K
+@subsubsection EBMON protocol for AMD29K
+
+@cindex EB29K board
+@cindex running 29K programs
+
+AMD distributes a 29K development board meant to fit in a PC, together
+with a DOS-hosted monitor program called @code{EBMON}. As a shorthand
+term, this development system is called the ``EB29K''. To use
+@value{GDBN} from a Unix system to run programs on the EB29K board, you
+must first connect a serial cable between the PC (which hosts the EB29K
+board) and a serial port on the Unix system. In the following, we
+assume you've hooked the cable between the PC's @file{COM1} port and
+@file{/dev/ttya} on the Unix system.
+
+@node Comms (EB29K)
+@subsubsection Communications setup
+
+The next step is to set up the PC's port, by doing something like this
+in DOS on the PC:
+
+@example
+C:\> MODE com1:9600,n,8,1,none
+@end example
+
+@noindent
+This example---run on an MS DOS 4.0 system---sets the PC port to 9600
+bps, no parity, eight data bits, one stop bit, and no ``retry'' action;
+you must match the communications parameters when establishing the Unix
+end of the connection as well.
+@c FIXME: Who knows what this "no retry action" crud from the DOS manual may
+@c mean? It's optional; leave it out? ---doc@cygnus.com, 25feb91
+
+To give control of the PC to the Unix side of the serial line, type
+the following at the DOS console:
+
+@example
+C:\> CTTY com1
+@end example
+
+@noindent
+(Later, if you wish to return control to the DOS console, you can use
+the command @code{CTTY con}---but you must send it over the device that
+had control, in our example over the @file{COM1} serial line).
+
+From the Unix host, use a communications program such as @code{tip} or
+@code{cu} to communicate with the PC; for example,
+
+@example
+cu -s 9600 -l /dev/ttya
+@end example
+
+@noindent
+The @code{cu} options shown specify, respectively, the linespeed and the
+serial port to use. If you use @code{tip} instead, your command line
+may look something like the following:
+
+@example
+tip -9600 /dev/ttya
+@end example
+
+@noindent
+Your system may require a different name where we show
+@file{/dev/ttya} as the argument to @code{tip}. The communications
+parameters, including which port to use, are associated with the
+@code{tip} argument in the ``remote'' descriptions file---normally the
+system table @file{/etc/remote}.
+@c FIXME: What if anything needs doing to match the "n,8,1,none" part of
+@c the DOS side's comms setup? cu can support -o (odd
+@c parity), -e (even parity)---apparently no settings for no parity or
+@c for character size. Taken from stty maybe...? John points out tip
+@c can set these as internal variables, eg ~s parity=none; man stty
+@c suggests that it *might* work to stty these options with stdin or
+@c stdout redirected... ---doc@cygnus.com, 25feb91
+
+@kindex EBMON
+Using the @code{tip} or @code{cu} connection, change the DOS working
+directory to the directory containing a copy of your 29K program, then
+start the PC program @code{EBMON} (an EB29K control program supplied
+with your board by AMD). You should see an initial display from
+@code{EBMON} similar to the one that follows, ending with the
+@code{EBMON} prompt @samp{#}---
+
+@example
+C:\> G:
+
+G:\> CD \usr\joe\work29k
+
+G:\USR\JOE\WORK29K> EBMON
+Am29000 PC Coprocessor Board Monitor, version 3.0-18
+Copyright 1990 Advanced Micro Devices, Inc.
+Written by Gibbons and Associates, Inc.
+
+Enter '?' or 'H' for help
+
+PC Coprocessor Type = EB29K
+I/O Base = 0x208
+Memory Base = 0xd0000
+
+Data Memory Size = 2048KB
+Available I-RAM Range = 0x8000 to 0x1fffff
+Available D-RAM Range = 0x80002000 to 0x801fffff
+
+PageSize = 0x400
+Register Stack Size = 0x800
+Memory Stack Size = 0x1800
+
+CPU PRL = 0x3
+Am29027 Available = No
+Byte Write Available = Yes
+
+# ~.
+@end example
+
+Then exit the @code{cu} or @code{tip} program (done in the example by
+typing @code{~.} at the @code{EBMON} prompt). @code{EBMON} keeps
+running, ready for @value{GDBN} to take over.
+
+For this example, we've assumed what is probably the most convenient
+way to make sure the same 29K program is on both the PC and the Unix
+system: a PC/NFS connection that establishes ``drive @code{G:}'' on the
+PC as a file system on the Unix host. If you do not have PC/NFS or
+something similar connecting the two systems, you must arrange some
+other way---perhaps floppy-disk transfer---of getting the 29K program
+from the Unix system to the PC; @value{GDBN} does @emph{not} download it over the
+serial line.
+
+@node gdb-EB29K
+@subsubsection EB29K cross-debugging
+
+Finally, @code{cd} to the directory containing an image of your 29K
+program on the Unix system, and start @value{GDBN}---specifying as argument the
+name of your 29K program:
+
+@example
+cd /usr/joe/work29k
+@value{GDBP} myfoo
+@end example
+
+@need 500
+Now you can use the @code{target} command:
+
+@example
+target amd-eb /dev/ttya 9600 MYFOO
+@c FIXME: test above 'target amd-eb' as spelled, with caps! caps are meant to
+@c emphasize that this is the name as seen by DOS (since I think DOS is
+@c single-minded about case of letters). ---doc@cygnus.com, 25feb91
+@end example
+
+@noindent
+In this example, we've assumed your program is in a file called
+@file{myfoo}. Note that the filename given as the last argument to
+@code{target amd-eb} should be the name of the program as it appears to DOS.
+In our example this is simply @code{MYFOO}, but in general it can include
+a DOS path, and depending on your transfer mechanism may not resemble
+the name on the Unix side.
+
+At this point, you can set any breakpoints you wish; when you are ready
+to see your program run on the 29K board, use the @value{GDBN} command
+@code{run}.
+
+To stop debugging the remote program, use the @value{GDBN} @code{detach}
+command.
+
+To return control of the PC to its console, use @code{tip} or @code{cu}
+once again, after your @value{GDBN} session has concluded, to attach to
+@code{EBMON}. You can then type the command @code{q} to shut down
+@code{EBMON}, returning control to the DOS command-line interpreter.
+Type @code{CTTY con} to return command input to the main DOS console,
+and type @kbd{~.} to leave @code{tip} or @code{cu}.
+
+@node Remote Log
+@subsubsection Remote log
+@kindex eb.log
+@cindex log file for EB29K
+
+The @code{target amd-eb} command creates a file @file{eb.log} in the
+current working directory, to help debug problems with the connection.
+@file{eb.log} records all the output from @code{EBMON}, including echoes
+of the commands sent to it. Running @samp{tail -f} on this file in
+another window often helps to understand trouble with @code{EBMON}, or
+unexpected events on the PC side of the connection.
+
+@node ARM
+@subsection ARM
+
+@table @code
+
+@kindex target rdi
+@item target rdi @var{dev}
+ARM Angel monitor, via RDI library interface to ADP protocol. You may
+use this target to communicate with both boards running the Angel
+monitor, or with the EmbeddedICE JTAG debug device.
+
+@kindex target rdp
+@item target rdp @var{dev}
+ARM Demon monitor.
+
+@end table
+
+@node H8/300
+@subsection Hitachi H8/300
+
+@table @code
+
+@kindex target hms
+@item target hms @var{dev}
+A Hitachi SH, H8/300, or H8/500 board, attached via serial line to your host.
+Use special commands @code{device} and @code{speed} to control the serial
+line and the communications speed used.
+
+@kindex target e7000
+@item target e7000 @var{dev}
+E7000 emulator for Hitachi H8 and SH.
+
+@kindex target sh3
+@kindex target sh3e
+@item target sh3 @var{dev}
+@item target sh3e @var{dev}
+Hitachi SH-3 and SH-3E target systems.
+
+@end table
+
+@cindex download to H8/300 or H8/500
+@cindex H8/300 or H8/500 download
+@cindex download to Hitachi SH
+@cindex Hitachi SH download
+When you select remote debugging to a Hitachi SH, H8/300, or H8/500
+board, the @code{load} command downloads your program to the Hitachi
+board and also opens it as the current executable target for
+@value{GDBN} on your host (like the @code{file} command).
+
+@value{GDBN} needs to know these things to talk to your
+Hitachi SH, H8/300, or H8/500:
+
+@enumerate
+@item
+that you want to use @samp{target hms}, the remote debugging interface
+for Hitachi microprocessors, or @samp{target e7000}, the in-circuit
+emulator for the Hitachi SH and the Hitachi 300H. (@samp{target hms} is
+the default when GDB is configured specifically for the Hitachi SH,
+H8/300, or H8/500.)
+
+@item
+what serial device connects your host to your Hitachi board (the first
+serial device available on your host is the default).
+
+@item
+what speed to use over the serial device.
+@end enumerate
+
+@menu
+* Hitachi Boards:: Connecting to Hitachi boards.
+* Hitachi ICE:: Using the E7000 In-Circuit Emulator.
+* Hitachi Special:: Special @value{GDBN} commands for Hitachi micros.
+@end menu
+
+@node Hitachi Boards
+@subsubsection Connecting to Hitachi boards
+
+@c only for Unix hosts
+@kindex device
+@cindex serial device, Hitachi micros
+Use the special @code{@value{GDBP}} command @samp{device @var{port}} if you
+need to explicitly set the serial device. The default @var{port} is the
+first available port on your host. This is only necessary on Unix
+hosts, where it is typically something like @file{/dev/ttya}.
+
+@kindex speed
+@cindex serial line speed, Hitachi micros
+@code{@value{GDBP}} has another special command to set the communications
+speed: @samp{speed @var{bps}}. This command also is only used from Unix
+hosts; on DOS hosts, set the line speed as usual from outside GDB with
+the DOS @kbd{mode} command (for instance, @w{@samp{mode
+com2:9600,n,8,1,p}} for a 9600 bps connection).
+
+The @samp{device} and @samp{speed} commands are available only when you
+use a Unix host to debug your Hitachi microprocessor programs. If you
+use a DOS host,
+@value{GDBN} depends on an auxiliary terminate-and-stay-resident program
+called @code{asynctsr} to communicate with the development board
+through a PC serial port. You must also use the DOS @code{mode} command
+to set up the serial port on the DOS side.
+
+The following sample session illustrates the steps needed to start a
+program under @value{GDBN} control on an H8/300. The example uses a
+sample H8/300 program called @file{t.x}. The procedure is the same for
+the Hitachi SH and the H8/500.
+
+First hook up your development board. In this example, we use a
+board attached to serial port @code{COM2}; if you use a different serial
+port, substitute its name in the argument of the @code{mode} command.
+When you call @code{asynctsr}, the auxiliary comms program used by the
+degugger, you give it just the numeric part of the serial port's name;
+for example, @samp{asyncstr 2} below runs @code{asyncstr} on
+@code{COM2}.
+
+@example
+C:\H8300\TEST> asynctsr 2
+C:\H8300\TEST> mode com2:9600,n,8,1,p
+
+Resident portion of MODE loaded
+
+COM2: 9600, n, 8, 1, p
+
+@end example
+
+@quotation
+@emph{Warning:} We have noticed a bug in PC-NFS that conflicts with
+@code{asynctsr}. If you also run PC-NFS on your DOS host, you may need to
+disable it, or even boot without it, to use @code{asynctsr} to control
+your development board.
+@end quotation
+
+@kindex target hms
+Now that serial communications are set up, and the development board is
+connected, you can start up @value{GDBN}. Call @code{@value{GDBP}} with
+the name of your program as the argument. @code{@value{GDBP}} prompts
+you, as usual, with the prompt @samp{(@value{GDBP})}. Use two special
+commands to begin your debugging session: @samp{target hms} to specify
+cross-debugging to the Hitachi board, and the @code{load} command to
+download your program to the board. @code{load} displays the names of
+the program's sections, and a @samp{*} for each 2K of data downloaded.
+(If you want to refresh @value{GDBN} data on symbols or on the
+executable file without downloading, use the @value{GDBN} commands
+@code{file} or @code{symbol-file}. These commands, and @code{load}
+itself, are described in @ref{Files,,Commands to specify files}.)
+
+@smallexample
+(eg-C:\H8300\TEST) @value{GDBP} t.x
+GDB is free software and you are welcome to distribute copies
+ of it under certain conditions; type "show copying" to see
+ the conditions.
+There is absolutely no warranty for GDB; type "show warranty"
+for details.
+GDB @value{GDBVN}, Copyright 1992 Free Software Foundation, Inc...
+(gdb) target hms
+Connected to remote H8/300 HMS system.
+(gdb) load t.x
+.text : 0x8000 .. 0xabde ***********
+.data : 0xabde .. 0xad30 *
+.stack : 0xf000 .. 0xf014 *
+@end smallexample
+
+At this point, you're ready to run or debug your program. From here on,
+you can use all the usual @value{GDBN} commands. The @code{break} command
+sets breakpoints; the @code{run} command starts your program;
+@code{print} or @code{x} display data; the @code{continue} command
+resumes execution after stopping at a breakpoint. You can use the
+@code{help} command at any time to find out more about @value{GDBN} commands.
+
+Remember, however, that @emph{operating system} facilities aren't
+available on your development board; for example, if your program hangs,
+you can't send an interrupt---but you can press the @sc{reset} switch!
+
+Use the @sc{reset} button on the development board
+@itemize @bullet
+@item
+to interrupt your program (don't use @kbd{ctl-C} on the DOS host---it has
+no way to pass an interrupt signal to the development board); and
+
+@item
+to return to the @value{GDBN} command prompt after your program finishes
+normally. The communications protocol provides no other way for @value{GDBN}
+to detect program completion.
+@end itemize
+
+In either case, @value{GDBN} sees the effect of a @sc{reset} on the
+development board as a ``normal exit'' of your program.
+
+@node Hitachi ICE
+@subsubsection Using the E7000 in-circuit emulator
+
+@kindex target e7000
+You can use the E7000 in-circuit emulator to develop code for either the
+Hitachi SH or the H8/300H. Use one of these forms of the @samp{target
+e7000} command to connect @value{GDBN} to your E7000:
+
+@table @code
+@item target e7000 @var{port} @var{speed}
+Use this form if your E7000 is connected to a serial port. The
+@var{port} argument identifies what serial port to use (for example,
+@samp{com2}). The third argument is the line speed in bits per second
+(for example, @samp{9600}).
+
+@item target e7000 @var{hostname}
+If your E7000 is installed as a host on a TCP/IP network, you can just
+specify its hostname; @value{GDBN} uses @code{telnet} to connect.
+@end table
+
+@node Hitachi Special
+@subsubsection Special @value{GDBN} commands for Hitachi micros
+
+Some @value{GDBN} commands are available only for the H8/300:
+
+@table @code
+
+@kindex set machine
+@kindex show machine
+@item set machine h8300
+@itemx set machine h8300h
+Condition @value{GDBN} for one of the two variants of the H8/300
+architecture with @samp{set machine}. You can use @samp{show machine}
+to check which variant is currently in effect.
+
+@end table
+
+@node H8/500
+@subsection H8/500
+
+@table @code
+
+@kindex set memory @var{mod}
+@cindex memory models, H8/500
+@item set memory @var{mod}
+@itemx show memory
+Specify which H8/500 memory model (@var{mod}) you are using with
+@samp{set memory}; check which memory model is in effect with @samp{show
+memory}. The accepted values for @var{mod} are @code{small},
+@code{big}, @code{medium}, and @code{compact}.
+
+@end table
+
+@node i960
+@subsection Intel i960
+
+@table @code
+
+@kindex target mon960
+@item target mon960 @var{dev}
+MON960 monitor for Intel i960.
+
+@item target nindy @var{devicename}
+An Intel 960 board controlled by a Nindy Monitor. @var{devicename} is
+the name of the serial device to use for the connection, e.g.
+@file{/dev/ttya}.
+
+@end table
+
+@cindex Nindy
+@cindex i960
+@dfn{Nindy} is a ROM Monitor program for Intel 960 target systems. When
+@value{GDBN} is configured to control a remote Intel 960 using Nindy, you can
+tell @value{GDBN} how to connect to the 960 in several ways:
+
+@itemize @bullet
+@item
+Through command line options specifying serial port, version of the
+Nindy protocol, and communications speed;
+
+@item
+By responding to a prompt on startup;
+
+@item
+By using the @code{target} command at any point during your @value{GDBN}
+session. @xref{Target Commands, ,Commands for managing targets}.
+
+@kindex target nindy
+@item target nindy @var{devicename}
+An Intel 960 board controlled by a Nindy Monitor. @var{devicename} is
+the name of the serial device to use for the connection, e.g.
+@file{/dev/ttya}.
+
+@end itemize
+
+@cindex download to Nindy-960
+With the Nindy interface to an Intel 960 board, @code{load}
+downloads @var{filename} to the 960 as well as adding its symbols in
+@value{GDBN}.
+
+@menu
+* Nindy Startup:: Startup with Nindy
+* Nindy Options:: Options for Nindy
+* Nindy Reset:: Nindy reset command
+@end menu
+
+@node Nindy Startup
+@subsubsection Startup with Nindy
+
+If you simply start @code{@value{GDBP}} without using any command-line
+options, you are prompted for what serial port to use, @emph{before} you
+reach the ordinary @value{GDBN} prompt:
+
+@example
+Attach /dev/ttyNN -- specify NN, or "quit" to quit:
+@end example
+
+@noindent
+Respond to the prompt with whatever suffix (after @samp{/dev/tty})
+identifies the serial port you want to use. You can, if you choose,
+simply start up with no Nindy connection by responding to the prompt
+with an empty line. If you do this and later wish to attach to Nindy,
+use @code{target} (@pxref{Target Commands, ,Commands for managing targets}).
+
+@node Nindy Options
+@subsubsection Options for Nindy
+
+These are the startup options for beginning your @value{GDBN} session with a
+Nindy-960 board attached:
+
+@table @code
+@item -r @var{port}
+Specify the serial port name of a serial interface to be used to connect
+to the target system. This option is only available when @value{GDBN} is
+configured for the Intel 960 target architecture. You may specify
+@var{port} as any of: a full pathname (e.g. @samp{-r /dev/ttya}), a
+device name in @file{/dev} (e.g. @samp{-r ttya}), or simply the unique
+suffix for a specific @code{tty} (e.g. @samp{-r a}).
+
+@item -O
+(An uppercase letter ``O'', not a zero.) Specify that @value{GDBN} should use
+the ``old'' Nindy monitor protocol to connect to the target system.
+This option is only available when @value{GDBN} is configured for the Intel 960
+target architecture.
+
+@quotation
+@emph{Warning:} if you specify @samp{-O}, but are actually trying to
+connect to a target system that expects the newer protocol, the connection
+fails, appearing to be a speed mismatch. @value{GDBN} repeatedly
+attempts to reconnect at several different line speeds. You can abort
+this process with an interrupt.
+@end quotation
+
+@item -brk
+Specify that @value{GDBN} should first send a @code{BREAK} signal to the target
+system, in an attempt to reset it, before connecting to a Nindy target.
+
+@quotation
+@emph{Warning:} Many target systems do not have the hardware that this
+requires; it only works with a few boards.
+@end quotation
+@end table
+
+The standard @samp{-b} option controls the line speed used on the serial
+port.
+
+@c @group
+@node Nindy Reset
+@subsubsection Nindy reset command
+
+@table @code
+@item reset
+@kindex reset
+For a Nindy target, this command sends a ``break'' to the remote target
+system; this is only useful if the target has been equipped with a
+circuit to perform a hard reset (or some other interesting action) when
+a break is detected.
+@end table
+@c @end group
+
+@node M32R/D
+@subsection Mitsubishi M32R/D
+
+@table @code
+
+@kindex target m32r
+@item target m32r @var{dev}
+Mitsubishi M32R/D ROM monitor.
+
+@end table
+
+@node M68K
+@subsection M68k
+
+The Motorola m68k configuration includes ColdFire support, and
+target command for the following ROM monitors.
+
+@table @code
+
+@kindex target abug
+@item target abug @var{dev}
+ABug ROM monitor for M68K.
+
+@kindex target cpu32bug
+@item target cpu32bug @var{dev}
+CPU32BUG monitor, running on a CPU32 (M68K) board.
+
+@kindex target dbug
+@item target dbug @var{dev}
+dBUG ROM monitor for Motorola ColdFire.
+
+@kindex target est
+@item target est @var{dev}
+EST-300 ICE monitor, running on a CPU32 (M68K) board.
+
+@kindex target rom68k
+@item target rom68k @var{dev}
+ROM 68K monitor, running on an M68K IDP board.
+
+@end table
+
+If @value{GDBN} is configured with @code{m68*-ericsson-*}, it will
+instead have only a single special target command:
+
+@table @code
+
+@kindex target es1800
+@item target es1800 @var{dev}
+ES-1800 emulator for M68K.
+
+@end table
+
+[context?]
+
+@table @code
+
+@kindex target rombug
+@item target rombug @var{dev}
+ROMBUG ROM monitor for OS/9000.
+
+@end table
+
+@node M88K
+@subsection M88K
+
+@table @code
+
+@kindex target bug
+@item target bug @var{dev}
+BUG monitor, running on a MVME187 (m88k) board.
+
+@end table
+
+@node MIPS Embedded
+@subsection MIPS Embedded
+
+@cindex MIPS boards
+@value{GDBN} can use the MIPS remote debugging protocol to talk to a
+MIPS board attached to a serial line. This is available when
+you configure @value{GDBN} with @samp{--target=mips-idt-ecoff}.
+
+@need 1000
+Use these @value{GDBN} commands to specify the connection to your target board:
+
+@table @code
+@item target mips @var{port}
+@kindex target mips @var{port}
+To run a program on the board, start up @code{@value{GDBP}} with the
+name of your program as the argument. To connect to the board, use the
+command @samp{target mips @var{port}}, where @var{port} is the name of
+the serial port connected to the board. If the program has not already
+been downloaded to the board, you may use the @code{load} command to
+download it. You can then use all the usual @value{GDBN} commands.
+
+For example, this sequence connects to the target board through a serial
+port, and loads and runs a program called @var{prog} through the
+debugger:
+
+@example
+host$ @value{GDBP} @var{prog}
+GDB is free software and @dots{}
+(gdb) target mips /dev/ttyb
+(gdb) load @var{prog}
+(gdb) run
+@end example
+
+@item target mips @var{hostname}:@var{portnumber}
+On some @value{GDBN} host configurations, you can specify a TCP
+connection (for instance, to a serial line managed by a terminal
+concentrator) instead of a serial port, using the syntax
+@samp{@var{hostname}:@var{portnumber}}.
+
+@item target pmon @var{port}
+@kindex target pmon @var{port}
+PMON ROM monitor.
+
+@item target ddb @var{port}
+@kindex target ddb @var{port}
+NEC's DDB variant of PMON for Vr4300.
+
+@item target lsi @var{port}
+@kindex target lsi @var{port}
+LSI variant of PMON.
+
+@kindex target r3900
+@item target r3900 @var{dev}
+Densan DVE-R3900 ROM monitor for Toshiba R3900 Mips.
+
+@kindex target array
+@item target array @var{dev}
+Array Tech LSI33K RAID controller board.
+
+@end table
+
+
+@noindent
+@value{GDBN} also supports these special commands for MIPS targets:
+
+@table @code
+@item set processor @var{args}
+@itemx show processor
+@kindex set processor @var{args}
+@kindex show processor
+Use the @code{set processor} command to set the type of MIPS
+processor when you want to access processor-type-specific registers.
+For example, @code{set processor @var{r3041}} tells @value{GDBN}
+to use the CPO registers appropriate for the 3041 chip.
+Use the @code{show processor} command to see what MIPS processor @value{GDBN}
+is using. Use the @code{info reg} command to see what registers
+@value{GDBN} is using.
+
+@item set mipsfpu double
+@itemx set mipsfpu single
+@itemx set mipsfpu none
+@itemx show mipsfpu
+@kindex set mipsfpu
+@kindex show mipsfpu
+@cindex MIPS remote floating point
+@cindex floating point, MIPS remote
+If your target board does not support the MIPS floating point
+coprocessor, you should use the command @samp{set mipsfpu none} (if you
+need this, you may wish to put the command in your @value{GDBINIT}
+file). This tells @value{GDBN} how to find the return value of
+functions which return floating point values. It also allows
+@value{GDBN} to avoid saving the floating point registers when calling
+functions on the board. If you are using a floating point coprocessor
+with only single precision floating point support, as on the @sc{r4650}
+processor, use the command @samp{set mipsfpu single}. The default
+double precision floating point coprocessor may be selected using
+@samp{set mipsfpu double}.
+
+In previous versions the only choices were double precision or no
+floating point, so @samp{set mipsfpu on} will select double precision
+and @samp{set mipsfpu off} will select no floating point.
+
+As usual, you can inquire about the @code{mipsfpu} variable with
+@samp{show mipsfpu}.
+
+@item set remotedebug @var{n}
+@itemx show remotedebug
+@kindex set remotedebug
+@kindex show remotedebug
+@cindex @code{remotedebug}, MIPS protocol
+@cindex MIPS @code{remotedebug} protocol
+@c FIXME! For this to be useful, you must know something about the MIPS
+@c FIXME...protocol. Where is it described?
+You can see some debugging information about communications with the board
+by setting the @code{remotedebug} variable. If you set it to @code{1} using
+@samp{set remotedebug 1}, every packet is displayed. If you set it
+to @code{2}, every character is displayed. You can check the current value
+at any time with the command @samp{show remotedebug}.
+
+@item set timeout @var{seconds}
+@itemx set retransmit-timeout @var{seconds}
+@itemx show timeout
+@itemx show retransmit-timeout
+@cindex @code{timeout}, MIPS protocol
+@cindex @code{retransmit-timeout}, MIPS protocol
+@kindex set timeout
+@kindex show timeout
+@kindex set retransmit-timeout
+@kindex show retransmit-timeout
+You can control the timeout used while waiting for a packet, in the MIPS
+remote protocol, with the @code{set timeout @var{seconds}} command. The
+default is 5 seconds. Similarly, you can control the timeout used while
+waiting for an acknowledgement of a packet with the @code{set
+retransmit-timeout @var{seconds}} command. The default is 3 seconds.
+You can inspect both values with @code{show timeout} and @code{show
+retransmit-timeout}. (These commands are @emph{only} available when
+@value{GDBN} is configured for @samp{--target=mips-idt-ecoff}.)
+
+The timeout set by @code{set timeout} does not apply when @value{GDBN}
+is waiting for your program to stop. In that case, @value{GDBN} waits
+forever because it has no way of knowing how long the program is going
+to run before stopping.
+@end table
+
+@node PowerPC
+@subsection PowerPC
+
+@table @code
+
+@kindex target dink32
+@item target dink32 @var{dev}
+DINK32 ROM monitor.
+
+@kindex target ppcbug
+@item target ppcbug @var{dev}
+@kindex target ppcbug1
+@item target ppcbug1 @var{dev}
+PPCBUG ROM monitor for PowerPC.
+
+@kindex target sds
+@item target sds @var{dev}
+SDS monitor, running on a PowerPC board (such as Motorola's ADS).
+
+@end table
+
+@node PA
+@subsection HP PA Embedded
+
+@table @code
+
+@kindex target op50n
+@item target op50n @var{dev}
+OP50N monitor, running on an OKI HPPA board.
+
+@kindex target w89k
+@item target w89k @var{dev}
+W89K monitor, running on a Winbond HPPA board.
+
+@end table
+
+@node SH
+@subsection Hitachi SH
+
+@table @code
+
+@kindex target hms
+@item target hms @var{dev}
+A Hitachi SH board attached via serial line to your host. Use special
+commands @code{device} and @code{speed} to control the serial line and
+the communications speed used.
+
+@kindex target e7000
+@item target e7000 @var{dev}
+E7000 emulator for Hitachi SH.
+
+@kindex target sh3
+@kindex target sh3e
+@item target sh3 @var{dev}
+@item target sh3e @var{dev}
+Hitachi SH-3 and SH-3E target systems.
+
+@end table
+
+@node Sparclet
+@subsection Tsqware Sparclet
+
+@cindex Sparclet
+
+@value{GDBN} enables developers to debug tasks running on
+Sparclet targets from a Unix host.
+@value{GDBN} uses code that runs on
+both the Unix host and on the Sparclet target. The program
+@code{gdb} is installed and executed on the Unix host.
+
+@table @code
+@item timeout @var{args}
+@kindex remotetimeout
+@value{GDBN} now supports the option @code{remotetimeout}.
+This option is set by the user, and @var{args} represents the number of
+seconds @value{GDBN} waits for responses.
+@end table
+
+@kindex Compiling
+When compiling for debugging, include the options "-g" to get debug
+information and "-Ttext" to relocate the program to where you wish to
+load it on the target. You may also want to add the options "-n" or
+"-N" in order to reduce the size of the sections.
+
+@example
+sparclet-aout-gcc prog.c -Ttext 0x12010000 -g -o prog -N
+@end example
+
+You can use objdump to verify that the addresses are what you intended.
+
+@example
+sparclet-aout-objdump --headers --syms prog
+@end example
+
+@kindex Running
+Once you have set
+your Unix execution search path to find @value{GDBN}, you are ready to
+run @value{GDBN}. From your Unix host, run @code{gdb}
+(or @code{sparclet-aout-gdb}, depending on your installation).
+
+@value{GDBN} comes up showing the prompt:
+
+@example
+(gdbslet)
+@end example
+
+@menu
+* Sparclet File:: Setting the file to debug
+* Sparclet Connection:: Connecting to Sparclet
+* Sparclet Download:: Sparclet download
+* Sparclet Execution:: Running and debugging
+@end menu
+
+@node Sparclet File
+@subsubsection Setting file to debug
+
+The @value{GDBN} command @code{file} lets you choose with program to debug.
+
+@example
+(gdbslet) file prog
+@end example
+
+@need 1000
+@value{GDBN} then attempts to read the symbol table of @file{prog}.
+@value{GDBN} locates
+the file by searching the directories listed in the command search
+path.
+If the file was compiled with debug information (option "-g"), source
+files will be searched as well.
+@value{GDBN} locates
+the source files by searching the directories listed in the directory search
+path (@pxref{Environment, ,Your program's environment}).
+If it fails
+to find a file, it displays a message such as:
+
+@example
+prog: No such file or directory.
+@end example
+
+When this happens, add the appropriate directories to the search paths with
+the @value{GDBN} commands @code{path} and @code{dir}, and execute the
+@code{target} command again.
+
+@node Sparclet Connection
+@subsubsection Connecting to Sparclet
+
+The @value{GDBN} command @code{target} lets you connect to a Sparclet target.
+To connect to a target on serial port ``@code{ttya}'', type:
+
+@example
+(gdbslet) target sparclet /dev/ttya
+Remote target sparclet connected to /dev/ttya
+main () at ../prog.c:3
+@end example
+
+@need 750
+@value{GDBN} displays messages like these:
+
+@smallexample
+Connected to ttya.
+@end smallexample
+
+@node Sparclet Download
+@subsubsection Sparclet download
+
+@cindex download to Sparclet
+Once connected to the Sparclet target,
+you can use the @value{GDBN}
+@code{load} command to download the file from the host to the target.
+The file name and load offset should be given as arguments to the @code{load}
+command.
+Since the file format is aout, the program must be loaded to the starting
+address. You can use objdump to find out what this value is. The load
+offset is an offset which is added to the VMA (virtual memory address)
+of each of the file's sections.
+For instance, if the program
+@file{prog} was linked to text address 0x1201000, with data at 0x12010160
+and bss at 0x12010170, in @value{GDBN}, type:
+
+@example
+(gdbslet) load prog 0x12010000
+Loading section .text, size 0xdb0 vma 0x12010000
+@end example
+
+If the code is loaded at a different address then what the program was linked
+to, you may need to use the @code{section} and @code{add-symbol-file} commands
+to tell @value{GDBN} where to map the symbol table.
+
+@node Sparclet Execution
+@subsubsection Running and debugging
+
+@cindex running and debugging Sparclet programs
+You can now begin debugging the task using @value{GDBN}'s execution control
+commands, @code{b}, @code{step}, @code{run}, etc. See the @value{GDBN}
+manual for the list of commands.
+
+@example
+(gdbslet) b main
+Breakpoint 1 at 0x12010000: file prog.c, line 3.
+(gdbslet) run
+Starting program: prog
+Breakpoint 1, main (argc=1, argv=0xeffff21c) at prog.c:3
+3 char *symarg = 0;
+(gdbslet) step
+4 char *execarg = "hello!";
+(gdbslet)
+@end example
+
+@node Sparclite
+@subsection Fujitsu Sparclite
+
+@table @code
+
+@kindex target sparclite
+@item target sparclite @var{dev}
+Fujitsu sparclite boards, used only for the purpose of loading.
+You must use an additional command to debug the program.
+For example: target remote @var{dev} using @value{GDBN} standard
+remote protocol.
+
+@end table
+
+@node ST2000
+@subsection Tandem ST2000
+
+GDB may be used with a Tandem ST2000 phone switch, running Tandem's
+STDBUG protocol.
+
+To connect your ST2000 to the host system, see the manufacturer's
+manual. Once the ST2000 is physically attached, you can run:
+
+@example
+target st2000 @var{dev} @var{speed}
+@end example
+
+@noindent
+to establish it as your debugging environment. @var{dev} is normally
+the name of a serial device, such as @file{/dev/ttya}, connected to the
+ST2000 via a serial line. You can instead specify @var{dev} as a TCP
+connection (for example, to a serial line attached via a terminal
+concentrator) using the syntax @code{@var{hostname}:@var{portnumber}}.
+
+The @code{load} and @code{attach} commands are @emph{not} defined for
+this target; you must load your program into the ST2000 as you normally
+would for standalone operation. @value{GDBN} reads debugging information
+(such as symbols) from a separate, debugging version of the program
+available on your host computer.
+@c FIXME!! This is terribly vague; what little content is here is
+@c basically hearsay.
+
+@cindex ST2000 auxiliary commands
+These auxiliary @value{GDBN} commands are available to help you with the ST2000
+environment:
+
+@table @code
+@item st2000 @var{command}
+@kindex st2000 @var{cmd}
+@cindex STDBUG commands (ST2000)
+@cindex commands to STDBUG (ST2000)
+Send a @var{command} to the STDBUG monitor. See the manufacturer's
+manual for available commands.
+
+@item connect
+@cindex connect (to STDBUG)
+Connect the controlling terminal to the STDBUG command monitor. When
+you are done interacting with STDBUG, typing either of two character
+sequences gets you back to the @value{GDBN} command prompt:
+@kbd{@key{RET}~.} (Return, followed by tilde and period) or
+@kbd{@key{RET}~@key{C-d}} (Return, followed by tilde and control-D).
+@end table
+
+@node Z8000
+@subsection Zilog Z8000
+
+@cindex Z8000
+@cindex simulator, Z8000
+@cindex Zilog Z8000 simulator
+
+When configured for debugging Zilog Z8000 targets, @value{GDBN} includes
+a Z8000 simulator.
+
+For the Z8000 family, @samp{target sim} simulates either the Z8002 (the
+unsegmented variant of the Z8000 architecture) or the Z8001 (the
+segmented variant). The simulator recognizes which architecture is
+appropriate by inspecting the object code.
+
+@table @code
+@item target sim @var{args}
+@kindex sim
+@kindex target sim
+Debug programs on a simulated CPU. If the simulator supports setup
+options, specify them via @var{args}.
+@end table
+
+@noindent
+After specifying this target, you can debug programs for the simulated
+CPU in the same style as programs for your host computer; use the
+@code{file} command to load a new program image, the @code{run} command
+to run your program, and so on.
+
+As well as making available all the usual machine registers (see
+@code{info reg}), the Z8000 simulator provides three additional items
+of information as specially named registers:
+
+@table @code
+
+@item cycles
+Counts clock-ticks in the simulator.
+
+@item insts
+Counts instructions run in the simulator.
+
+@item time
+Execution time in 60ths of a second.
+
+@end table
+
+You can refer to these values in @value{GDBN} expressions with the usual
+conventions; for example, @w{@samp{b fputc if $cycles>5000}} sets a
+conditional breakpoint that suspends only after at least 5000
+simulated clock ticks.
+
+@node Architectures
+@section Architectures
+
+This section describes characteristics of architectures that affect
+all uses of GDB with this architecture, both native and cross.
+
+@menu
+* A29K::
+* Alpha::
+* MIPS::
+@end menu
+
+@node A29K
+@subsection A29K
+
+@table @code
+
+@kindex set rstack_high_address
+@cindex AMD 29K register stack
+@cindex register stack, AMD29K
+@item set rstack_high_address @var{address}
+On AMD 29000 family processors, registers are saved in a separate
+``register stack''. There is no way for @value{GDBN} to determine the
+extent of this stack. Normally, @value{GDBN} just assumes that the
+stack is ``large enough''. This may result in @value{GDBN} referencing
+memory locations that do not exist. If necessary, you can get around
+this problem by specifying the ending address of the register stack with
+the @code{set rstack_high_address} command. The argument should be an
+address, which you probably want to precede with @samp{0x} to specify in
+hexadecimal.
+
+@kindex show rstack_high_address
+@item show rstack_high_address
+Display the current limit of the register stack, on AMD 29000 family
+processors.
+
+@end table
+
+@node Alpha
+@subsection Alpha
+
+See the following section.
+
+@node MIPS
+@subsection MIPS
+
+@cindex stack on Alpha
+@cindex stack on MIPS
+@cindex Alpha stack
+@cindex MIPS stack
+Alpha- and MIPS-based computers use an unusual stack frame, which
+sometimes requires @value{GDBN} to search backward in the object code to
+find the beginning of a function.
+
+@cindex response time, MIPS debugging
+To improve response time (especially for embedded applications, where
+@value{GDBN} may be restricted to a slow serial line for this search)
+you may want to limit the size of this search, using one of these
+commands:
+
+@table @code
+@cindex @code{heuristic-fence-post} (Alpha,MIPS)
+@item set heuristic-fence-post @var{limit}
+Restrict @value{GDBN} to examining at most @var{limit} bytes in its
+search for the beginning of a function. A value of @var{0} (the
+default) means there is no limit. However, except for @var{0}, the
+larger the limit the more bytes @code{heuristic-fence-post} must search
+and therefore the longer it takes to run.
+
+@item show heuristic-fence-post
+Display the current limit.
+@end table
+
+@noindent
+These commands are available @emph{only} when @value{GDBN} is configured
+for debugging programs on Alpha or MIPS processors.
+
+
@node Controlling GDB
@chapter Controlling @value{GDBN}