diff options
author | Daniel Jacobowitz <drow@false.org> | 2006-11-14 21:53:59 +0000 |
---|---|---|
committer | Daniel Jacobowitz <drow@false.org> | 2006-11-14 21:53:59 +0000 |
commit | ca3bf3bdbe69f60b3ab1c834e621297f2fec0775 (patch) | |
tree | 059c039e2cd36a1f18c6e3f24471a554ab3ed525 /gdb/xtensa-tdep.c | |
parent | 427c3a89d32cedc331b0bf9a3ecb74716f123276 (diff) | |
download | binutils-gdb-ca3bf3bdbe69f60b3ab1c834e621297f2fec0775.tar.gz |
2006-11-14 Maxim Grigoriev <maxim@tensilica.com>
* NEWS: New port to Xtensa.
* Makefile.in: Add dependencies for Xtensa files.
* configure.tgt (xtensa*, xtensa*-*-elf*): New.
* configure.host (xtensa*-*-elf*): New.
* config/xtensa/xtensa.mt: New file.
* xtensa-config.c: New file.
* xtensa-tdep.h: New file.
* xtensa-tdep.c: New file.
2006-11-14 Maxim Grigoriev <maxim@tensilica.com>
* gdb.texinfo (Contributors): Add contributors of Xtensa port.
Diffstat (limited to 'gdb/xtensa-tdep.c')
-rw-r--r-- | gdb/xtensa-tdep.c | 1739 |
1 files changed, 1739 insertions, 0 deletions
diff --git a/gdb/xtensa-tdep.c b/gdb/xtensa-tdep.c new file mode 100644 index 00000000000..d2c777d0a00 --- /dev/null +++ b/gdb/xtensa-tdep.c @@ -0,0 +1,1739 @@ +/* Target-dependent code for the Xtensa port of GDB, the GNU debugger. + + Copyright (C) 2003, 2005, 2006 Free Software Foundation, Inc. + + This file is part of GDB. + + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 51 Franklin Street, Fifth Floor, + Boston, MA 02110-1301, USA. */ + +#include "defs.h" +#include "frame.h" +#include "symtab.h" +#include "symfile.h" +#include "objfiles.h" +#include "gdbtypes.h" +#include "gdbcore.h" +#include "value.h" +#include "dis-asm.h" +#include "inferior.h" +#include "floatformat.h" +#include "regcache.h" +#include "reggroups.h" +#include "regset.h" + +#include "dummy-frame.h" +#include "elf/dwarf2.h" +#include "dwarf2-frame.h" +#include "dwarf2loc.h" +#include "frame.h" +#include "frame-base.h" +#include "frame-unwind.h" + +#include "arch-utils.h" +#include "gdbarch.h" +#include "remote.h" +#include "serial.h" + +#include "command.h" +#include "gdbcmd.h" +#include "gdb_assert.h" + +#include "xtensa-tdep.h" + + +static int xtensa_debug_level = 0; + +#define DEBUGWARN(args...) \ + if (xtensa_debug_level > 0) \ + fprintf_unfiltered (gdb_stdlog, "(warn ) " args) + +#define DEBUGINFO(args...) \ + if (xtensa_debug_level > 1) \ + fprintf_unfiltered (gdb_stdlog, "(info ) " args) + +#define DEBUGTRACE(args...) \ + if (xtensa_debug_level > 2) \ + fprintf_unfiltered (gdb_stdlog, "(trace) " args) + +#define DEBUGVERB(args...) \ + if (xtensa_debug_level > 3) \ + fprintf_unfiltered (gdb_stdlog, "(verb ) " args) + + +/* According to the ABI, the SP must be aligned to 16-byte boundaries. */ + +#define SP_ALIGNMENT 16 + + +/* We use a6 through a11 for passing arguments to a function called by GDB. */ + +#define ARGS_FIRST_REG A6_REGNUM +#define ARGS_NUM_REGS 6 +#define REGISTER_SIZE 4 + + +/* Extract the call size from the return address or ps register. */ + +#define PS_CALLINC_SHIFT 16 +#define PS_CALLINC_MASK 0x00030000 +#define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT) +#define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3)) + + +/* Convert a live Ax register number to the corresponding Areg number. */ + +#define AREG_NUMBER(r, wb) \ + ((((r) - A0_REGNUM + (((wb) & WB_MASK)<<WB_SHIFT)) & AREGS_MASK) + AR_BASE) + + +/* Define prototypes. */ + +extern struct gdbarch_tdep *xtensa_config_tdep (struct gdbarch_info *); +extern int xtensa_config_byte_order (struct gdbarch_info *); + + +/* XTENSA_IS_ENTRY tests whether the first byte of an instruction + indicates that the instruction is an ENTRY instruction. */ + +#define XTENSA_IS_ENTRY(op1) \ + ((TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) ? ((op1) == 0x6c) : ((op1) == 0x36)) + +#define XTENSA_ENTRY_LENGTH 3 + + +/* windowing_enabled() returns true, if windowing is enabled. + WOE must be set to 1; EXCM to 0. + Note: We assume that EXCM is always 0 for XEA1. */ + +static inline int +windowing_enabled (CORE_ADDR ps) +{ + return ((ps & (1 << 4)) == 0 && (ps & (1 << 18)) != 0); +} + +/* Return the window size of the previous call to the function from which we + have just returned. + + This function is used to extract the return value after a called function + has returned to the callee. On Xtensa, the register that holds the return + value (from the perspective of the caller) depends on what call + instruction was used. For now, we are assuming that the call instruction + precedes the current address, so we simply analyze the call instruction. + If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4' + method to call the inferior function. */ + +static int +extract_call_winsize (CORE_ADDR pc) +{ + int winsize = 4; /* Default: No call, e.g. dummy frame. */ + int insn; + char buf[4]; + + DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc); + + /* Read the previous instruction (should be a call[x]{4|8|12}. */ + read_memory (pc-3, buf, 3); + insn = extract_unsigned_integer (buf, 3); + + /* Decode call instruction: + Little Endian + call{0,4,8,12} OFFSET || {00,01,10,11} || 0101 + callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000 + Big Endian + call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET + callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */ + + /* Lookup call insn. + (Return the default value (4) if we can't find a valid call insn. */ + + if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE) + { + if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0)) + winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12 */ + } + else + { + if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03)) + winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12 */ + } + return winsize; +} + + +/* REGISTER INFORMATION */ + +/* Returns the name of a register. */ + +static const char * +xtensa_register_name (int regnum) +{ + /* Return the name stored in the register map. */ + if (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS) + return REGMAP[regnum].name; + + /* Invalid register number. */ + internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum); + return 0; +} + + +/* Return the type of a register. Create a new type, if necessary. */ + +static struct ctype_cache +{ + struct ctype_cache *next; + int size; + struct type *virtual_type; +} *type_entries = NULL; + +static struct type * +xtensa_register_type (struct gdbarch *gdbarch, int regnum) +{ + /* Return signed integer for ARx and Ax registers. */ + if ((regnum >= AR_BASE && regnum < AR_BASE + NUM_AREGS) + || (regnum >= A0_BASE && regnum < A0_BASE + 16)) + return builtin_type_int; + + if (regnum == PC_REGNUM || regnum == A1_REGNUM) + return lookup_pointer_type (builtin_type_void); + + /* Return the stored type for all other registers. */ + else if (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS) + { + xtensa_register_t* reg = ®MAP[regnum]; + + /* Set ctype for this register (only the first time we ask for it). */ + + if (reg->ctype == 0) + { + struct ctype_cache *tp; + int size = reg->byte_size; + + /* We always use the memory representation, even if the register + width is smaller. */ + switch (size) + { + case 1: + reg->ctype = builtin_type_uint8; + break; + + case 2: + reg->ctype = builtin_type_uint16; + break; + + case 4: + reg->ctype = builtin_type_uint32; + break; + + case 8: + reg->ctype = builtin_type_uint64; + break; + + case 16: + reg->ctype = builtin_type_uint128; + break; + + default: + for (tp = type_entries; tp != NULL; tp = tp->next) + if (tp->size == size) + break; + + if (tp == NULL) + { + char *name = xmalloc (16); + tp = xmalloc (sizeof (struct ctype_cache)); + tp->next = type_entries; + type_entries = tp; + tp->size = size; + + sprintf (name, "int%d", size * 8); + tp->virtual_type = init_type (TYPE_CODE_INT, size, + TYPE_FLAG_UNSIGNED, name, + NULL); + } + + reg->ctype = tp->virtual_type; + } + } + return reg->ctype; + } + + /* Invalid register number. */ + internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum); + return 0; +} + + +/* Returns the 'local' register number for stubs, dwarf2, etc. + The debugging information enumerates registers starting from 0 for A0 + to n for An. So, we only have to add the base number for A0. */ + +static int +xtensa_reg_to_regnum (int regnum) +{ + int i; + + if (regnum >= 0 && regnum < 16) + return A0_BASE + regnum; + + for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++) + if (regnum == REGMAP[i].target_number) + return i; + + /* Invalid register number. */ + internal_error (__FILE__, __LINE__, + _("invalid dwarf/stabs register number %d"), regnum); + return 0; +} + + +/* Handle the special case of masked registers. */ + +/* Write the bits of a masked register to the various registers that + are combined into this register. Only the masked areas of these + registers are modified; the other fields are untouched. + (Note: The size of masked registers is always less or equal 32 bits.) */ + +static void +xtensa_register_write_masked (xtensa_register_t *reg, unsigned char *buffer) +{ + unsigned int value[(MAX_REGISTER_SIZE + 3) / 4]; + + const xtensa_mask_t *mask = reg->mask; + + int shift = 0; /* Shift for next mask (mod 32). */ + int start, size; /* Start bit and size of current mask. */ + + unsigned int *ptr = value; + unsigned int regval, m, mem = 0; + + int bytesize = reg->byte_size; + int bitsize = bytesize * 8; + int i, r; + + DEBUGTRACE ("xtensa_register_write_masked ()\n"); + + /* Copy the masked register to host byte-order. */ + if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) + for (i = 0; i < bytesize; i++) + { + mem >>= 8; + mem |= (buffer[bytesize - i - 1] << 24); + if ((i & 3) == 3) + *ptr++ = mem; + } + else + for (i = 0; i < bytesize; i++) + { + mem >>= 8; + mem |= (buffer[i] << 24); + if ((i & 3) == 3) + *ptr++ = mem; + } + + /* We might have to shift the final value: + bytesize & 3 == 0 -> nothing to do, we use the full 32 bits, + bytesize & 3 == x -> shift (4-x) * 8. */ + + *ptr = mem >> (((0 - bytesize) & 3) * 8); + ptr = value; + mem = *ptr; + + /* Write the bits to the masked areas of the other registers. */ + for (i = 0; i < mask->count; i++) + { + start = mask->mask[i].bit_start; + size = mask->mask[i].bit_size; + regval = mem >> shift; + + if ((shift += size) > bitsize) + error (_("size of all masks is larger than the register")); + + if (shift >= 32) + { + mem = *(++ptr); + shift -= 32; + bitsize -= 32; + + if (shift > 0) + regval |= mem << (size - shift); + } + + /* Make sure we have a valid register. */ + r = mask->mask[i].reg_num; + if (r >= 0 && size > 0) + { + /* Don't overwrite the unmasked areas. */ + m = 0xffffffff >> (32 - size) << start; + regval <<= start; + regval = (regval & m) | (read_register (r) & ~m); + write_register (r, regval); + } + } +} + + +/* Read the masked areas of the registers and assemble it into a single + register. */ + +static void +xtensa_register_read_masked (xtensa_register_t *reg, unsigned char *buffer) +{ + unsigned int value[(MAX_REGISTER_SIZE + 3) / 4]; + + const xtensa_mask_t *mask = reg->mask; + + int shift = 0; + int start, size; + + unsigned int *ptr = value; + unsigned int regval, mem = 0; + + int bytesize = reg->byte_size; + int bitsize = bytesize * 8; + int i; + + DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n", + reg->name == 0 ? "" : reg->name); + + /* Assemble the register from the masked areas of other registers. */ + for (i = 0; i < mask->count; i++) + { + int r = mask->mask[i].reg_num; + regval = (r >= 0) ? read_register (r) : 0; + start = mask->mask[i].bit_start; + size = mask->mask[i].bit_size; + + regval >>= start; + + if (size < 32) + regval &= (0xffffffff >> (32 - size)); + + mem |= regval << shift; + + if ((shift += size) > bitsize) + error (_("size of all masks is larger than the register")); + + if (shift >= 32) + { + *ptr++ = mem; + bitsize -= 32; + shift -= 32; + + if (shift == 0) + mem = 0; + else + mem = regval >> (size - shift); + } + } + + if (shift > 0) + *ptr = mem; + + /* Copy value to target byte order. */ + ptr = value; + mem = *ptr; + + if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) + for (i = 0; i < bytesize; i++) + { + if ((i & 3) == 0) + mem = *ptr++; + buffer[bytesize - i - 1] = mem & 0xff; + mem >>= 8; + } + else + for (i = 0; i < bytesize; i++) + { + if ((i & 3) == 0) + mem = *ptr++; + buffer[i] = mem & 0xff; + mem >>= 8; + } +} + + +/* Read pseudo registers. */ + +static void +xtensa_pseudo_register_read (struct gdbarch *gdbarch, + struct regcache *regcache, + int regnum, + gdb_byte *buffer) +{ + DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n", + regnum, xtensa_register_name (regnum)); + + /* Check if it is FP (renumber it in this case -> A0...A15). */ + if (regnum == FP_ALIAS) + error (_("trying to read FP")); + + /* Read aliases a0..a15. */ + if (regnum >= A0_REGNUM && regnum <= A15_REGNUM) + { + char *buf = (char *) alloca (MAX_REGISTER_SIZE); + + regcache_raw_read (regcache, WB_REGNUM, buf); + regnum = AREG_NUMBER (regnum, extract_unsigned_integer (buf, 4)); + } + + /* We can always read 'regular' registers. */ + if (regnum >= 0 && regnum < NUM_REGS) + regcache_raw_read (regcache, regnum, buffer); + + /* Pseudo registers. */ + else if (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS) + { + xtensa_register_t *reg = ®MAP[regnum]; + xtensa_register_type_t type = reg->type; + int flags = XTENSA_TARGET_FLAGS; + + /* Can we read Unknown or Unmapped registers? */ + if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown) + { + if ((flags & xtTargetFlagsNonVisibleRegs) == 0) + { + warning (_("cannot read register %s"), + xtensa_register_name (regnum)); + return; + } + } + + /* Some targets cannot read TIE register files. */ + else if (type == xtRegisterTypeTieRegfile) + { + /* Use 'fetch' to get register? */ + if (flags & xtTargetFlagsUseFetchStore) + { + warning (_("cannot read register")); + return; + } + + /* On some targets (esp. simulators), we can always read the reg. */ + else if ((flags & xtTargetFlagsNonVisibleRegs) == 0) + { + warning (_("cannot read register")); + return; + } + } + + /* We can always read mapped registers. */ + else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState) + { + xtensa_register_read_masked (reg, (unsigned char *) buffer); + return; + } + + /* Assume that we can read the register. */ + regcache_raw_read (regcache, regnum, buffer); + } + + else + internal_error (__FILE__, __LINE__, + _("invalid register number %d"), regnum); +} + + +/* Write pseudo registers. */ + +static void +xtensa_pseudo_register_write (struct gdbarch *gdbarch, + struct regcache *regcache, + int regnum, + const gdb_byte *buffer) +{ + DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n", + regnum, xtensa_register_name (regnum)); + + /* Check if this is FP. */ + if (regnum == FP_ALIAS) + error (_("trying to write FP")); + + /* Renumber register, if aliase a0..a15. */ + if (regnum >= A0_REGNUM && regnum <= A15_REGNUM) + { + char *buf = (char *) alloca (MAX_REGISTER_SIZE); + unsigned int wb; + + regcache_raw_read (regcache, WB_REGNUM, buf); + regnum = AREG_NUMBER (regnum, extract_unsigned_integer (buf, 4)); + } + + /* We can always write 'core' registers. + Note: We might have converted Ax->ARy. */ + if (regnum >= 0 && regnum < NUM_REGS) + regcache_raw_write (regcache, regnum, buffer); + + /* Pseudo registers. */ + else if (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS) + { + xtensa_register_t *reg = ®MAP[regnum]; + xtensa_register_type_t type = reg->type; + int flags = XTENSA_TARGET_FLAGS; + + /* On most targets, we can't write registers of type "Unknown" + or "Unmapped". */ + if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown) + { + if ((flags & xtTargetFlagsNonVisibleRegs) == 0) + { + warning (_("cannot write register %s"), + xtensa_register_name (regnum)); + return; + } + } + + /* Some targets cannot read TIE register files. */ + else if (type == xtRegisterTypeTieRegfile) + { + /* Use 'store' to get register? */ + if (flags & xtTargetFlagsUseFetchStore) + { + warning (_("cannot write register")); + return; + } + + /* On some targets (esp. simulators), we can always write + the register. */ + + else if ((flags & xtTargetFlagsNonVisibleRegs) == 0) + { + warning (_("cannot write register")); + return; + } + } + + /* We can always write mapped registers. */ + else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState) + { + xtensa_register_write_masked (reg, (unsigned char *) buffer); + return; + } + + /* Assume that we can write the register. */ + regcache_raw_write (regcache, regnum, buffer); + } + + else + internal_error (__FILE__, __LINE__, + _("invalid register number %d"), regnum); +} + + +static struct reggroup *xtensa_ar_reggroup; +static struct reggroup *xtensa_user_reggroup; +static struct reggroup *xtensa_vectra_reggroup; + +static void +xtensa_init_reggroups (void) +{ + xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP); + xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP); + xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP); +} + + +static void +xtensa_add_reggroups (struct gdbarch *gdbarch) +{ + reggroup_add (gdbarch, all_reggroup); + reggroup_add (gdbarch, save_reggroup); + reggroup_add (gdbarch, restore_reggroup); + reggroup_add (gdbarch, system_reggroup); + reggroup_add (gdbarch, vector_reggroup); /* vectra */ + reggroup_add (gdbarch, general_reggroup); /* core */ + reggroup_add (gdbarch, float_reggroup); /* float */ + + reggroup_add (gdbarch, xtensa_ar_reggroup); /* ar */ + reggroup_add (gdbarch, xtensa_user_reggroup); /* user */ + reggroup_add (gdbarch, xtensa_vectra_reggroup); /* vectra */ +} + + +#define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \ + | XTENSA_REGISTER_FLAGS_WRITABLE \ + | XTENSA_REGISTER_FLAGS_VOLATILE) + +#define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \ + | XTENSA_REGISTER_FLAGS_WRITABLE) + +static int +xtensa_register_reggroup_p (struct gdbarch *gdbarch, + int regnum, + struct reggroup *group) +{ + xtensa_register_t* reg = ®MAP[regnum]; + xtensa_register_type_t type = reg->type; + xtensa_register_group_t rg = reg->group; + + /* First, skip registers that are not visible to this target + (unknown and unmapped registers when not using ISS). */ + + if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown) + return 0; + if (group == all_reggroup) + return 1; + if (group == xtensa_ar_reggroup) + return rg & xtRegisterGroupAddrReg; + if (group == xtensa_user_reggroup) + return rg & xtRegisterGroupUser; + if (group == float_reggroup) + return rg & xtRegisterGroupFloat; + if (group == general_reggroup) + return rg & xtRegisterGroupGeneral; + if (group == float_reggroup) + return rg & xtRegisterGroupFloat; + if (group == system_reggroup) + return rg & xtRegisterGroupState; + if (group == vector_reggroup || group == xtensa_vectra_reggroup) + return rg & xtRegisterGroupVectra; + if (group == save_reggroup || group == restore_reggroup) + return (regnum < NUM_REGS + && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID); + else + return 1; +} + + +/* CORE FILE SUPPORT */ + +/* Supply register REGNUM from the buffer specified by GREGS and LEN + in the general-purpose register set REGSET to register cache + REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ + +static void +xtensa_supply_gregset (const struct regset *regset, + struct regcache *rc, + int regnum, + const void *gregs, + size_t len) +{ + const xtensa_elf_gregset_t *regs = gregs; + int i; + + DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...) \n", regnum); + + if (regnum == PC_REGNUM || regnum == -1) + regcache_raw_supply (rc, PC_REGNUM, (char *) ®s->pc); + if (regnum == PS_REGNUM || regnum == -1) + regcache_raw_supply (rc, PS_REGNUM, (char *) ®s->ps); + if (regnum == WB_REGNUM || regnum == -1) + regcache_raw_supply (rc, WB_REGNUM, (char *) ®s->windowbase); + if (regnum == WS_REGNUM || regnum == -1) + regcache_raw_supply (rc, WS_REGNUM, (char *) ®s->windowstart); + if (regnum == LBEG_REGNUM || regnum == -1) + regcache_raw_supply (rc, LBEG_REGNUM, (char *) ®s->lbeg); + if (regnum == LEND_REGNUM || regnum == -1) + regcache_raw_supply (rc, LEND_REGNUM, (char *) ®s->lend); + if (regnum == LCOUNT_REGNUM || regnum == -1) + regcache_raw_supply (rc, LCOUNT_REGNUM, (char *) ®s->lcount); + if (regnum == SAR_REGNUM || regnum == -1) + regcache_raw_supply (rc, SAR_REGNUM, (char *) ®s->sar); + if (regnum == EXCCAUSE_REGNUM || regnum == -1) + regcache_raw_supply (rc, EXCCAUSE_REGNUM, (char *) ®s->exccause); + if (regnum == EXCVADDR_REGNUM || regnum == -1) + regcache_raw_supply (rc, EXCVADDR_REGNUM, (char *) ®s->excvaddr); + if (regnum >= AR_BASE && regnum < AR_BASE + NUM_AREGS) + regcache_raw_supply (rc, regnum, (char *) ®s->ar[regnum - AR_BASE]); + else if (regnum == -1) + { + for (i = 0; i < NUM_AREGS; ++i) + regcache_raw_supply (rc, AR_BASE + i, (char *) ®s->ar[i]); + } +} + + +/* Xtensa register set. */ + +static struct regset +xtensa_gregset = +{ + NULL, + xtensa_supply_gregset +}; + + +/* Return the appropriate register set for the core section identified + by SECT_NAME and SECT_SIZE. */ + +static const struct regset * +xtensa_regset_from_core_section (struct gdbarch *core_arch, + const char *sect_name, + size_t sect_size) +{ + DEBUGTRACE ("xtensa_regset_from_core_section " + "(..., sect_name==\"%s\", sect_size==%x) \n", + sect_name, sect_size); + + if (strcmp (sect_name, ".reg") == 0 + && sect_size >= sizeof(xtensa_elf_gregset_t)) + return &xtensa_gregset; + + return NULL; +} + + +/* F R A M E */ + +/* We currently don't support the call0-abi, so we have at max. 12 registers + saved on the stack. */ + +#define XTENSA_NUM_SAVED_AREGS 12 + +typedef struct xtensa_frame_cache +{ + CORE_ADDR base; + CORE_ADDR pc; + CORE_ADDR ra; /* The raw return address; use to compute call_inc. */ + CORE_ADDR ps; + int wb; /* Base for this frame; -1 if not in regfile. */ + int callsize; /* Call size to next frame. */ + int ws; + CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS]; + CORE_ADDR prev_sp; +} xtensa_frame_cache_t; + + +static struct xtensa_frame_cache * +xtensa_alloc_frame_cache (void) +{ + xtensa_frame_cache_t *cache; + int i; + + DEBUGTRACE ("xtensa_alloc_frame_cache ()\n"); + + cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t); + + cache->base = 0; + cache->pc = 0; + cache->ra = 0; + cache->wb = 0; + cache->ps = 0; + cache->callsize = -1; + cache->prev_sp = 0; + + for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++) + cache->aregs[i] = -1; + + return cache; +} + + +static CORE_ADDR +xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address) +{ + return address & ~15; +} + + +static CORE_ADDR +xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) +{ + char buf[8]; + + DEBUGTRACE ("xtensa_unwind_pc (next_frame = %p)\n", next_frame); + + frame_unwind_register (next_frame, PC_REGNUM, buf); + + DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) + extract_typed_address (buf, builtin_type_void_func_ptr)); + + return extract_typed_address (buf, builtin_type_void_func_ptr); +} + + +static struct frame_id +xtensa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) +{ + CORE_ADDR pc, fp; + char buf[4]; + + /* next_frame->prev is a dummy frame. Return a frame ID of that frame. */ + + DEBUGTRACE ("xtensa_unwind_dummy_id ()\n"); + + pc = frame_pc_unwind (next_frame); + frame_unwind_register (next_frame, A1_REGNUM, buf); + fp = extract_unsigned_integer (buf, 4); + + /* Make dummy frame ID unique by adding a constant. */ + return frame_id_build (fp+SP_ALIGNMENT, pc); +} + + +static struct xtensa_frame_cache * +xtensa_frame_cache (struct frame_info *next_frame, void **this_cache) +{ + xtensa_frame_cache_t *cache; + char buf[4]; + CORE_ADDR ra, wb, ws, pc, sp, ps; + char op1; + + DEBUGTRACE ("xtensa_frame_cache (next_frame %p, *this_cache %p)\n", + next_frame, this_cache ? *this_cache : (void*)0xdeadbeef); + + /* Already cached? */ + if (*this_cache) + return *this_cache; + + /* Get pristine xtensa-frame. */ + cache = xtensa_alloc_frame_cache (); + *this_cache = cache; + + /* Get windowbase, windowstart, ps, and pc. */ + wb = frame_unwind_register_unsigned (next_frame, WB_REGNUM); + ws = frame_unwind_register_unsigned (next_frame, WS_REGNUM); + ps = frame_unwind_register_unsigned (next_frame, PS_REGNUM); + pc = frame_unwind_register_unsigned (next_frame, PC_REGNUM); + + op1 = read_memory_integer (pc, 1); + if (XTENSA_IS_ENTRY (op1) || !windowing_enabled (read_register (PS_REGNUM))) + { + int callinc = CALLINC (frame_unwind_register_unsigned (next_frame, + PS_REGNUM)); + ra = frame_unwind_register_unsigned (next_frame, + A0_REGNUM + callinc * 4); + + DEBUGINFO("[xtensa_frame_cache] 'entry' at 0x%08x\n (callinc = %d)", + (int)pc, callinc); + + /* ENTRY hasn't been executed yet, therefore callsize is still 0. */ + cache->callsize = 0; + cache->wb = wb; + cache->ws = ws; + cache->prev_sp = read_register (A1_REGNUM); + } + else + { + ra = frame_unwind_register_unsigned (next_frame, A0_REGNUM); + cache->callsize = WINSIZE (ra); + cache->wb = (wb - (cache->callsize / 4)) & ((NUM_AREGS / 4) - 1); + cache->ws = ws & ~(1 << wb); + } + + cache->pc = ((frame_func_unwind (next_frame) & 0xc0000000) + | (ra & 0x3fffffff)); + cache->ps = (ps & ~PS_CALLINC_MASK) | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT); + + + /* Note: We could also calculate the location on stack when we actually + access the register. However, this approach, saving the location + in the cache frame, is probably easier to support the call0 ABI. */ + + if (cache->ws == 0) + { + int i; + + /* Set A0...A3. */ + sp = frame_unwind_register_unsigned (next_frame, A1_REGNUM) - 16; + + for (i = 0; i < 4; i++, sp += 4) + { + cache->aregs[i] = sp; + } + + if (cache->callsize > 4) + { + /* Set A4...A7/A11. */ + + sp = (CORE_ADDR) read_memory_integer (sp - 12, 4); + sp = (CORE_ADDR) read_memory_integer (sp - 12, 4); + sp -= cache->callsize * 4; + + for ( /* i=4 */ ; i < cache->callsize; i++, sp += 4) + { + cache->aregs[i] = sp; + } + } + } + + if (cache->prev_sp == 0) + { + if (cache->ws == 0) + { + /* Register window overflow already happened. + We can read caller's frame SP from the proper spill loction. */ + cache->prev_sp = + read_memory_integer (cache->aregs[1], + register_size (current_gdbarch, + A1_REGNUM)); + } + else + { + /* Read caller's frame SP directly from the previous window. */ + + int regnum = AREG_NUMBER (A1_REGNUM, cache->wb); + + cache->prev_sp = read_register (regnum); + } + } + + cache->base = frame_unwind_register_unsigned (next_frame,A1_REGNUM); + + DEBUGINFO ("[xtensa_frame_cache] base 0x%08x, wb %d, " + "ws 0x%08x, callsize %d, pc 0x%08x, ps 0x%08x, prev_sp 0x%08x\n", + (unsigned int) cache->base, (unsigned int) cache->wb, + cache->ws, cache->callsize, (unsigned int) cache->pc, + (unsigned int) cache->ps, (unsigned int) cache->prev_sp); + + return cache; +} + + +static void +xtensa_frame_this_id (struct frame_info *next_frame, + void **this_cache, + struct frame_id *this_id) +{ + struct xtensa_frame_cache *cache = + xtensa_frame_cache (next_frame, this_cache); + + DEBUGTRACE ("xtensa_frame_this_id (next 0x%08x, *this 0x%08x)\n", + (unsigned int) next_frame, (unsigned int) *this_cache); + + if (cache->prev_sp == 0) + return; + + (*this_id) = frame_id_build (cache->prev_sp, cache->pc); +} + + +static void +xtensa_frame_prev_register (struct frame_info *next_frame, + void **this_cache, + int regnum, + int *optimizedp, + enum lval_type *lvalp, + CORE_ADDR *addrp, + int *realnump, + gdb_byte *valuep) +{ + struct xtensa_frame_cache *cache = + xtensa_frame_cache (next_frame, this_cache); + CORE_ADDR saved_reg = 0; + int done = 1; + + DEBUGTRACE ("xtensa_frame_prev_register (next 0x%08x, " + "*this 0x%08x, regnum %d (%s), ...)\n", + (unsigned int) next_frame, + *this_cache? (unsigned int) *this_cache : 0, regnum, + xtensa_register_name (regnum)); + + if (regnum == WS_REGNUM) + { + if (cache->ws != 0) + saved_reg = cache->ws; + else + saved_reg = 1 << cache->wb; + } + else if (regnum == WB_REGNUM) + saved_reg = cache->wb; + else if (regnum == PC_REGNUM) + saved_reg = cache->pc; + else if (regnum == PS_REGNUM) + saved_reg = cache->ps; + else + done = 0; + + if (done) + { + *optimizedp = 0; + *lvalp = not_lval; + *addrp = 0; + *realnump = -1; + if (valuep) + store_unsigned_integer (valuep, 4, saved_reg); + + return; + } + + /* Convert Ax register numbers to ARx register numbers. */ + if (regnum >= A0_REGNUM && regnum <= A15_REGNUM) + regnum = AREG_NUMBER (regnum, cache->wb); + + /* Check if ARx register has been saved to stack. */ + if (regnum >= AR_BASE && regnum <= (AR_BASE + NUM_AREGS)) + { + int areg = regnum - AR_BASE - (cache->wb * 4); + + if (areg >= 0 + && areg < XTENSA_NUM_SAVED_AREGS + && cache->aregs[areg] != -1) + { + *optimizedp = 0; + *lvalp = lval_memory; + *addrp = cache->aregs[areg]; + *realnump = -1; + + if (valuep) + read_memory (*addrp, valuep, + register_size (current_gdbarch, regnum)); + + DEBUGINFO ("[xtensa_frame_prev_register] register on stack\n"); + return; + } + } + + /* Note: All other registers have been either saved to the dummy stack + or are still alive in the processor. */ + + *optimizedp = 0; + *lvalp = lval_register; + *addrp = 0; + *realnump = regnum; + if (valuep) + frame_unwind_register (next_frame, (*realnump), valuep); +} + + +static const struct frame_unwind +xtensa_frame_unwind = +{ + NORMAL_FRAME, + xtensa_frame_this_id, + xtensa_frame_prev_register +}; + +static const struct frame_unwind * +xtensa_frame_sniffer (struct frame_info *next_frame) +{ + return &xtensa_frame_unwind; +} + +static CORE_ADDR +xtensa_frame_base_address (struct frame_info *next_frame, void **this_cache) +{ + struct xtensa_frame_cache *cache = + xtensa_frame_cache (next_frame, this_cache); + + return cache->base; +} + +static const struct frame_base +xtensa_frame_base = +{ + &xtensa_frame_unwind, + xtensa_frame_base_address, + xtensa_frame_base_address, + xtensa_frame_base_address +}; + + +static void +xtensa_extract_return_value (struct type *type, + struct regcache *regcache, + void *dst) +{ + bfd_byte *valbuf = dst; + int len = TYPE_LENGTH (type); + ULONGEST pc, wb; + int callsize, areg; + int offset = 0; + + DEBUGTRACE ("xtensa_extract_return_value (...)\n"); + + gdb_assert(len > 0); + + /* First, we have to find the caller window in the register file. */ + regcache_raw_read_unsigned (regcache, PC_REGNUM, &pc); + callsize = extract_call_winsize (pc); + + /* On Xtensa, we can return up to 4 words (or 2 when called by call12). */ + if (len > (callsize > 8 ? 8 : 16)) + internal_error (__FILE__, __LINE__, + _("cannot extract return value of %d bytes long"), len); + + /* Get the register offset of the return register (A2) in the caller + window. */ + regcache_raw_read_unsigned (regcache, WB_REGNUM, &wb); + areg = AREG_NUMBER(A2_REGNUM + callsize, wb); + + DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len); + + if (len < 4 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) + offset = 4 - len; + + for (; len > 0; len -= 4, areg++, valbuf += 4) + { + if (len < 4) + regcache_raw_read_part (regcache, areg, offset, len, valbuf); + else + regcache_raw_read (regcache, areg, valbuf); + } +} + + +static void +xtensa_store_return_value (struct type *type, + struct regcache *regcache, + const void *dst) +{ + const bfd_byte *valbuf = dst; + unsigned int areg; + ULONGEST pc, wb; + int callsize; + int len = TYPE_LENGTH (type); + int offset = 0; + + DEBUGTRACE ("xtensa_store_return_value (...)\n"); + + regcache_raw_read_unsigned (regcache, WB_REGNUM, &wb); + regcache_raw_read_unsigned (regcache, PC_REGNUM, &pc); + callsize = extract_call_winsize (pc); + + if (len > (callsize > 8 ? 8 : 16)) + internal_error (__FILE__, __LINE__, + _("unimplemented for this length: %d"), + TYPE_LENGTH (type)); + + DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n", + callsize, (int) wb); + + if (len < 4 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) + offset = 4 - len; + + areg = AREG_NUMBER (A2_REGNUM + callsize, wb); + + for (; len > 0; len -= 4, areg++, valbuf += 4) + { + if (len < 4) + regcache_raw_write_part (regcache, areg, offset, len, valbuf); + else + regcache_raw_write (regcache, areg, valbuf); + } +} + + +enum return_value_convention +xtensa_return_value (struct gdbarch *gdbarch, + struct type *valtype, + struct regcache *regcache, + gdb_byte *readbuf, + const gdb_byte *writebuf) +{ + /* Note: Structures up to 16 bytes are returned in registers. */ + + int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT + || TYPE_CODE (valtype) == TYPE_CODE_UNION + || TYPE_CODE (valtype) == TYPE_CODE_ARRAY) + && TYPE_LENGTH (valtype) > 16); + + if (struct_return) + return RETURN_VALUE_STRUCT_CONVENTION; + + DEBUGTRACE ("xtensa_return_value(...)\n"); + + if (writebuf != NULL) + { + xtensa_store_return_value (valtype, regcache, writebuf); + } + + if (readbuf != NULL) + { + gdb_assert (!struct_return); + xtensa_extract_return_value (valtype, regcache, readbuf); + } + return RETURN_VALUE_REGISTER_CONVENTION; +} + + +/* DUMMY FRAME */ + +static CORE_ADDR +xtensa_push_dummy_call (struct gdbarch *gdbarch, + struct value *function, + struct regcache *regcache, + CORE_ADDR bp_addr, + int nargs, + struct value **args, + CORE_ADDR sp, + int struct_return, + CORE_ADDR struct_addr) +{ + int i; + int size, onstack_size; + char *buf = (char *) alloca (16); + CORE_ADDR ra, ps; + struct argument_info + { + const bfd_byte *contents; + int length; + int onstack; /* onstack == 0 => in reg */ + int align; /* alignment */ + union + { + int offset; /* stack offset if on stack */ + int regno; /* regno if in register */ + } u; + }; + + struct argument_info *arg_info = + (struct argument_info *) alloca (nargs * sizeof (struct argument_info)); + + CORE_ADDR osp = sp; + + DEBUGTRACE ("xtensa_push_dummy_call (...)\n"); + + if (xtensa_debug_level > 3) + { + int i; + DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs); + DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, " + "struct_addr=0x%x\n", + (int) sp, (int) struct_return, (int) struct_addr); + + for (i = 0; i < nargs; i++) + { + struct value *arg = args[i]; + struct type *arg_type = check_typedef (value_type (arg)); + fprintf_unfiltered (gdb_stdlog, "%2d: 0x%08x %3d ", + i, (int) arg, TYPE_LENGTH (arg_type)); + switch (TYPE_CODE (arg_type)) + { + case TYPE_CODE_INT: + fprintf_unfiltered (gdb_stdlog, "int"); + break; + case TYPE_CODE_STRUCT: + fprintf_unfiltered (gdb_stdlog, "struct"); + break; + default: + fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type)); + break; + } + fprintf_unfiltered (gdb_stdlog, " 0x%08x\n", + (unsigned int) value_contents (arg)); + } + } + + /* First loop: collect information. + Cast into type_long. (This shouldn't happen often for C because + GDB already does this earlier.) It's possible that GDB could + do it all the time but it's harmless to leave this code here. */ + + size = 0; + onstack_size = 0; + i = 0; + + if (struct_return) + size = REGISTER_SIZE; + + for (i = 0; i < nargs; i++) + { + struct argument_info *info = &arg_info[i]; + struct value *arg = args[i]; + struct type *arg_type = check_typedef (value_type (arg)); + + switch (TYPE_CODE (arg_type)) + { + case TYPE_CODE_INT: + case TYPE_CODE_BOOL: + case TYPE_CODE_CHAR: + case TYPE_CODE_RANGE: + case TYPE_CODE_ENUM: + + /* Cast argument to long if necessary as the mask does it too. */ + if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long)) + { + arg_type = builtin_type_long; + arg = value_cast (arg_type, arg); + } + info->align = TYPE_LENGTH (builtin_type_long); + break; + + case TYPE_CODE_FLT: + + /* Align doubles correctly. */ + if (TYPE_LENGTH (arg_type) == TYPE_LENGTH (builtin_type_double)) + info->align = TYPE_LENGTH (builtin_type_double); + else + info->align = TYPE_LENGTH (builtin_type_long); + break; + + case TYPE_CODE_STRUCT: + default: + info->align = TYPE_LENGTH (builtin_type_long); + break; + } + info->length = TYPE_LENGTH (arg_type); + info->contents = value_contents (arg); + + /* Align size and onstack_size. */ + size = (size + info->align - 1) & ~(info->align - 1); + onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1); + + if (size + info->length > REGISTER_SIZE * ARGS_NUM_REGS) + { + info->onstack = 1; + info->u.offset = onstack_size; + onstack_size += info->length; + } + else + { + info->onstack = 0; + info->u.regno = ARGS_FIRST_REG + size / REGISTER_SIZE; + } + size += info->length; + } + + /* Adjust the stack pointer and align it. */ + sp = align_down (sp - onstack_size, SP_ALIGNMENT); + + /* Simulate MOVSP. */ + if (sp != osp) + { + read_memory (osp - 16, buf, 16); + write_memory (sp - 16, buf, 16); + } + + /* Second Loop: Load arguments. */ + + if (struct_return) + { + store_unsigned_integer (buf, REGISTER_SIZE, struct_addr); + regcache_cooked_write (regcache, ARGS_FIRST_REG, buf); + } + + for (i = 0; i < nargs; i++) + { + struct argument_info *info = &arg_info[i]; + + if (info->onstack) + { + int n = info->length; + CORE_ADDR offset = sp + info->u.offset; + + /* Odd-sized structs are aligned to the lower side of a memory + word in big-endian mode and require a shift. This only + applies for structures smaller than one word. */ + + if (n < REGISTER_SIZE && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) + offset += (REGISTER_SIZE - n); + + write_memory (offset, info->contents, info->length); + + } + else + { + int n = info->length; + const bfd_byte *cp = info->contents; + int r = info->u.regno; + + /* Odd-sized structs are aligned to the lower side of registers in + big-endian mode and require a shift. The odd-sized leftover will + be at the end. Note that this is only true for structures smaller + than REGISTER_SIZE; for larger odd-sized structures the excess + will be left-aligned in the register on both endiannesses. */ + + if (n < REGISTER_SIZE && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) + { + ULONGEST v = extract_unsigned_integer (cp, REGISTER_SIZE); + v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT); + + store_unsigned_integer (buf, REGISTER_SIZE, v); + regcache_cooked_write (regcache, r, buf); + + cp += REGISTER_SIZE; + n -= REGISTER_SIZE; + r++; + } + else + while (n > 0) + { + /* ULONGEST v = extract_unsigned_integer (cp, REGISTER_SIZE);*/ + regcache_cooked_write (regcache, r, cp); + + /* write_register (r, v); */ + cp += REGISTER_SIZE; + n -= REGISTER_SIZE; + r++; + } + } + } + + + /* Set the return address of dummy frame to the dummy address. + Note: The return address for the current function (in A0) is + saved in the dummy frame, so we can savely overwrite A0 here. */ + + ra = (bp_addr & 0x3fffffff) | 0x40000000; + regcache_raw_read (regcache, PS_REGNUM, buf); + ps = extract_unsigned_integer (buf, 4) & ~0x00030000; + regcache_cooked_write_unsigned (regcache, A4_REGNUM, ra); + regcache_cooked_write_unsigned (regcache, PS_REGNUM, ps | 0x00010000); + + /* Set new stack pointer and return it. */ + regcache_cooked_write_unsigned (regcache, A1_REGNUM, sp); + /* Make dummy frame ID unique by adding a constant. */ + return sp + SP_ALIGNMENT; +} + + +/* Return a breakpoint for the current location of PC. We always use + the density version if we have density instructions (regardless of the + current instruction at PC), and use regular instructions otherwise. */ + +#define BIG_BREAKPOINT { 0x00, 0x04, 0x00 } +#define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 } +#define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f } +#define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 } + +const unsigned char * +xtensa_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) +{ + static char big_breakpoint[] = BIG_BREAKPOINT; + static char little_breakpoint[] = LITTLE_BREAKPOINT; + static char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT; + static char density_little_breakpoint[] = DENSITY_LITTLE_BREAKPOINT; + + DEBUGTRACE ("xtensa_breakpoint_from_pc (pc = 0x%08x)\n", (int) *pcptr); + + if (ISA_USE_DENSITY_INSTRUCTIONS) + { + if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) + { + *lenptr = sizeof (density_big_breakpoint); + return density_big_breakpoint; + } + else + { + *lenptr = sizeof (density_little_breakpoint); + return density_little_breakpoint; + } + } + else + { + if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG) + { + *lenptr = sizeof (big_breakpoint); + return big_breakpoint; + } + else + { + *lenptr = sizeof (little_breakpoint); + return little_breakpoint; + } + } +} + + +/* Return the pc of the first real instruction. We assume that this + machine uses register windows. + + If we have debug info ( line-number info, in particular ) we simply skip + the code associated with the first function line effectively skipping + the prologue code. It works even in cases like + + int main() + { int local_var = 1; + .... + } + + because, for this source code, both Xtensa compilers will generate two + separate entries ( with the same line number ) in dwarf line-number + section to make sure there is a boundary between the prologue code and + the rest of the function. + + If there is no debug info, we need to analyze the code. */ + +CORE_ADDR +xtensa_skip_prologue (CORE_ADDR start_pc) +{ + DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc); + + if (ISA_USE_WINDOWED_REGISTERS) + { + unsigned char op1; + struct symtab_and_line prologue_sal; + + op1 = read_memory_integer (start_pc, 1); + if (!XTENSA_IS_ENTRY (op1)) + return start_pc; + + prologue_sal = find_pc_line (start_pc, 0); + if (prologue_sal.line != 0) + return prologue_sal.end; + else + return start_pc + XTENSA_ENTRY_LENGTH; + } + else + { + internal_error (__FILE__, __LINE__, + _("non-windowed configurations are not supported")); + return start_pc; + } +} + + +/* CONFIGURATION CHECK */ + +/* Verify the current configuration. */ + +static void +xtensa_verify_config (struct gdbarch *gdbarch) +{ + struct ui_file *log; + struct cleanup *cleanups; + struct gdbarch_tdep *tdep; + long dummy; + char *buf; + + tdep = gdbarch_tdep (gdbarch); + log = mem_fileopen (); + cleanups = make_cleanup_ui_file_delete (log); + + /* Verify that we got a reasonable number of AREGS. */ + if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs) + fprintf_unfiltered (log, "\n\tnum_aregs: Number of AR registers (%d) " + "is not a power of two!", tdep->num_aregs); + + /* Verify that certain registers exist. */ + if (tdep->pc_regnum == -1) + fprintf_unfiltered (log, "\n\tpc_regnum: No PC register"); + if (tdep->ps_regnum == -1) + fprintf_unfiltered (log, "\n\tps_regnum: No PS register"); + if (tdep->wb_regnum == -1) + fprintf_unfiltered (log, "\n\twb_regnum: No WB register"); + if (tdep->ws_regnum == -1) + fprintf_unfiltered (log, "\n\tws_regnum: No WS register"); + if (tdep->ar_base == -1) + fprintf_unfiltered (log, "\n\tar_base: No AR registers"); + if (tdep->a0_base == -1) + fprintf_unfiltered (log, "\n\ta0_base: No Ax registers"); + + buf = ui_file_xstrdup (log, &dummy); + make_cleanup (xfree, buf); + if (strlen (buf) > 0) + internal_error (__FILE__, __LINE__, + _("the following are invalid: %s"), buf); + do_cleanups (cleanups); +} + + +/* Module "constructor" function. */ + +static struct gdbarch * +xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) +{ + struct gdbarch_tdep *tdep; + struct gdbarch *gdbarch; + struct xtensa_abi_handler *abi_handler; + + DEBUGTRACE ("gdbarch_init()\n"); + + /* We have to set the byte order before we call gdbarch_alloc. */ + info.byte_order = xtensa_config_byte_order (&info); + + tdep = xtensa_config_tdep (&info); + gdbarch = gdbarch_alloc (&info, tdep); + + /* Verify our configuration. */ + xtensa_verify_config (gdbarch); + + /* Pseudo-Register read/write */ + set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read); + set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write); + + /* Set target information. */ + set_gdbarch_num_regs (gdbarch, tdep->num_regs); + set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs); + set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1); + set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum); + set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum); + + /* Renumber registers for known formats (stab, dwarf, and dwarf2). */ + set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum); + set_gdbarch_dwarf_reg_to_regnum (gdbarch, xtensa_reg_to_regnum); + set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum); + + /* We provide our own function to get register information. */ + set_gdbarch_register_name (gdbarch, xtensa_register_name); + set_gdbarch_register_type (gdbarch, xtensa_register_type); + + /* To call functions from GDB using dummy frame */ + set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call); + + set_gdbarch_believe_pcc_promotion (gdbarch, 1); + + set_gdbarch_return_value (gdbarch, xtensa_return_value); + + /* Advance PC across any prologue instructions to reach "real" code. */ + set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue); + + /* Stack grows downward. */ + set_gdbarch_inner_than (gdbarch, core_addr_lessthan); + + /* Set breakpoints. */ + set_gdbarch_breakpoint_from_pc (gdbarch, xtensa_breakpoint_from_pc); + + /* After breakpoint instruction or illegal instruction, pc still + points at break instruction, so don't decrement. */ + set_gdbarch_decr_pc_after_break (gdbarch, 0); + + /* We don't skip args. */ + set_gdbarch_frame_args_skip (gdbarch, 0); + + set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc); + + set_gdbarch_frame_align (gdbarch, xtensa_frame_align); + + set_gdbarch_unwind_dummy_id (gdbarch, xtensa_unwind_dummy_id); + + /* Frame handling. */ + frame_base_set_default (gdbarch, &xtensa_frame_base); + frame_unwind_append_sniffer (gdbarch, xtensa_frame_sniffer); + + set_gdbarch_print_insn (gdbarch, print_insn_xtensa); + + set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); + + xtensa_add_reggroups (gdbarch); + set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p); + + set_gdbarch_regset_from_core_section (gdbarch, + xtensa_regset_from_core_section); + + return gdbarch; +} + + +/* Dump xtensa tdep structure. */ + +static void +xtensa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file) +{ + error (_("xtensa_dump_tdep(): not implemented")); +} + + +void +_initialize_xtensa_tdep (void) +{ + struct cmd_list_element *c; + + gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep); + xtensa_init_reggroups (); + + add_setshow_zinteger_cmd ("xtensa", + class_maintenance, + &xtensa_debug_level, _("\ +Set Xtensa debugging."), _("\ +Show Xtensa debugging."), _("\ +When non-zero, Xtensa-specific debugging is enabled. \ +Can be 1, 2, 3, or 4 indicating the level of debugging."), + NULL, + NULL, + &setdebuglist, &showdebuglist); +} |